
c12) United States Patent
Smith et al.

(54) IDENTIFYING PROGRAM PHASE CHANGES
THROUGH PROGRAM WORKING SET
ANALYSIS

(75) Inventors: James Smith, Madison, WI (US);
Ashutosh Dhodapkar, Madison, WI
(US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 1773 days.

(21) Appl. No.: 10/772,555

Feb.5,2004 (22) Filed:

(65) Prior Publication Data

US 2004/0158818Al Aug. 12, 2004

Related U.S. Application Data

(60) Provisional application No. 60/445,368, filed on Feb.
5, 2003.

(51) Int. Cl.
G06F 9/44 (2006.01)
G06F 9/45 (2006.01)

(52) U.S. Cl. 717/127; 717/131; 717/154
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,370,711 A l/ 1983 Smith
2004/0111708 Al* 6/2004 Calder et al. 717/131
2004/0216082 Al* 10/2004 Sun 717/100
2004/0216097 Al* 10/2004 Sun 717/154

52

I 1111111111111111 11111 1111111111 11111 11111 111111111111111 IIIIII IIII IIII IIII
US007890933B2

(10) Patent No.: US 7,890,933 B2
Feb.15,2011 (45) Date of Patent:

OTHER PUBLICATIONS

Sherwood et al., "Automatically Characterizing Large Scale Program
Behavior", 2002 ACM, pp. 45-57.*
Quinn Able Jacobson, "High-Performance Frontends for Trace Pro
cessors", 1999, Univ. of Wisconsin-Madison, pp. 1-225.*
Ashutosh Sham Dhodapkar, "Autonomic Management of Adaptive
Microarchitectures", 2004, Univ. of Wisconsin-Madison, pp.
1-154.*
Smith et al., "Dynamic Microarchitecture Adaptation via Co-De
signed Virtual Machines", ISSCC 2002, 2002 IEEE, pp. 1-2.*
Dhodapkar et al., "Comparing Program Phase Detection Tech
niques", Dec. 2003, IEEE, pp. 1-11.*
Dhodapkar et al., "Tuning Reconfigurable Microarchitectures for
Power Efficiency", 2004 IEEE, pp. 1-7.*

(Continued)

Primary Examiner-Michael JYigdall
Assistant Examiner-Ben C Wang
(74) Attorney, Agent, or Firm-Schwegman, Lundberg &
Woessner, P.A.

(57) ABSTRACT

The disclosure presents systems and methods to identify pro
gram workings sets, detect working set changes and estimate
working set sizes. The system generates a highly compressed
representation of the working set, called a working set signa
ture, by hashing working set elements into a data structure
and setting the entries touched. The working set signature
identifies, or is a representation of, the working set. The
system can detect a working set change by comparing the
signatures of consecutive working sets using a metric called a
relative signature distance. The working set size is estimated
by counting the number of bits set in the signature. The
system can be used to compactly represent various types of
working sets such as instruction, data and branch working
sets. The system can detect program working set changes (or
phase changes) independent of any micro-architectural speci
fication.

23 Claims, 4 Drawing Sheets

50

/
MAINTAINING A TABLE COMPRISING A PLURALITY
OF WORKING SET SIGNATURES FOR A PROGRAM

UPON DETECTING A WORKING SET CHANGE,
LOOKING UP A WORKING SET SIGNATURE FOR

A CURRENT WORKING SET IN THE TABLE

54

56

REINSTATING A HARDWARE
CONFIGURATION FOR THE
CURRENT WORKING SET

58

IDENTIFYING A NEW HARDWARE CONFIGURATION FOR
THE CURRENT WORKING SET AND SAVING THE WORKING SET

SIGNATURE AND THE NEW HARDWARE CONFIGURATION

US 7,890,933 B2
Page 2

OTHER PUBLICATIONS

Balasubramonian, Rajeev, et al., "Memory Hierarchy Reconfigura
tion for energy and Performance in General-Purpose Processor
Architectures", Proceedings of the 33rdAnnual ACM/IEEE Interna
tional Symposium on Microarchitecture, (2000),245-257.
Huang, Michael C., et al., "Positional Adaptation of Processors:
Application to Energy Reduction", International Symposium on
Computer Architecture, (2003),1-12.
Sherwood, Timothy, et al., "Automatically Characterizing Large
Scale Program Behavior", 10th International Conference on Archi-

tectural Support for Programming Languages and Operating Sys
tems (ASP LOS X), (Oct. 2002),1-13.
Sherwood, Timothy, et al., "Basic Block Distribution Analysis to
Find Periodic Behavior and Simulation Points in Applications", Pro
ceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), (Sep. 2001),1-12.
Sherwood, Timothy, et al., "Phase Tracking and Prediction", Pro
ceedings of the 30th Intenational Symposium on Computer Architec
ture (!SCA), (Jun. 2003),1-12.

* cited by examiner

U.S. Patent Feb.15,2011 Sheet 1 of 4 US 7,890,933 B2

C> {~--,

24

22

r 7

/
28

20
L _J

FIG. 1

U.S. Patent Feb.15,2011 Sheet 2 of 4 US 7,890,933 B2

30

0
32..,.

DATA
34 STRUCTURE
~

HASH " '
UNIT ✓

FIG. 2

30 32
~ /

42 1
40 0

36 44 0
,--"--, 1

q b 1
0
1 2n 46
0

38 1
0

/ 0
0

34 1

FIG. 3

U.S. Patent Feb. 15,2011 Sheet 3 of 4

52

MAINTAINING A TABLE COMPRISING A PLURALllY
OF WORKING SET SIGNATURES FOR A PROGRAM

UPON DETECTING A WORKING SET CHANGE,
LOOKING UP A WORKING SET SIGNATURE FOR

A CURRENT WORKING SET IN THE TABLE

US 7,890,933 B2

50

/

54

56

REINSTATING A HARDWARE
~~ CONFIGURATION FOR THE

CURRENT WORKING SET

NO
58

IDENTIFYING A NEW HARDWARE CONFIGURATION FOR
THE CURRENT WORKING SET AND SAVING THE WORKING SET

SIGNATURE AND THE NEW HARDWARE CONFIGURATION

FIG. 4

U.S. Patent Feb.15,2011 Sheet 4 of 4 US 7,890,933 B2

v
r--.

N !:=::: r--
~

:z
::,

...- C'-J I"") :z
>- >- >- • • • 0

- ~ .-- N I"") • • • ::,

0 X X X (!)

G:
c..D~

:z
I • 0 u -

0
r--

(

-X

~

- - LO
v co
c.o '\ c..D

N ~
<.D >- \ •

<.O

<] <.D \
a::

<] (.!) 'l 0 0
~ -::::::E IJ... l.J.J w

::::::E ~

I J .____ -

r----------1
~ ~ ~----------. I

I ~------p--____ ---1----~
I (I I
I ~ I
I .------. I
I :..I .-_____ __,
It.a I
I ,.,.., " 1------1 :::r: I

fi I
g I oo '- I

I ._____, ~ "'-~1
I I
L __________ J

US 7,890,933 B2
1

IDENTIFYING PROGRAM PHASE CHANGES
THROUGH PROGRAM WORKING SET

ANALYSIS

REFERENCE TO CO-PENDING APPLICATION

This patent application claims priority to co-pending U.S.
provisional application for patent filed on Feb. 5, 2003, hav
ing Ser. No. 60/445,368 and titled "Systems and Methods for
Identifying and Analyzing Program Working Sets." The pro
visional application is incorporated by reference into this
patent application.

FEDERAL GOVERNMENT FUNDING SUPPORT

The inventive subject matter was made with Federal Gov
ermnent funding support by the National Science Foundation,
Agency Grant No. CCR-9900610. The Federal Government
has certain rights in the inventive subject matter of the present
disclosure.

TECHNICAL FIELD OF THE DISCLOSURE

The present disclosure relates generally to computing pro
cessors, such as processors used in computer systems, and
more specifically to identifying program phases by analyzing
working sets.

BACKGROUND

2
sets. The system can detect program working set changes (or
phase changes) independent of any micro-architectural speci
fication. Thus, the system can be applied to any microproces
sor without any modifications. Also, the system can be used to

5 directly configure, i.e., without a trial and error process, cer
tain hardware structures whose performance depends on the
working set size. Such structures include caches and branch
predictors. Also, the system can efficiently identify recurring
program working sets using their associated signatures. The

10 system can store signatures and associated optimal configu
rations for different working sets. When a working set repeats
itself during program execution, the system can set the opti
mal configuration without going through a trial and error
process. This can lead to significant reduction in time spent in

15 non-optimal configurations.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic view of an example environment of
20 the present disclosure.

FIG. 2 is a block diagram of an example apparatus or
mechanism for identifying a program working set.

FIG. 3 is a block diagram of a more specific example of an
apparatus or mechanism for collecting a representation of the

25 program working set.
FIG. 4 is a flow chart of one example of reconfiguring

system resources based on a representation of the program
working set.

FIG. 5 is a block diagram of a specific example of a system
30 to create configurations of system resources.

Typical programs operating on computer systems or inte
grated circuit chips sometimes use computer system
resources in inefficient ways, for example, with respect to
power and performance. In general, microprocessors in com
puter systems are designed to provide good average perfor- 35

mance over a variety of workloads imposed on them by com
puter programs. As the program executes it passes through
different phases of operation. Hardware resource require
ments can differ depending on the phase of the program. If the
hardware resources are not large enough then performance 40

can suffer, and if the hardware resources are too large then
power is wasted, for example. Performance, power consump
tion, or both, can be optimized as the program is running, if
program phase changes can be detected and dynamic hard
ware reconfiguration can be invoked in response to phase 45

changes. Although several examples of dynamically config
urable hardware are known to address these issues, there is a
need for further improvement in this area. Described below
are various embodiments of the inventive subject matter that
may, among other things, improve management of config- 50

urable hardware.

DESCRIPTION

This disclosure relates to systems and methods suitable for
identifying program phase changes. This is accomplished by
analyzing program working sets, or the regions of a program
that are being actively used at any given time. The disclosure,
including the figures, describes the systems and methods with
reference to several illustrative examples. Other examples are
contemplated and are mentioned below or are otherwise
imaginable to someone skilled in the art. The scope of the
invention is not limited to the few examples, i.e., the
described embodiments of the invention. Rather, the scope of
the invention is defined by reference to the appended claims.
Changes can be made to the examples, including alternative
designs not disclosed, and still be within the scope of the
claims.

FIG. 1 shows a schematic view of a computer system 20,
one example environment of the present disclosure. Com
puter system 20 comprises several components including a
bus 22, a memory 24, a mass storage device 26, and a pro-

SUMMARY

The disclosure presents systems and methods to identify
program workings sets, detect working set changes and esti
mate working set sizes. The system generates a highly com
pressed representation of the working set, called a working
set signature, by hashing working set elements into a data
structure and setting the entries touched. The working set
signature identifies, or is a representation of, the working set.
The system can detect a working set change by comparing the
signatures of consecutive working sets using a metric called a
relative signature distance. The working set size is estimated
by counting the number of bits set in the signature. The
system can be used to compactly represent various types of
working sets such as instruction, data and branch working

cessor 28. The bus provides communication links between the
components in the system 20. An example of the memory 24
is a random access memory (RAM) and examples of the mass

55 storage device 26 include hard disk drives, CD-ROM drives,
or the like. In the example, the memory is used to store
information such as computer programs and data from device
26 for use by the processor 28.

In a program, a working set W(t,, -i:) for i=l, 2 ... , is a set
60 of distinct memory segments { s i, s2 ... sw} accessed over the

i th window ofsize-i:, as set forth in A. S. Dhodapkar and J.E.
Smith, "Managing Multi-configuration Hardware via
Dynamic Working Set Analysis," in Proc. of the 29th Annual
Intl. Sym. on Computer Architecture, May 2002, pp. 233-244.

65 The window is a sequence off consecutive memory accesses.
The working set size is w, the cardinality of the set of unique
segments that are accessed by members of the window. In one

US 7,890,933 B2
3

example, the segments are memory regions of some fixed
size, such as a page. In another example, the segments are
memory regions of the size of a cache memory block.

4
tive subject matter are not limited to any particular hash
function. The data structure 32 collects the working set sig
nature. The hash unit 34 uses a hash function to map a plu
rality of working set elements into the data structure 32. A working set can be associated with a specific type of

memory access, or some combination. For example, a work
ing set can correspond to program instructions fetched, in
which case it is referred to as an instruction working set. As
another example, a working set can correspond to data
accessed via load and store instructions, in which case it is
referred to as a data working set. As another example, a
working set can correspond to fetched branch instructions, in
which case it is referred to as a branch working set.

5 Examples of data structures include tables, arrays, vectors
and the like. In one specific example, the data structure is an
rxm bit table. In a more specific example, n is in the range of
1 to 20. In a more specific example, the widthm is in the range
of 1 to 64. In general, there is no limit as to the width of the

10 table or the number of the table entries. The m-bit entry is
updated, in one example, with an m-bit saturating counter that
is incremented every time the entry is touched. A saturating
counter increments until it reaches its maximum value, at

15
which time it remains at the maximum value.

Program phases are related to program working sets, which
are indicated above. Phase changes are manifestations of
working set changes. In one common definition, a phase is a
maximal interval during which a given set of segments stay on
top of an LRU stack, as set forth in A. Batson and W. Madison,
"Measurements of major locality phases in symbolic refer
ence strings," Proc. Of the Intl. Sym Computer Performance
and Modeling, Measurement and Evaluation, ACM SIG- 20

METRICS and IFIP WG7.3, March 1976, pp. 75-84. In other
words, a phase is defined as the maximum interval over which
the working set remains more or less constant. The phase
transition model states that programs follow a series of steady
state phases with abrupt transitions in between.

An example embodiment of the mechanism for collecting
working set signatures is shown in the block diagram of FIG.
3. In the figure, a q-bit working set element 36 is mapped into
the data structure 32 with a randomizing hash function 38 to
set a bit in the r-bit table. Several such working set elements
are hashed over a fixed interval of program execution to create
a working set signature 40. In other words, q bits are selected
from the program counter 42 and hashed using the hash
function 38 to address a table containing r 1-bit entries. For

The disclosure presents systems and methods to dynami
cally identify program workings sets, detect working set
changes and estimate working set sizes. The system generates

25 other applications, branch PCs or data addresses can be used.

a highly compressed representation of the working set, called
a working set signature, or simply signature, by hashing 30

working set elements into a data structure, such as a RAM
based table, and setting the entries accessed. In one example,
the table is reset before signature generation commences. The
working set signature identifies, or is a representation of, the
working set. In one example, the system detects a working set 35

change by comparing the signatures of consecutive working
sets using a metric called a relative signature distance. The
working set size is estimated by counting the number of bits
set in the signature. The disclosed system can be used to
compactly represent various types of working sets such as 40

instruction, data and branch working sets.

Sampling of the working set can occur at every committed
instruction. Alternatively, periodic sampling or random sam
pling can be used to reduce sampling overhead.

The overhead can be further reduced by increasing the
granularity of sampling. For example, caches and predictors
can work at the granularity of cache line sized elements
(32-256 bytes). In the illustrated example, the working sets
are of cache line granularity and thus low-order b address bits
44 are ignored during hashing when the cache line is of size
2b.

Capturing the working set in one example includes a win
dow or an interval over which the working set is sampled. The
window size determines the phase resolution or the shortest
phase that can be identified. Use of a non-overlapping win
dow results in simpler designs.

In the illustrated example, the working set signature 40 is a
2n -bit vector 46 formed by mapping the working set elements
36 into r-buckets using the hash function 38. The size of the
bit vector in the illustrated example is in the range of32-128
bytes (n is in the range of8- l 0). It is contemplated that the size
can be varied dynamically to suit a particular application. The
bit vector 46 can be cleared at the beginning of every window
(interval), and a bit is set if the corresponding instruction
block is accessed. In another example, the working set signa-
ture is saved in some memory for further processing.

The working set signature 40 can be used to estimate the
size of the full working set. The size, or number of ones, or the
fill-factor, of the signature 40 is probabilistically related to the
true working set size. Accordingly, once a working set signa
ture is received and the size of the signature determined, the
size of the working set can be estimated because it is related

The subject matter includes several advantages, and three
are listed here. First, the system can be used to detect program
working set changes (or phase changes) independent of any
hardware specification. Thus, the system can be applied to 45

any microprocessor without any modifications. Second, the
system can be used to directly configure, i.e., without a trial
and error process, certain hardware structures whose perfor
mance depends on the working set size. Such structures
include caches and branch predictors. Third, the system can 50

very efficiently identify recurring program working sets using
their associated signatures. The system can store signatures
and associated optimal configurations for different working
sets. When a working set repeats itself during program execu
tion, the system can set the optimal configuration without 55

going through a trial and error process. This can lead to
significant reduction in time spent in non-optimal configura
tions. Overall, the system enables deterministic reconfigura
tion algorithms compared to prior art. Many more advantages
will become apparent to those skilled in the art. 60 to the size of the working set signature. Various methods can

be used to estimate the working set size depending on the
degree of accuracy desired.

FIG. 2 is a block diagram of an example apparatus or
mechanism for identifying a program working set by forming
a working set signature. In one example, the mechanism 30 is
incorporated into the processor 28 of FIG. 1. The mechanism
30 includes a data structure 32 and a hash unit 34 operating a 65

hash function. In one example, the hash function is a pseudo
random hash function; however, embodiments of the inven-

The working set size can be estimated with a substantial
degree of accuracy and in a relatively straightforward manner
in one embodiment described here. When K random keys are
hashed into 2n buckets, the fraction of buckets filled, fis given
by

US 7,890,933 B2
5

Given the fraction of the signature filled, the working set size
can be estimated using the relation

K = log(! - f) / lo~ 1 - ~)-

In an example using this relation, a 90% filled table corre
sponds to a working set size about 2.5 times larger than the
number of filled entries. This relationship has been experi
mentally validated.

A specific implementation of a determination of working
set size based on the working set signature includes the use of
a counter. In a preferred example, the counter is implemented
in hardware. In order to measure size with this implementa
tion, the counter increments whenever a bit in the signature
changes from Oto 1. This implementation reads the signature
entry prior to writing to it. Other implementations are con
templated and are intended to be within the scope of the
inventive subject matter.

Working set signatures can also be used to detect working
set changes and thus phase changes in the program. Working
set signatures are representations of the working set so similar
working set signatures can be representative of the same
working set. Working set signatures that differ can be repre
sentative of different working sets, or a working set change.
Methods and systems that comparing two or more working
set signatures can take many forms. Similarly, methods used
to process the results of the comparison can also take many
forms. These methods and systems are included within the
scope of the inventive subject matter.

In one general example, two working set signatures are
compared to one another. If the working set signatures are
differ significantly, there is a working set change. If the work
ing set signatures do not differ significantly, there is no work
ing set change. The definition of a significant difference can
take various forms.

In one example embodiment, a significant difference is
determined by setting a threshold value that is measured
against the results of comparing two working set signatures.
A comparison where the results exceed the threshold value is
indicative of a working set change. Likewise, a comparison
where the results do not exceed the threshold value is indica
tive that the working set is the same.

A more specific example employing threshold values
includes using a metric called relative signature distance.
Given two working set signatures to compare, the total num
ber of ones in the exclusive OR (XOR) of the signatures is
divided by the total number of ones in the inclusive OR (OR)
of the signatures to obtain a ratio called a "relative signature
distance." In other words, the relative signature distance, or ti.,
for working set signatures S1 and S2 is defined as:

IS1 E!lS2I
il-= IS1+S2I·

If the working set signatures are very similar, the relative
signature distance ti. is close to zero. And if the working set

6
signatures are very different the relative signature distance ti.
is close to one. A threshold value li.,h of the relative signature
distance is used to detect working set, and thus phase,
changes. In one embodiment, the threshold value li.,h of 0.125

5 is used to determine working set changes. Relative signature
values generally at or above this value indicate working set
changes, whereas relative signature values under the thresh
old are indicative of recurring working sets. The threshold
value was obtained experimentally by comparison with sev-

10 era! benchmarks Other threshold values can be used and are
intended to be included within the scope of the inventive
subject matter.

A specific implementation used to measure relative signa
ture distance employs two signature registers. One signature

15 register is used to hold the signature for the current window,
and the second signature register is used to hold the signature
for the previous window. In this implementation the relative
signature distance is represented by the ratio X/N, i.e., the
exclusive-OR to the inclusive-OR of the signatures. Initially,

20 X=N=count of ones in the previous signature. For each sig
nature access, both the previous and current signature values
are read. If previous=0 and current=0, then both X and N are
incremented. If previous=0 and current=!, then nothing is
done. If previous= 1 and current=0, then the bit in the previous

25 signature is cleared and X is decremented. The case of previ
ous= I and current=! should not happen. At the end of the
interval, preferably hardware (but also software) can find the
relative signature distance X/N, or at least approximate it by
shifting and comparing, when the threshold is a poweroftwo.

30 In this example, hardware is used to reduce software over
head, among other things. Other implementations are con
templated and are intended to be within the scope of the
inventive subject matter.

One application of working set signatures is used to recon-
35 figure system resources, e.g., hardware, based on information

provided by the working set signature. The reconfiguration of
resources can be done for a variety of reasons, including
optimizing power and performance of the system for a given
working set. One method is illustrated in the flow chart of

40 FIG. 4. In general, the method 50 includes maintaining a table
having working set signatures for a program 52. Upon detect
ing a working set change, such as described above, the
method includes looking up the current working set in the
table 54. If the working set is in the table, the method proceeds

45 to reinstating a hardware configuration for the current work
ing set 56. If the working set is not in the table, the method
identifies a new hardware configuration for the current work
ing set, which is then saved into the table 58.

A block-diagram example making use of working set sig-
50 natures to create various configurations of system resources is

shown in FIG. 5. The example 60 uses mechanism 30,
memory 62 coupled to relative signature distance unit 64,
memory 66 coupled to relative signature distance unit 68,
logic unit 70, table 72 and configuration unit 74. In one

55 example, the process illustrated in the figure is separated into
two groups. The first group designates a particular resource
configuration to a given working set. The second group
receives a working set and creates a resource configuration
based on the analysis of the first group. The example is

60 explained in more detail below.
During the first group, the mechanism 30 is used to develop

working set signatures 40 using working set elements 36, a
hash function in hash unit 34 and a data structure 32. The
working set signature 40 provided to logic unit 70. Logic unit

65 70 uses the working set signature to determine a preferred
configuration of system resources based on such information
as the working set size. Logic unit 70 assigns the system

US 7,890,933 B2
7

resources based on an algorithm that can optimize size of
resources and power consumption. The logic unit 70 includes

8
going detailed description and examples have been given for
clarity of understanding only. Those skilled in the art will
recognize that many changes can be made in the described
embodiments without departing from the scope and spirit of

a mechanism to calculate the size of the working set based on
the working set signature, such as that described above. In an
alternative embodiment, the working set 40 is compared to
one or more previously stored working sets in memory 62 by

5 the invention. Thus, the scope of the present disclosure should
not be limited to the exact details and structures described

a relative signature distance unit 64, or similar mechanism,
that calculates whether the working set 40 is similar to that or
those already in memory 62. The memory may be populated
with signatures that have been previously processed by logic 10

unit 70. If the working set signature is significantly different
from a stored working set signature, the unit 64 enables logic
unit 70 to perform its functions. If the working set signature is
not significantly different from the one already stored in
memory, system resources are saved by not operating logic 15

unit 70.
Logic unit 70 assigns a preferred system resources code to

the working set signature, and stores the two in table 72. The
preferred resources code is related to, or corresponds with, a
particular system configuration that can optimize power and 20

performance of the system. By comparing a working set
signature, working set, or another representation of the work
ing set to the same or similar stored in the table with its
corresponding system resources code, unit 7 4 can be used to
set a particular system configuration. An example of this 25

described with respect to the second group.

herein, but rather by the appended claims and equivalents.

What is claimed is:
1. An apparatus comprising:
a processing unit of a processor;
a memory coupled to the processor; and
an instruction set operable on the processing unit of the

processor and including instructions:
to instantiate a data structure in the memory to collect a

representation of a working set; and
to define a hash unit operable on the processing unit to

map a plurality of working set elements into the data
structure using a hash function,

wherein, in a program, the working set W(t,, -i:) for i=l,
2 ... , where i is an integer, is a set of distinct memory
segments { s1 , s2 ... sw} accessed over the i th window
of size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set
of unique segments that are accessed by members of the
window.

2. The apparatus of claim 1 wherein the data structure is a
2nxm bit table, where n is a number of bit table entries and m
is a width of the bit table.

3. The apparatus of claim 2 wherein m is in the range of 1
to 64.

4. The apparatus of claim 2 wherein m=l.

In the second group, the example 60 uses the working set
signature to set a particular system configuration. The work
ing set signature 40 from mechanism 30 is provided to relative
signature distance unit 68. Unit 68 compares the current 30

working set signature 40 to a previously sampled working set
signature stored in memory 66. The stored signature can be
the latest sampled signature or another signature from the
current working set.Using the methods described above, unit 5. The apparatus of claim 2 wherein n is in the range ofl to

35 20. 68 is used to detect a change in working sets. If there is no
significant difference, another working set is analyzed. If
there is a significant difference, the working set signature 40
is passed to table 72. The working set signature 40 is com
pared to the stored working set signatures in table 72 to
determine its corresponding preferred resources code. The 40

preferred resources code can be provided to configuration
unit 7 4 that will reconfigure the system to correspond with the
code. Meanwhile, another working set is analyzed. In one
example, another working set is analyzed about every 100,
000 instructions. 45

The systems, formulas and methods described in this dis
closure can be implemented with hardware, software, or a
combination of the two. For example, software can be used to
perform higher-level configuration decisions, and hardware
can be used to collect working set signatures, and, possibly, 50

perform some of the lower level analysis. Other configura
tions are acceptable and are contemplated to be within the
scope of the inventive subject matter. One example includes a
virtual machine monitor, which is a layer of software
designed concurrently with the hardware implementation. 55

This software can be hidden from all conventional software
and can be developed as part of the hardware design. Another
example is to use low-level operating system software. This
can require the addition of implementation dependent code
into the operating system. Still another example is that micro- 60

code can reside in read-only-memory (ROM), but there is also
used some hidden memory for maintaining data structures, or
the like, such as a phase table. Still another example is a
special purpose co-processor for managing hardware con
figuration. 65

The present inventive subject matter has now been
described with reference to several embodiments. The fore-

6. The apparatus of claim 1 wherein the data structure is a
2n-bit vector.

7. The apparatus of claim 6 wherein n= 1.
8. A computerized method of creating a representation of a

working set, the computerized method comprising:
mapping a plurality of working set elements into fields of a

data structure using a hash function,
wherein, in a program, the working set W(t,, -i:) for i=l,

2 ... , where i is an integer, is a set of distinct memory
segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set
of unique segments that are accessed by members of the
window.

9. The computerized method of claim 8 wherein the map
ping is performed for a fixed interval of program execution.

10. The computerized method of claim 9 wherein the data
structure is reset prior to each fixed interval of program execu
tion.

11. The computerized method of claim 10 further compris
ing saving the fields of the data structure prior to resetting the
data structure.

12. A computerized method of creating a representation of
a working set, the computerized method comprising:

executing a program for a fixed interval, the program com
prising instructions identified by a program counter;

performing a hash function on the program counter to
create a hash value for each instruction executed during
the fixed interval; and

US 7,890,933 B2
9

updating a field of a table indexed by the hash value
wherein the table represents the working set,

wherein, in a second program, the working set W(t,, -i:) for
i=l, 2 ... , where i is an integer, is a set of distinct
memory segments { s1 , s2 ... sw} accessed over the i th

5

window of size -i: within a time interval t,;
wherein the window is a sequence of -i: consecutive

memory accesses;
wherein the working set size is w, the cardinality of the set

of unique segments that are accessed by members of the 10

window.

10
identify a working set change when the relative signature

distance exceeds a predetermined threshold,
wherein, in a program, the working set W(t,, -i:) for i=l,

2 ... , where i is an integer, is a set of distinct memory
segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set
of unique segments that are accessed by members of the
window.

13. A computer system comprising:
a bus;
a memory coupled to the bus; and
a processor coupled to the memory and the bus; the pro

cessor comprising:

18. The computerized method of claim 17 wherein the
working set change indicates a phase change in a program.

19. A computerized method of identifying a recurring
15 working set, the method comprising:

a data structure to collect a representation of a working
set; and

a hash unit to map a plurality of working set elements
into the data structure using a hash function,

wherein, in a program, the working set W(t,, -i:) for i=l,
2 ... , where i is an integer, is a set of distinct memory
segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

20

wherein the window is a sequence of -i: consecutive 25

memory accesses;
wherein the working set size is w, the cardinality of the set

of unique segments that are accessed by members of the
window.

14. The computer system of claim 13, further comprising: 30

an instruction retirement unit; and
wherein the data structure and the hash unit are part of an

instruction retirement unit.

comparing a current working set signature to one or more
previous working set signatures;

calculating a relative signature distance between the cur
rent working set signature and the one or more previous
working set signatures; and

identifying a recurring working set when the relative sig
nature distance between the current working set signa
ture and one of the previous working set signatures is
within a predetermined threshold,

wherein, in a program, the working set W(t,, -i:) for i=l,
2 ... , where i is an integer, is a set of distinct memory
segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set
of unique segments that are accessed by members of the
window.

20. The computerized method of claim 19 further compris-15. A computerized method of estimating size ofa working
set, the method comprising:

receiving a signature for a working set; and
estimating the size of the working set based on the size of

the signature,

35 ing identifying a new working set when the relative signature
distance between the current working set signature the one or
more previous working set signatures exceeds a predeter
mined threshold.

wherein, in a program, the working set W(t,, -i:) for i=l,
2 ... , where i is an integer, is a set of distinct memory 40

segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set 45

of unique segments that are accessed by members of the
window.

16. The computerized method of claim 15 wherein the
estimating is performed with the following function:

K = log(! - f) / lo~ 1 - ~),

50

55
wherein K is the number of unique working set elements, r
is the number of entries in the signature, and f is the fraction
of 1 's in the signature.

17. A computerized method of detecting working set
changes, the method comprising:

comparing a current working set signature to a previous
working set signature;

calculating a relative signature distance between the cur
rent working set signature and the previous working set
signature; and

60

21. The computerized method of claim 20 further compris
ing maintaining a table of the one or more previous working
set signatures.

22. A hardware reconfiguration method comprising:
maintaining a table comprising a plurality of working set

signatures for a program;
upon detecting a working set change, looking up a working

set signature for a current working set in the table;
if the working set signature is in the table, reinstating a

hardware configuration for the current working set; and
if the working set signature is not in the table; identifying a

new hardware configuration for the current working set
and saving the working set signature and the new hard
ware configuration,

wherein, in a program, the working set W(t,, -i:) for i=l,
2 ... , where i is an integer, is a set of distinct memory
segments { s i, s2 ... sw} accessed over the i th window of
size -i: within a time interval t,;

wherein the window is a sequence of -i: consecutive
memory accesses;

wherein the working set size is w, the cardinality of the set
of unique segments that are accessed by members of the
window.

23. The method of claim 22 wherein the working set
change indicates a phase change in a program.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

