
c12) United States Patent
Goodman et al.

(54) COMPUTER ARCHITECTURE PROVIDING
TRANSACTIONAL, LOCK-FREE
EXECUTION OF LOCK-BASED PROGRAMS

(75) Inventors: James R. Goodman, Madison, WI
(US); Ravi Rajwar, Portland, OR (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 369 days.

(21) Appl. No.: 10/775,448

Feb. 10, 2004 (22) Filed:

(65) Prior Publication Data

US 2005/0177831 Al Aug. 11, 2005

(51) Int. Cl.
G06F 13/00 (2006.01)

(52) U.S. Cl. 711/151; 711/152; 711/150;
711/158; 711/141

(58) Field of Classification Search None

(56)

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,318,182 A
4,320,451 A
5,136,691 A
5,185,878 A
6,006,299 A *
6,014,728 A

3/1982 Bachman et al.
3/1982 Bachman et al.
8/ 1992 Baror
2/ 1993 Baror et al.

12/1999 Wang et al. 710/108
1/2000 Baror

12a

tv~N:B 0

lvAR 21 P

lvAR 11 I

IVAR 21 p

CJP
~4F.:?l 0

VARl

__________________ r:VARl

I 1111111111111111 11111 1111111111 1111111111 111111111111111 IIIIII IIII IIII IIII
US007340569B2

(IO) Patent No.: US 7,340,569 B2
Mar.4,2008 (45) Date of Patent:

6,360,220 Bl *
6,460,124 Bl
6,651,146 Bl*
6,938,130 B2 *

2003/0221071 Al*
2004/0162948 Al *
2004/0162951 Al*

3/2002 Forin 707 /8
10/2002 Kagi et al.
11/2003 Srinivas et al. 711/150
8/2005 Jacobson et al. 711/144

11/2003 McKenney et al. 711/152
8/2004 Tremblay et al. 711/137
8/2004 Jacobson et al. 711/143

OTHER PUBLICATIONS

Ravi Raj war, Speculation-based Techniques for Transactional Lock­
free Execuation of Lock-based Programs[online], Sep. 2002.
[retrieved on Feb. 27, 2006]. Retrieved from the Internet:
<URL:www.cs.wisc.edu/arch/uwarch/theses/rajwar.pdf>.*
Ravi Rajwawr and James R. Goodman, Speculative Lock Elision:
Enabling Highly Concurrent Multithread Execuation, 34th Interna­
tional Symposium [online], Dec. 3-5, 200l[retrieved on Feb. 27,
2006]. Retrieved from the Internet:<URL:www.cs.wisc.edu/­
rajwar/papers/microO l .pdf>. *
Jason Liu, David M. Nicol, and King Tan, Lock-free Scheduling of
Logical Processes in Parallel Simulation, May 12-18, 2001, IEEE.*
James H. Anderson and Srikhanth Rarnamurthy, A Framework for
Implementing Objects and Scheduling Tasks in Lock-Free Real­
Time Systems, Dec. 4-6, 1996, IEEE.*

(Continued)

Primary Examiner-Reginald Bragdon
Assistant Examiner-Thanh D. Vo
(74) Attorney, Agent, or Firm-Boyle Fredrickson S.C.

(57) ABSTRACT

Hardware resolution of data conflicts in critical sections of
programs executed in shared memory computer architec­
tures are resolved using a hardware-based ordering system
and without acquisition of the lock variable.

21 Claims, 6 Drawing Sheets

12b
VAR2 p

2

I VAR 1 I P

l~4F.]l 0

r:VAR2 ------------------

US 7,340,569 B2
Page 2

OTHER PUBLICATIONS

Ravi Rajwar, Speculation-based Techniques for Transactional Lock­
free Execuation of Lock-based Prograrns[online], Sep. 2002.
[retrieved on Feb. 27, 2006]. Retrieved from the Internet:
<URL:www.cs.wisc.edu/arch/uwarch/theses/rajwar.pdf>.*
Henry Massalin and Calton Pu, A Lock-free Multiprocessor OS
Kernel Jun. 19, 2991, Columbia University, pp. 4-5, and 8.*

James R. Goodman, et al., Efficient Synchronization Primitives For
Large-Scale Cache-Coherent Multiprocessors, 1989 ACM 0-89791-
300-0/89/0004/0064, Computer Sciences Department, University of
Wisconsin-Madison, Madison, Wisconsin.

* cited by examiner

U.S. Patent

0
.....-1

~

...0
N
.....-1

0
(Y)

ro
N

Mar.4,2008 Sheet 1 of 6

;!!I

~
r---. _)

D

~I

00 '-.0
N N

.---I

~I

N
N

~I

~It-+--

.---I_ ___________ __.

US 7,340,569 B2

q-
.---I

,.....--t

.
c:,
LL

U.S. Patent Mar.4,2008 Sheet 2 of 6 US 7,340,569 B2

12a 12b
VARI VAR2 p

2
ffiK] 0 IVAR 11 p

I VAR 21 p lV4KJJ 0

lvAR 11 I lvAR 11 P

I VAR 2 I p I VAR 21 I

D p ry~E:il 0

R£4K]J O I VAR 21 p

r:VAR2 ----------- -------

FIG. 2

30

28

22

--- -24 ...__ _______ __,

FIG. 3

U.S. Patent Mar.4,2008 Sheet 3 of 6

42

40

DETECT CRITICAL
SECTION START

BUFFER SPECULATIVE
EXECUTION

44
TIMESTAMP

ALL REQUESTS

46
SERVE CONFLICTING
REQUESTS HAVING

EARLIER TIMESTAMPS

50 ,--------",__----.

52

DEFER CONFLICTING
REQUESTS HAVING

LATER TIMESTAMPS

IF RESOURCE LIMIT
REACHED,ACQUIRE LOCK

56

58

DETECT CRITICAL
SECTION END

COMMIT UPDATES

60
RESPOND TO

DEFERRED REQUESTS

62
UPDATE

TIMESTAMP

FIG. 4

48

US 7,340,569 B2

U.S. Patent Mar.4,2008

12a
VARI

[y;if] 0

lvAR 21 P

rv~E] 0

X
IVAR 21 p

Sheet 4 of 6

VAR2

FIG. 5

US 7,340,569 B2

12b

I VAR 1 I P

I VAR 21 I

lvAR 11 P

I VAR 21 p

rv;N:11 °
IVAR 21 p

U.S. Patent Mar.4,2008 Sheet 5 of 6 US 7,340,569 B2

12b

lY4KJJ

FIG. 6

12a 12b
1 r:VARl

12b 12c 12a
2 r:VAR2 3 r:VAR2

FIG. 7

2: MARKER

1 r:VARl
12b

12a 7: MARKER

5 r:VAR2
12a

12b

6 PROBE

FIG. 8

U.S. Patent Mar. 4, 2008 Sheet 6 of 6 US 7,340,569 B2

- ~ -

DEFER CONFLICTING
REQUESTS HAVING - -- 50'

LATER TIMESTAMPS
AND SEND MARKER

1 ,

DEFER CONFLICTING
FOR DATA OWNED

BUT NOT AVAILABLE - -- 50"

AND SEND MARKER
AND SEND . PROBE

- _,,,,. - -

FIG. 9

US 7,340,569 B2
1

COMPUTER ARCHITECTURE PROVIDING
TRANSACTIONAL, LOCK-FREE

EXECUTION OF LOCK-BASED PROGRAMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

BACKGROUND OF THE INVENTION

The present invention relates to computers with shared­
memory architectures and in particular, to an architecture
providing improved handling of conflicts that occur in the
access of shared data.

Multi-threaded software provides multiple execution
"threads" which act like independently executing programs.
An advantage to such multi-threaded software is that each
thread can be assigned to an independent processor, or to a
single processor that provides multi-threaded execution, so
that the threads may be executed in parallel for improved
speed of execution. For example, a computer server for the
Internet may use a multi-threaded server program where
each separate client transaction runs as a separate thread.

2
Generally, multiple locks increases the complexity of the

programming process and thus creates a tradeoff between
program performance and program development time. Even
with multiple locks, serialization of the threads may occur.

U.S. patent application Ser. No. 10/037,041 entitled:
"Concurrent Execution of Critical Sections by Eliding Own­
ership of Locks" describes a method of improving the
execution of locked critical sections by multiple threads in
which the threads do not acquire the lock but speculatively

10 execute the critical section while omitting, or "eliding," lock
acquisition and release. During the speculative execution of
the critical section, actual conflicts between threads in the
acquisition of data of the critical section are monitored. If no
actual conflicts occur, the speculative execution is commit-

15 ted, meaning that the data generated by the execution of the
speculative section is written to shared memory.

This lock elision saves some time by avoiding the steps of
acquiring and releasing the lock. More importantly, how­
ever, lock elision allows multiple threads to simultaneously

20 execute the critical section, without serialization, so long as
no actual conflicts in data acquisition occur.

At times, during speculative execution of a critical section
Each of the threads may need to modify common data

shared among the threads. For example, in the implemen­
tation of a transaction based airline reservation system, 25

multiple threads handling reservations for different custom-

under lock elision, there will be an actual conflict between
two threads needing to access the same data. When such a
conflict is detected, the speculative execution is "squashed"
and the threads begin execution of the critical section from

ers may read and write common data indicating the number
of seats available. If the threads are not coordinated in their
use of the common data, serious errors can occur. For
example, a first thread may read a variable indicating an
airline seat is available and then set that variable indicating
that the seat has been reserved by the thread's client. If a
second thread reads the same variable prior to its setting by
the first thread, the second thread may, based on that read,
erroneously set that variable again with the result that the 35

seat is double booked.

the beginning. The threads may retry speculative execution
of the critical section, but ultimately the threads revert to
actual acquisition of the lock in order to ensure that the

30 critical section can be completed within a reasonable period
of time. In these cases of actual conflict between threads, the
problems inherent in lock-based synchronization return.

To avoid these problems, it is common to use synchro­
nizing instructions to delineate portions of a thread (often
called critical sections) where simultaneous execution by
more than one thread might be a problem. A common set of
synchronizing instructions implement a lock, using a lock
variable having one value indicating that it is "held" by a
thread and another value indicating that it is available. A
thread must acquire the lock before executing the critical
section and does so by reading the lock variable and if the
lock variable is not held by another thread, writing a value

SUMMARY OF THE INVENTION

The present invention allows lock-free access to shared
data even in the presence of conflicts between threads. A
hardware mechanism orders conflicting threads allowing at

40 least one thread to continue without restarting, while order­
ing the conflicting threads to ensure their efficient subse­
quent execution. The conflict resolution does not require the
acquisition of the lock by any thread and thus preserves the
ability of non-conflicting threads to execute the critical

45 section speculatively. The technique used by the invention
can eliminate "live-lock" situations between threads and

to the lock variable indicating that it is held. When the
critical section is complete, the thread writes to the lock
variable a value indicating that the lock is available again or

50
"free".

ensures that no thread is precluded from ever obtaining the
shared data.

Specifically the present invention provides a shared­
memory computer element having a processor and a local
memory, the latter having a controller executing a protocol
to share data with at least one other shared-memory com­
puter element. The shared-memory computer element also
includes a conflicts resolution circuit executing a hardware

Typically, the instructions used to acquire the lock are
"atomic instructions", that is, instructions that cannot be
interrupted once begun by any other thread or quasi-atomic
instructions that can be interrupted by another thread, but
that make such interruption evident to the interrupted thread
so that the instructions can be repeated.

While the mechanism of locking a critical section for use
by a single thread effectively solves conflict problems, that
is, where two threads need to access a variable and at least
one is writing, it can reduce the benefits of parallel execution
of threads by forcibly serializing the threads as they wait for
a lock. This serialization can be reduced by using a number

55 program to detect a critical section in an executing program
and begin speculative execution of the critical section with­
out acquisition of a lock. The conflicts resolution circuit
further, in the event of a conflict with another processor unit,
establishes a priority between the processor units to resolve

60 the conflict without acquisition of the lock.

of different locks associated, for example, with different
small portions of shared-memory. In this way, the chance of 65

different threads waiting for a lock on a given portion of
shared-memory is reduced.

Thus, it is one object of at least one embodiment of the
invention to provide a hardware solution to data sharing
conflicts that does not require acquisition of the lock. By
avoiding lock acquisition, the present invention provides in
hardware "failure atomicity" that is, a certainty that a
software transaction, for example lock acquisition and
release, will not fail half-done.

US 7,340,569 B2
3

It is another object of one embodiment of the invention to
provide a solution that provides a simple ordering among
conflicting processor units.

4
The processor unit may include buffer memory storing

deferred requests from the other processor unit and/or store
values from speculative execution. The conflicts resolution
circuit may further execute the hardware program to buffer
deferred requests and speculate while buffer memory is
available; and revert to a default condition, such as lock
acquisition or failure signaling, when buffer memory is
exhausted.

It is thus another object of an embodiment of the invention

The processor unit may further include a critical section
detection circuit detecting the start and end of execution by 5

the processor of a critical section of a program subject to a
lock and the conflicts resolution circuit may communicate
with the critical section detection circuit to defer or release
data according to a time stamp order only during execution
of a critical section. 10 to provide a system that may be flexibly used in a variety of

architectures having different amounts of buffer memory and
thus to allow precise control oftradeoffs between speed and
component costs.

Thus, it is another object of an embodiment of the
invention to provide a conflict resolution mechanism that
works with lock elision-type procedures to allow lock free
resolution of conflicts.

The conflicts resolution circuit may defer to the protocol
of the local memory during execution of a section of the
program that is not a critical section. The protocol of the
local memory may be a cache coherence protocol.

The foregoing objects and advantages may not apply to all
15 embodiments of the inventions and are not intended to

It is another object of an embodiment of the invention to
provide a system that may make use of conventional cache 20

coherence protocols used in shared-memory computers.
The globally unique clock may include a time variant field

and a static processor-unit-dependant field.
It is yet another object of an embodiment of the invention

to provide a clock that provides time stamps that are ensured 25

to be unique with practical synchronization standards for use
with the present invention.

define the scope of the invention, for which purpose claims
are provided. In the following description, reference is made
to the accompanying drawings, which form a part hereof,
and in which there is shown by way of illustration, a
preferred embodiment of the invention. Such embodiment
also does not define the scope of the invention and reference
must be made therefore to the claims for this purpose.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a multiprocessor
computer having multiple processor units implementing
shared-memory; The globally unique clock may be a counter updated after

executions by the processor of a critical section of a program
subject to a lock.

Thus, it is another object of an embodiment of the
invention to provide a time base that eliminates unnecessary
incrementing and large counter size.

FIG. 2 is a data flow diagram showing the speculative
30 execution of critical sections by two of the processor units

of FIG. 1 such as may lead to a "live-lock" situation;

The counter may update by setting itself to a higher
number including possibly the time stamp of the request of 35

a deferred processor unit.
It is thus another object of an embodiment of the invention

to manage drift between independent clocks.
The instant processor unit may further include buffer

memory storing the deferred request of the other processor 40

unit and the conflicts resolution circuit may execute to read
the buffered deferred requests at a time after the deferring to
release data to the other processor unit.

It is thus another object of an embodiment of the invention
to provide an orderly access to data by deferred processor 45

units.

FIG. 3 is a block representation of circuitry within the
processor units of FIG. 1 providing section detection, lock
elision, and conflict resolution, the later circuitry including
a globally unique clock;

FIG. 4 is a flowchart of the steps executed by the circuitry
of FIG. 3;

FIG. 5 is a figure similar to that of FIG. 2 showing the
operation of the present invention eliminating the live-lock
of FIG. 2;

FIG. 6 is a graphical depiction of a deadlock occurring
with multiple processors contending for multiple variables;

FIG. 7 is a recasting of the deadlock of FIG. 6 in separate
paths for each variable;

FIG. 8 is a figure similar to that of FIG. 7 showing the use
of marker and probe messages to resolve the dead-lock of
FIGS. 6 and 7; and The conflicts resolution circuit further executes the hard­

ware program to send a marker message to the second
processor unit when the request by the second processor unit

FIG. 9 is a fragmentary view of a second embodiment of
the steps of FIG. 4 implementing the marker and probe

50 messages of FIG. 9. is deferred based on its time stamp, and to send a marker
message to the second processor unit when the request by
the second processor unit is deferred because the requested
data is not available, and to send a probe message to a third
processor unit containing a time stamp of the request of a
second processor unit receiving the marker message, and to 55

respond to a probe message to a second processor unit that
has sent the processor unit a marker message indicating that
a request by the processor unit has been deferred, the probe
message indicating a time stamp of a third processor unit
earlier than the time stamp of the request used by processor 60

unit to acquire that data, the probe message being from a
third processor unit requesting the data from the second
processor unit.

It is yet another object of an embodiment of the invention
to provide additional mechanisms for detecting and resolv- 65

ing conflicts that may occur between multiple processor
units contending for multiple variables.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to FIG. 1, a multiprocessor, shared­
memory computer 10 for use with the present invention
includes a number of processor units including processor
units 12a and 12b connected on a common bus structure 14
to a shared-memory 17.

Only two processor units 12a and 12b are shown for
clarity, however, typically many more processors will be
used. The shared-memory 17 is depicted logically as a single
device, but in fact will often be distributed among the
processor units 12 according to methods known in the art.

Processor units 12a and 12b each include a processor 16
communicating with an Ll cache 18, an L2 cache 20 and a
cache controller 22 as is well understood in the art. The

US 7,340,569 B2
5

shared-memory 17 includes a memory controller 19 execut­
ing standard cache protocols to allow sharing of shared data
25 among various ones of the L2 caches 20 of the particular
processor units 12a and 12b. Under this sharing, the L2
cache 20 may be granted "owner" status for writing values
to shared data 25 or "shared" status allowing for reading
only of the shared data 25. A "pending" status indicates that
the L2 cache 20 is awaiting ownership or shared status,
while an "invalid" status indicates that the L2 cache 20 has
lost ownership or shared status. Losing ownership status
may result in data reverting to shared status or to invalid
status as will be understood to those of ordinary skill in the
art.

6
As shown in FIG. 2, after the elision of lock variable Q,

at a first time t 1 processor unit 12a may acquire variable
VARl for ownership using standard cache protocols per
instruction Store VARl. Variable VARl is marked with an M

5 in FIG. 2 indicating that it is owned. Likewise processor unit
12b may acquire variable VAR2 received for ownership per
instruction Store VAR2.

At time t1 processor unit 12a may execute the Store VAR2
instruction and will send a request message (r:VAR2) to

10 processor unit 12b requesting variable VAR2 for ownership.
Likewise, at time t2 , processor unit 12b may execute the
Store VARl instruction and will send a request message
(r:VARl) processor unit 12a requesting variable VARl for
ownership.

At time t3 processor unit 12a receives B's request r:VARl
and invalidates its copy of VARl because this request
r:VARl indicates that there in fact has been a conflict during
the speculative execution of the critical section executed by
processor unit 12a evidenced by another processor wishing

A change in status of shared data 25 owned by the L2
cache 20 is normally effected by a message passing to the L2 15

caches 20 (actually or logically). For example, the status of
shared data 25 owned by a first L2 cache 20 may change to
invalid status upon receipt of a message from another L2
cache 20 seeking ownership or sharing of that shared data
25. Cache coherence protocols are well known in the art and
may include "snooping" protocols as well as protocols
employing directories, also applicable to the present inven­
tion.

20 to store the to same variable VARl. Accordingly at time t3

processor unit 12a restarts, squashing its speculative execu­
tion up to that point.

Likewise, at time t4 processor unit 12b receives request
r: VAR2 from processor unit 12a and squashes its speculative Each processor unit 12a and 12b may execute a different

program thread in parallel, the threads being different pro­
grams or different portions of the same program. These
threads may include the execution of critical sections pro­
tected by a lock variable (Q) which must be acquired before
storing data in the critical section.

25 execution after invalidating its cache entry. Processor unit
12a holds or may hold a copy ofVAR2 in a pending status
(P) indicating that it is not writeable at this time or may not
have a copy of VAR2. Likewise, processor unit 12b may

Consider now two critical sections for different programs 30

executed by processor unit 12a and 12b as follows:

hold variable VARl in a pending status or may not have
variable VAR2.

After restarting at t3 , processor unit 12a responds to the
data requested by processor unit 12b which now obtains
variable VARl for ownership. Likewise processor unit 12b
after restarting at t3 , responds to the pending request by

Processor unit 12a Processor unit 12b

LOCK(Q) LOCK(Q)

Store VAR! Store VAR2

Store VAR2 Store VAR!

UNLOCK(Q) UNLOCK(Q)

The instructions LOCK and UNLOCK represent atomic
instructions acquiring and releasing a lock variable Q
whereas the Store instructions represent a writing of a value
to two different data areas (V ARl or VAR2) protected by the
lock. While these two critical sections store data in different

35 processor unit 12a with the value of VAR2 which is now
owned by processor unit 12a.

The net effect is that the processor units 12a and 12b have
simply switched positions. Each processor unit 12a and 12b

40
in continuing execution of their critical sections again
requests its missing variables VARl and VAR2, respectively,
and by sending requests for these variables, invalidates the
variable of the other, starting the conflict over again.

This live lock conflict is potentially perpetual, and for this

45 reason the above referenced Ser. No. 10/037,041 application
discloses a retry limit after which speculation is dropped by
the processor unit 12a and 12b and they revert to a conven­
tional lock acquisition mode.

Referring now to FIGS. 1 and 3, the present invention
50 provides conflict resolution circuitry 28 in addition to the

critical section detection circuitry 26, lock elision circuitry
24 described above and in the referenced patent application.
This conflict resolution circuitry 28 prevents this live lock

orders a similar problem can occur with identical critical
sections as a result of out-of-order execution that can occur 55

from occurring but more importantly, it provides an efficient
lockless resolution to conflict that does not preclude specu­
lative execution by other threads and possibly by at least one with modem processors.

Referring again to FIG. 1, the processor units 12a and 12b
provide additionally critical section detection circuitry 26,
lock elision circuitry 24 as described in co-pending appli­
cation Ser. No. 10/03 7,041 filed Oct. 19, 2001 by the present 60
inventors, assigned to the assignee of the present invention,
and hereby incorporated by reference.

Using the critical section detection circuitry 26 and lock
elision circuitry 24 the above critical sections may be
initially executed speculatively by each processor unit 12a 65

and 12b without acquisition of the lock variable Q. In such
case a live-lock may occur.

thread in the conflict situation.
Referring now to FIG. 4, the conflict resolution circuitry

28 provides a globally unique clock 30 providing a value
that approximately tracks the values of other globally unique
clocks 30 of other processor units 12 but is in any case
unique so as to primarily establish an ordering among the
processor units 12 without ties and only secondarily to
establish an ordering corresponding to time ordering. The
value of the globally unique clock is created by a counter
section 32 counting occurrences of completion of a critical
section, as will be described, and a static section 33 holding

US 7,340,569 B2
7

a number that is a unique for each processor unit 12a. The
number of the static section is used for tie breaking as will
be described.

8
in conflict, the normal cache coherence mechanisms may
still suffice to resolve the problem after a short wait. Accord­
ingly, in yet another embodiment, a predetermined delay is
interposed before invoking the time stamp resolution of the Referring now to FIGS. 1 and 4, during operation of the

processor units 12, critical section detection circuitry 26
monitors executing instructions to detect a start of a critical
section as indicated by process block 40.

5 present invention.
At process block 46 if the data being served to another

processor unit 12b has been used by the processor unit 12a,
the processor unit 12a returns to the beginning of the critical
section as indicated by arrow 48.

Generally as described in the above referenced co-pend­
ing application, the critical section may be inferred by
observing a pattern of instructions that are typically used for
acquiring and releasing a lock variable. Often these instruc­
tions are highlighted by the use of special atomic read/
modify/write instructions for the lock acquisition. The term
"atomic" as used herein refers to an instruction that cannot

10
As indicated by process block 50 in the event that the

request from another processor unit 12b is for data owned by
the given processor unit 12a but has a later time stamp (than
the stored data) that request is deferred. This deferral alter­
natively may be a negative acknowledgment NACK indi­
cating that the requestor should try the request again after a be interrupted by another thread before completion or cannot

be interrupted before completion without detection.
Typically, atomic read/modify/write instructions are

readily distinguished from standard Store and Load instruc­
tions and may include the well-known Test&Set instruction
or the Load Lock/Store conditional instruction. While the
atomic read/modify/write instructions provide some indica­
tion of the acquisition of a lock, the indication of the release
of the lock may be inferred from a Store instruction directed

15 bounded period of time. In the present invention however,
the deferral is simply not responding and buffering the
deferred request in the memory of the processor unit 12a to
be responded to at a later period of time as will be described.
At the time of the deferral, the globally unique clock 30 is

20 updated with the time of the deferred request which by
definition is greater.

to the same address as the previous atomic/modify/write
instruction.

Upon detection of the start of the critical section, specu- 25

lative execution is begun of the critical section as indicated
by process block 42, without acquisition of the lock variable.
As will be understood to those of ordinary skill in the art, in
such speculative execution, values to be written to shared­
memory are stored in the cache Ll cache 18 without being 30
committed (through cache L2) as part of the shared memory.
Thus if a conflict occurs in the speculative execution, the
values generated during the speculative execution may be
discarded and the program restarted without having affected
other processor units 12.

35
As indicated by process block 44 during the critical

section all requests by the processor unit 12 for data, for
example, using the standard cache coherence protocols, are
time stamped with the value of the globally unique clock 30
at the time of entry into the critical section. Thus, all requests
for any data needed within a single critical section by the 40

processor unit 12 carry the same implicit priority. This time
stamping means simply that the counter section 32 and static
section 33 of the globally unique clock 30 is associated with
the messages sent to the processor units 12b receiving that
request. Importantly, these requests will include requests for 45

ownership or sharing of data within the critical section. Data
received by these requests, are associated with the time
stamp of the request, the time stamp being held in cache Ll

Note that the deferred processor unit 12b need not squash
its speculative execution but may simply wait for the release
of the deferred variable as will be described below.

At process block 52, the resources of the processor unit
12a used during the speculative execution and by the
buffering of deferred responses, is checked and if those
resources are exhausted, indicating that there is no more
memory to buffer speculative execution or deferred requests,
speculation is stopped and the program proceeds to a default
condition. This default condition may be, for example,
acquiring the lock of the critical section as indicated by
arrow 54 or may be signaling a failure so that other mecha­
nisms for addressing this can be implemented.

The end of the critical section is detected at process block
56 by critical section detection circuitry 26 as has been
described. It will be understood to those of ordinary skill in
the art that process blocks 42, 44, 46, 50, and 52 need not be
executed sequentially as shown but simply must occur
between process block 40 and process block 52.

Once the end of the critical section has been reached, lock
elision circuitry 24 determines whether speculative execu­
tion has occurred without conflict. If it has, at process block
58, the program commits the updates by writing values
stored in Ll cache 18 to cache L2 using the acquired
ownership obtained to all the necessary variables.

At process block 60, the conflict resolution circuitry 28
responds to any deferred requests by forwarding the
requested data to the requesting processor unit 12. Finally, at
process block 62, the globally unique clock 30 is updated by or in a state register such as that register that stores owner­

ship status. 50 incrementing it once. Thus, the clock generally increments
upon each completion of a critical section without conflict
and if there is a conflict, the clock receives the value of the
globally unique clock of the conflicting processor unit 12 if

As indicated by process block 46, requests coming from
other processor units 12b for data owned by a given pro­
cessor unit 12 a are served, meaning the data owned is
invalidated and sent to these requesting processor units 12b,
provided the request by the other processor units 12b have

55
a time stamp earlier than the time stamp associated with the
data owned by the Ll cache of processor unit 12a. This
comparison between time stamps first compares the parts of
the time stamps provided by the counter sections 32 and only
if counter section 32 are equal, does it compare the static
section 33.

In an alternative embodiment, it may be desirable to
determine whether there is only one variable in conflict, and
if that is the case, at process block 46, to defer the conflicting
request having the earlier time stamp until processor 12 a
finishes with the variable and releases it. In this case, there
can be no live lock and therefore the normal cache protocols
can resolve the conflict. If there are more than one variable

it is greater. These rules combined limit the amount of drift
between any two globally unique clocks and ensure that no
processor unit 12 is consistently denied data based on a later
time stamp.

Note that in the event of mis speculation, the value of the
globally unique clock is not incremented but reused for
subsequent attempts at speculation.

60 Referring now to FIG. 5 the present invention avoids the
live-lock described with respect to FIG. 2. As before both
processor units 12a and 12b initially receive variables VARl
and VAR2, respectively, for ownership and then submit
messages r:VAR2 at time t1 from processor unit 12a to

65 processor unit 12b and messages r:VARl at time t2 from
processor unit 12b to processor unit 12a requesting the
missing variable that they require.

US 7,340,569 B2
9

Assuming that processor unit 12 a entered the critical
section before processor unit 12b, (and assuming for this
example that the clocks are time ordered, an assumption that

10
Processor unit 12c also sends a probe message (6:probe)

to processor unit 12b when it receives the request by
processor unit 12a of variable VAR2. A probe message is
sent whenever a deferral of a request results from the instant is not required for the invention to work) processor unit 12a

will defer the request r:VARl of processor unit 12b at time
t3 after comparing the time stamp of the message r:VARl to
the time stamp associated with the variable VARl owned by
processor unit 12a (assumed here to be earlier). Processor
unit 12a buffers the request r: VARl.

5 processor unit not having the data in its possession. The
probe messages include the time stamp of the triggering
request message, so in this case the probe message (6:probe)
has the time stamp of the message 5 r:VAR2 from processor
unit 12a.

At time t4 processor unit 12b will receive the message
10

r:VAR2 from processor unit 12a and will invalidate its
variable VAR2 (again based on the time stamps) and forward
that data to processor unit 12a to be received at time t5 •

Processor unit 12b may then squash its speculative execu­
tion.

At time t6 processor unit 12b renews its request for 15

variable VAR2 per the first Store instruction of its critical
section, which could also be deferred, but in this example,
occurs after processor unit 12a has committed its speculative
execution of the critical section and thus at time t8 causes
processor unit 12a to release variable VARl. At t7 , processor 20

unit 12a responds to the processor unit 12b's deferred
request for variable VARl and releases that variable as well.

Processor unit 12b seeing the probe message (6: probe)
which includes the time stamp of the request from processor
unit 12a uses that time stamp in its comparison and accord­
ingly releases the data VAR2 based on the time stamp of the
probe message. The released data carries with it the identi-
fication of the marker message (7:marker) so that processor
unit 12a can identify the data being received to the particular
request. If a processor unit 12 receives a probe message for
a variable that is not cached locally, the processor may
ignore the probe because this implies the data response has
crossed the probe in the network. For a processor unit 12 to
receive a probe message it must have already sent a marker
message.

Referring to FIG. 8, the generation of the marker mes­
sages and the probe message require a splitting of process
block 50 of FIG. 4 to process blocks 50' and 50" as shown.

Importantly, during this process, there has never been an
acquisition of the lock and thus other threads are free to
speculatively execute.

While live-lock problems are avoided in the present
invention, there is a possibility of a deadlock that may occur
when there are more than two processors contesting for at
least two pieces of data.

25 In process block 50' requests deferred for reasons of time
stamps are accompanied by upstream marker messages as
described and in process block 50" requests deferred for
reasons oflack of data are accompanied by upstream marker

Referring now to FIG. 6 assume that there are three 30
processor units 12a-12c, where processor units 12a and 12b
are executing the critical sections previously described such
that processor unit 12 a has variable VARl for ownership
and processor unit 12b has variable VAR2 for ownership.

At a first time (1) a request r:VARl may issue from 12b
35

to 12c requesting variable VARl from processor unit 12b. At
a later time (2) processor unit 12c may request r:VAR2
requesting variable B from processor unit 12b which does
not release variable VAR2 because it is awaiting variable
VARl. Processor unit 12a at a third time (3) produces a
request r:VAR2 for variable VAR2 from processor unit 12c 40

not realizing the data is not yet there.
Referring now to FIG. 7, this transaction can be decom­

posed into a first set of requests for variable VARl between
processor unit 12b and 12a and a second set of requests from
processor unit 12a to 12c to 12b. As illustrated by FIG. 7, in 45

this situation, processor unit 12a has a superior claim to
variable VAR2 based on its time stamp at the time of entry
into the critical section, but processor unit 12b does not
know that processor unit 12a is waiting for it to release the
data. Accordingly, a modification to the present invention 50
provides for two additional messages.

Referring to FIG. 8, a marker message (2:marker)
(4:marker) (7:marker) is sent from any processor unit who is
deferring a request by another processor unit 12 either
because of its time stamp as described above or because that

55
processor unit 12 does not have the requested data (a deferral
per standard cache coherence protocols). Accordingly pro­
cessor unit 12a sends a marker message (2:marker) to
processor unit 12b with respect to processor unit 12b's
request for variable VARl and processor unit 12b sends a
marker message (4:marker) to processor unit 12c with 60

respect to processor unit 12c's request for variable VAR2
and processor unit 12c sends a marker message (7:marker)
to processor unit 12a with respect to processor unit 12a's
request for variable VAR2. Each of these marker messages
has a unique identification so that variables forwarded later 65

in response to the marker messages with respect to the
marker message may be properly identified.

messages and downstream probe messages as described.
It is specifically intended that the present invention not be

limited to the embodiments and illustrations contained
herein, but that modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments also be included as come
within the scope of the following claims.

We claim:
1. A processor unit system for a shared-memory computer

comprising:
a processor unit;
a local memory system executing a protocol to share data

with at least one other processor unit;
a conflicts resolution circuit executing a hardware pro­

gram to:
(i) detect a critical section in an executing program and

begin speculative execution of the critical section with­
out acquisition of a lock;

(ii) in the event of a conflict with another processor unit
executing the critical section and needing to write to
data within the critical section, establishing a priority
between the processor unit and another processor unit
to resolve the conflict without acquisition of the lock.

2. The processor unit system of claim 1 further including:
a clock with a globally unique clock value;
and where the conflicts resolution circuit establishes a

priority between the processor unit and another pro­
cessor unit by:

(a) time stamping requests for data sent by a first proces­
sor unit to other processor units with the globally
unique clock value;

(b) releasing owned data that is requested by a second
processor unit, if the second processor is making a
request with an earlier time stamp than a time stamp of
a request to acquire ownership of the data by the first
processor unit;

(c) deferring release of owned data that is requested by the
second processor unit, if the second processor is mak-

US 7,340,569 B2
11

ing a request having a later time stamp than the time
stamp of the request to acquire ownership of the data by
the first processor unit.

3. The processor unit system of claim 2 wherein the
conflicts resolution circuit executes hardware program step 5

(ii) only during execution of a critical section.
4. The processor unit system of claim 2 wherein the

processor unit system uses a protocol of the local memory
during execution of a section of the program that is not a
critical section. 10

5. The processor unit system of claim 4 wherein the
protocol of the local memory is a cache coherence protocol.

6. The processor unit system of claim 2 wherein the clock
with a globally unique clock value includes a time variant
field and a static processor-unit-dependant field. 15

7. The processor unit system of claim 2 wherein the clock
with a globally unique clock value is a counter updated after
executions by the processor unit of a critical section of a
program subject to a lock.

8. The processor unit system of claim 7 wherein the 20

counter sets itself to a higher number on updating.
9. The processor unit system of claim 8 wherein the

counter sets itself to the time stamp of the request of the
second processor unit when the release of data is deferred
because the time stamp of the request of the second proces- 25

sor unit is later.
10. The processor unit system of claim 2 further including

buffer memory storing a deferred request of the second
processor unit; and

wherein the conflicts resolution circuit further executes 30

the hardware program to:
(d) read buffered deferred requests at a time after a

deferring to release data to the second processor unit.
11. The processor unit system of claim 10 further includ-

ing: 35

a critical section detection circuit detecting the start and
end of execution by the processor of a critical section
of a program subject to a lock; and

wherein the later time is the completion of a critical
section. 40

12. The processor unit system of claim 2 wherein the
conflicts resolution circuit further executes the hardware
program to:

(iv) send a marker message to the second processor unit
when the request by the second processor unit is 45

deferred based on its time stamp.
13. The processor unit system of claim 2 wherein the

conflicts resolution circuit further executes the hardware
program to:

(iv) send a marker message to the second processor unit 50

when the request by the second processor unit is
deferred because the requested data is not available.

14. The processor unit system of claim 13 wherein the
conflicts resolution circuit further executes the hardware
program to: 55

(iv) send a probe message to a third processor unit
containing a time stamp of the request of the second
processor unit receiving the marker message.

15. The processor unit of system claim 1 wherein the
conflicts resolution circuit further executes the hardware 60

program to:
(iv) respond to a probe message from a second processor

unit that has sent the processor unit a marker message
indicating that a request by the processor unit has been

12
deferred, the probe message indicating a time stamp of
a third processor unit earlier than the time stamp of the
request used by processor unit to acquire that data, the
probe message being from a third processor unit
requesting the data from the second processor unit.

16. The processor unit system of claim 1 further includ­
ing:

a lock elision circuit executing a hardware program to:
(i) detect the start of execution by the processor of a

critical section of a program subject to a lock;
(ii) speculatively execute the critical section without

acquiring the lock;
(iii) when a conflict for data of the critical section is

detected, refer the conflict to the conflict resolution
circuit, where the conflict is indicated by a request by
another processor unit for data in the critical section
owned by the processor unit; and

(iv) when no conflict for data of the critical section is
detected, commit the execution of the critical section.

17. The processor unit system of claim 16 wherein the
conflict resolution circuit allows continued speculative
execution of the critical section when the conflict is resolved
by deferring the release of the data in hardware program step
(iii).

18. The processor unit system of claim 16 wherein the
conflict resolution circuit causes a ceasing of the speculative
execution of the critical section when the conflict is resolved
by releasing the data in hardware program step (iii).

19. The processor unit system of claim 16 further includ­
ing buffer memory storing deferred requests from the second
processor unit; and

wherein the conflicts resolution circuit further executes
the hardware program to:

(iv) read the buffered deferred requests at a later time to
release data to the second processor unit; and

(v) cease the speculative execution of the critical section
when buffer memory is exhausted.

20. The processor unit system of claim 16 including buffer
memory storing the results of speculative execution; and

wherein the lock elision circuit further executes the hard­
ware program to: (iv) cease the speculative execution
of the critical section when buffer memory is
exhausted.

21. A processor unit for a shared-memory computer
comprising: a processor;

a local memory system executing a protocol to share data
with at least one other processor unit;

a conflicts resolution circuit executing a hardware pro­
gram to resolve conflicts between different processor
units;

a lock elision circuit executing a hardware program to:
(i) detect the start of execution by the processor of a

critical section of a program subject to a lock;
(ii) speculatively execute the critical section without

acquiring the lock;
(iii) when a conflict for data of the critical section is

detected, refer the conflict to the conflict resolution
circuit, where the conflict is indicated by a request by
another processor unit for data in the critical section
owned by the processor unit; and

(iv) when no conflict for data of the critical section is
detected, commit the execution of the critical section.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

