(12) United States Patent

Prolla et al.
(10) Patent No.: US 7,126,040 B2
(45) Date of Patent:

Oct. 24, 2006
(54) MOUSE MODEL FOR AGING
(75)

Inventors: Tomas A. Prolla, Madison, WI (US); Gregory C. Kujoth, Madison, WI (US)

Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 11/119,099
(22) Filed: Apr. 29, 2005

Prior Publication Data
US 2006/0212954 A1 Sep. 21, 2006

Related U.S. Application Data

(60) Provisional application No. 60/663,930, filed on Mar. 21, 2005.
(51) Int. Cl.

A01K 67/27
G01N 33/00
(52) U.S. Cl
(58) Field of Classification Search 800/18; 800/3

8 800/3
See application file for complete search history.
(56)

References Cited

OTHER PUBLICATIONS
Kirkwood T, Understanding the odd science of aging, 2005, Cell, vol. 120, pp. 437-447.*
Chomyn A, MtDNA mutations in aging and apoptosis, BBRC, 2003, vol. 304, pp. 519-529.*
Zhang D, Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis, 2000, Genomics, vol. 69, pp. 151-161.*
Bua, E. A., et al., "Calorie Restriction Limits the Generation but not the Progression of Mitochondrial Abnormalities in Aging Skeletal Muscle, " The FASEB Journal 18:582-584 (2004).
Cohen, H.Y., et al., "Calorie Restriction Promotes Mammilian Cell Survival by Inducing the SIRT1 Deacetylase." Science 305:390-392 (2004).

Corral-Debrinski, M., et al., "Mitochondrial DNA Deletions in Human Brain: Regional Variability and Increase with Advanced Age," Nat. Genet. 2:324-329 (1992).
Del Bo, R., et al., "Remarkable Infedelity of Polyermase LambdaA Associated with Mutations in POLYG1 Exonuclease Domain," Neurology 61:903-908 (2003).
Dillian, A., et al., "Rates of Behavior and Aging Specified by Mitochondrial Function During Development," Science 298:23982401 (2002).
Fleming, J.E., et al., "Is Cell Aging Caused by Respiration-Dependent Injury to the Mitochondrial Genome?," Gerontology 28:44-53 (1982).

Foury, F., Yeast Mitochondrial DNA Mutators with Deficient Proofreading Exonucleolytic Activity, EMBO Journal 11:2717-2726 (1992).

Khaidakov, M., et al., "Accumulation of Point Mutations in Mitochondrial DNA of Aging Mice," Mutation Research 526:1-7 (2003).

Lee, C.M., et al., "Mutliple Mitochondrial DNA Deletions Associated with Age in Skeletal Muscle of Rhesus Monkeys," J. Gerontology 48:B201-B205 (1993).
Lee, S.S., et al., "A Systematic RNAi Screen Identifies a Critical Role for Mitochondria in C. elegans Longevity, "Nat. Genetics 33:40-48 (2003).
Martin, G.M., et al., "Mice and Mitochondria," Nature 429:357-359 (2004) (page 358 missing due to publishers error).

Melov, S., et al., "Multi-organ Characterization of Mitochondrial Genomic Rearrangements in ad libitum and caloric restricted mice. . .," Nucleic Acids Research 25:974-982 (1997).
Michikawa, Y., et al., "Aging-Dependent Large Accumulation of Point Mutations in Human mtDNA Control Region for Replication," Science 286:774-779 (1999).
Nagy, A., et al., "Dissecting the role of N-myc in Development Using a Single Targeting Vector to Generate a Series of Alleles," Curr. Biol. 8:661-664 (1998).
Nicholson, D.W., et al., "Identification and Inhibition of the ICE/
CED-3 Protease Necessary for Mammalian Apoptosis," Nature 376:37-43 (1995).
Pak, J.W., et al., "Mitochondrial DNA Mutations as a Fundamental Mechanism in Physiological Declines Associated with Aging," Aging Cell 2:1-7 (2003).
Parrinello, S., et al., "Oxygen Sensitivity Severely Limits the Replicative Lifespan of Murine Fibroblasts," Nature Cell Biology 5:741-747 (2003).
Taylor, R.W., et al., "Mitochondrial DNA Mutations in Human Colonic Crypt Stem Cells," J. Clniical Investigation 112:1351-1360 (2003).

Wallace, D.C., et al., "Sequence Analysis of cDNAs for the Human and Bovine ATP Synthase Beta subnit: Mitochondrial DNA genes Sustain Seventeen Times More Mutations," Curr. Genetics 12:81-90 (1987).

Wanagat, J., et al., "Mitochondrial DNA Deletion Mutations Colocalize with Segmental Electron Transport System Abnormalities, . ..," FASEB 15:322-332 (2001).
Wang, E., et al., "The rate of Mitochondrail Mutagenesis is Faster in Mice than Humans," Mutation Research 377:157-166 (1997).
Wang, Y., et al., "Muscle-Specific Mutations Accumulate with Aging in Critical Human mtDNA Control Sited for Replication," PNAS 98:4022-4027 (2001).
Zhang, D., et al., "Construction of Transgenic Mice with TissueSpecific Acceleration of Mitochondrial DNA Mutagenesis," Genomics 69:151-161 (2000).
Zhang, Q.Y., et al., "Assessment of Hearing in 80 Inbred Strains of Mice by ABR Threshold Analysis," Hearing Research 130:94-107 (1999).

Aleksandra Trifunovic, et al; Premature ageing in mice expressing defective mitochodrial DNA polymerase; Nature, May 27, 2004; vol. 429, pp. 417-423; Nature Publishing Group; USA.

* cited by examiner

Primary Examiner-Dave Trong Nguyen
Assistant Examiner—David A. Montanari
(74) Attorney, Agent, or Firm - Quarles \& Brady, LLP

(57)

ABSTRACT

A mouse model for mammalian aging is disclosed. In one embodiment, the invention comprises a mouse having a genomic mutation in the exonuclease domain II (ExoII) of a mitochondrial DNA polymerase gamma (PolG) gene, wherein the mutation leads to high levels of mutations in polymerase mtDNA.

Figure 1

Figure 2

Figure 3

Figure 5

Figure 6

Figure 7

Figure 8

Mouse PolgA Gene Targeting
A

B
PolgAD257Aneo (targeted) allele

PolgAD257A (rearranged) allele

D

Figure 9

Figure 10

Figure 11a

Figure 11b

A

$$
\begin{array}{ll}
\mathrm{O} & \text { WT } \\
\Delta & \mathrm{D} 257 \mathrm{~A}
\end{array}
$$

B

Figure 12

Figure 13a

Figure 13b

MOUSE MODEL FOR AGING

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. provisional 60/663,930, Mouse Model for Aging, Tomas Prolla, et al., filed Mar. 21, 2005, incorporated by reference herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States government support awarded by NIH R01 AG021905. The United States government has certain rights in this invention.

BACKGROUND OF THE INVENTION

Mitochondria are intracellular organelles that are the main source of ATP, and play a central role in several metabolic processes including fatty acid β-oxidation, phospholipid biosynthesis, calcium signaling and reactive oxygen species (ROS) generation. Mitochondria also play a critical role in the process of apoptosis, since numerous pro-apoptotic molecules and pathological stimuli converge on these organelles leading to outer membrane permeabilization and cell death (D. R. Green and G. Kroemer, Science 305:626-9, 2004).

Because mitochondria are the main source of ROS in the cell and the organelle contains its own $\sim 16 \mathrm{kbp}$ circular DNA, a central role for mtDNA mutations in aging has been postulated (J. E. Fleming, et al., Gerontology (Basel) 28:44-53, 1982). Indeed, mtDNA has a higher mutation rate as compared to nuclear DNA (D. C. Wallace et al., Curr. Genet. 12:81-90, 1987) and mtDNA mutations have been shown to accumulate with aging in several tissues of various species (Y. Wang, et al., Proc. Natl. Acad. Sci. USA 98:40224027, 2001; S. Melov, et al., Nucleic Acids Res. 25:974-982, 1997; M. Corral-Debrinksi, et al., Nat. Genet. 2:324-329, 1992; C. M. Lee, et al., J. Gerontol. Biol. Sci. 48:B201-B205, 1993; M. Khaidakov, et al., Mutat. Res. $526: 1-7,2003$), and in cells derived from aged humans (Y. Michikawa, et al., Science 286:774-779, 1999).

In agreement with a central role for mitochondria in aging, a systematic RNA interference (RNAi) screen of C. elegans for gene inactivations that increase lifespan has revealed genes important for mitochondrial function (S. S. Lee, et al., Nat. Genet. 33:4048, 2003), and inhibition of mitochondrial activity in this organism affects lifespan (A. Dillin, et al., Science 298:2398-2401, 2002).

BRIEF SUMMARY OF THE INVENTION

In the present application, we construct mice engineered to have a high mtDNA mutation rate and provide support for a causal role of apoptosis in aging due to mtDNA mutations. We also provide an improved mouse model for aging.

In one embodiment, the present invention is a transgenic mouse model for mammalian aging comprising a mouse having a genomic mutation in an exonuclease domain, preferably the exonuclease domain II (ExoII), of a mitochondrial DNA polymerase gamma (Polg) gene (SEQ ID NO: 1), wherein the mutation is capable of maintaining mitochondrial DNA polymerase activity and impairing the exonuclease domain activity. Preferably, the mutation is selected from the group consisting of a single or double base pair nucleotide substitution.

In another embodiment, the transgenic mouse has a genomic mutation in an exonuclease domain, preferably the exonuclease domain II (ExoII), of a mitochondrial DNA polymerase gamma (Polg) gene, wherein the mutation is a nucleotide change within residues 819-836, 1026-1067 or 1413-1442 of the mouse Polg gene (as numbered in NM_017462 or SEQ ID NO: 1), and wherein the mutation is capable of maintaining mitochondrial DNA polymerase replication activity and impairing the exonuclease domain activity.
Preferably, the mutation is a double base substitution resulting in a change in the coding of residue 257 from an aspartic acid (D) to an alanine (A) in the exonuclease domain II of Polg.

In a preferred version of the invention, the mouse model exhibits symptoms of accelerated or premature aging compared to a mouse not having the mutation in the exonuclease domain of the Polg gene. The aging symptoms are preferably selected from the group consisting of abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss (sarcopenia), neurodegeneration, increased presence of apoptotic markers, and loss of bone mass.
In another embodiment, the present invention is a method of screening for a potentially therapeutic agent useful for delaying the onset of aging-related symptoms. The method typically comprises the steps of: (a) providing a mouse model as described above, wherein the mouse exhibits aging-related symptoms; (b) administering the agent to the mouse model; and (c) determining whether the agent is capable of delaying the onset of aging-related symptoms in the mouse model treated with the agent compared to an untreated mouse model.

In another embodiment, the present invention is a method of screening for a potentially therapeutic agent useful for treating medical conditions comprising progressive external ophthalmoplegia, sensorimotor polyneuropathy, ataxia, Parkinson's syndrome or early menopause defined by mitochondrial DNA mutations in a POLG gene. The method typically comprises the steps of: (a) providing a mouse model as described above, wherein the mouse exhibits symptoms of progressive external ophthalmoplegia sensorimotor polyneuropathy, ataxia, Parkinson's syndrome or early menopause; (b) administering the agent to the mouse model; and (c) determining whether the agent is capable of improving symptoms for any of the medical conditions of step (a) in the mouse model treated with the agent compared to an untreated mouse model.
In another embodiment, the present invention is a method for generating a mouse model for mammalian aging, typically comprising the steps of: (a) introducing into a mouse a germline transmission of a mutation in an exonuclease domain, preferably exonuclease domain II of a mitochondrial DNA polymerase gamma (Polg) gene, wherein the mutation results in a decrease in the Polg exonuclease activity, and wherein the mutation results in the production of a Polg $\mathrm{A}^{\text {exo-/+ }}$ mouse; (b) crossbreeding the PolgA ${ }^{\text {exo-/+ }}$ mouse of step (a); and (c) generating a homozygous Pol$\mathrm{gA}^{\text {exo-/- }}$ mouse which exhibits at least one symptom of aging, wherein the symptoms of aging are selected from the group consisting of abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss (sarcopenia), loss of
bone mass, neurodegeneration, increased presence of apoptic stress markers, and decreased mitochondrial function.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1. D257A mice display a premature aging phenotype. Shown are wild-type (A) and D257A mice (B and C) at -13 months of age. Progeroid symptoms including hair loss, graying, and kyphosis become apparent at ~ 9 months of age and progress rapidly thereafter. (D) Kaplan-Meier survival curve of cohorts of wild-type (+/+), D257A heterozygous mice ($\mathrm{D} 257 \mathrm{~A} /+$) and D257A homozygous mice (D257A/D257A). Mice were of a mixed 129/ICR/B6 genetic background. At least 230 mice per genotype are represented in the survival curves.

FIG. 2. D257A mice develop abnormalities in tissues of high cellular turnover. Shown are H\&E-stained sections from wild-type (A and C) and D257A (B and D) duodenum and cecum at ~ 10 months of age. Large regions of the cecum display reduced number of crypts (B) and aberrant vilar fusion and branching is observed in the duodenum (D). Testicular cross sections of wild-type (E) and D257A (F) showing loss of spermatogonia and sperm in D257A animals at 10 months of age. Abnormal testicular architecture is observed initially at ~ 5 months of age. The thymus is reduced in size (G) and weight (H) in D257A mice at 3 months of age (${ }^{*} \mathrm{P}<0.0003$).

FIG. 3. mtDNA mutations and replicative senescence. Mouse embryonic fibroblasts (MEF) were derived from individual embryos. Cultures were passaged using a $1: 4$ subculture regimen and incubated at $37^{\circ} \mathrm{C}$. in a normoxic atmosphere of $75 \% \mathrm{~N}_{2}, 5 \% \mathrm{CO}_{2}$, and $20 \% \mathrm{O}_{2}(\mathrm{~A}$ and B) or a hypoxic atmosphere of $93 \% \mathrm{~N}_{2}, 5 \% \mathrm{CO}_{2}$, and $2 \% \mathrm{O}_{2}$ (C and D). Wild-type cell lines: $22,23,35,48,49$ and 50. D257A cell lines: 25, 36 and 38 .

FIG. 4. Age-related loss of auditory function and cochlear degeneration in D257A mice. Cochlea from wild-type (A, B and C) and D257A (D, E and F) animals. Arrows in panel A indicate hair cell and spiral ganglion neuronal cell regions shown in panels B and C respectively. D257A mice display preservation of cochlear hair cells (E) and severe loss of spiral ganglion neuronal cells (F) by 9 months of age. (G and H) Means of auditory-evoked brain stem response (ABR) thresholds (dB SPL) for wild-type and D257A mice at 4, 8 and 16 kHz . Means are not different between 2 -month-old wild-type and D257A mice (G), but are markedly elevated in 9-month-old D257A mice ($\mathrm{N}=5, \mathrm{P}<0.0001$) (H), indicating loss of auditory function.

FIG. 5. Age-related heart dysfunction in D257A mice. Echocardiograms of 9-10 month-old wild-type (A) and D257A mice (B). Anterior and posterior walls are relative to instrument location (chest). Wave forms represent individual heart beats, with maximal and minimal chamber size at systole (s) and diastole (d) respectively indicated by arrows. Aging in D257A mice is associated with heart chamber enlargement and loss of contractile function, as determined by impaired diastole (d). (C) LVDd, left ventricular diameter at diastole. FRS, \% fractional shortening. IVRT, isovolumic relaxation time. Nine wild-type and D257A mice were used for measurements. ${ }^{*} \mathrm{P}<0.05$.

FIG. 6. Oxidative stress markers in isolated mitochondria and tissues from D257A mice. (A) hydrogen peroxide production in isolated mitochondria from wild-type and D257A mice at ~ 9 months of age. (B) Protein carbonyl levels, a marker of protein oxidation, was measured by western blotting in isolated mitochondria from wild-type and D257A
mice at 9 months of age. (C) F2-isoprostanes, a marker of lipid peroxidation, was measured by gas chromatography/ negative ion chemical ionization mass spectrometry in liver and skeletal muscle (vastus lateralis) tissues from 6-monthold wild-type and D257A mice. (D) Oxidative damage to DNA (8-oxo-dG) and RNA (8-oxo-G), was measured by HPLC in liver tissue of 9-month-old wild-type and D257A mice. Nine wild-type and D257A mice were used for hydrogen peroxide production, mitochondrial carbonyl analysis, and nucleic acid oxidative damage assays. Six wild-type and D57A mice were used for F 2 -isoprostanes measurements. * $\mathrm{P}<0.05$.

FIG. 7. Caspase activation. Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated fragments. The specific antibody used detects endogenous levels of the large fragment ($17 / 19 \mathrm{kDa}$) of activated caspase-3 resulting from cleavage adjacent to Asp175. Extracts of tissues ($25 \mu \mathrm{~g}$) from wild-type and D257A animals of the indicated ages were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and probed with a mouse monoclonal antibody against cleaved caspase 3. Units are arbitrary OD units. *For all tissues tested, the difference between wild-type and D257A mice was significant ($\mathrm{P}<0.05$).

FIG. 8. Apoptosis detection by TUNEL. Arrows indicate TUNEL-positive apoptotic nuclei. Quantification of apoptosis in thymus (A), small intestine (B) and testis (C) of wild-type (left panels) and D257A (center panels). The number of apoptotic nuclei per $10^{5} \mu \mathrm{~m}^{2}$ (thymus), 100 villi (intestine) and tubule cross section (testis) were counted in $\mathrm{H} \& \mathrm{E}$-stained sections from the indicated genotypes. Each bar represents apoptotic nuclei from intestinal, thymus and testis sections of at least 4 mice/genotype. * $\mathrm{P}<0.05$.
FIG. 9. Generation of D257A mice. (A) A $\sim 12.3 \mathrm{~Kb}$ genomic region containing all three exonuclease domain encoding sequences of POLG, ExoI, Exoll and ExoIII is shown. We constructed a targeting vector containing two arms of homologous DNA, approximately 5 Kb in length each. The neo selectable marker was flanked with loxp sites (which are not drawn to scale). On the 5 ' targeting vector arm we introduced an AC to CT double base substitution at positions 1054-55 of the mouse PolgA mRNA using a PCR based site-directed mutagenesis strategy, resulting in the introduction of a novel XhoI site. (B) Structure of targeted PolgA locus following successful homologous recombination. (C) Mice carrying the the D257A mutation were crossed to Cre recombinase expressing transgenic mice, resulting in the removal of the region flanked by loxP sites, including the neo selectable marker. Only a small region containing a single loxP site remains after recombination. (D) Southern analysis of gene targeting in ES cells. Following electroporation, ES cells clones were selected in G418 containing media and expanded. DNA extracted from individual clones was digested with NsiI and ClaI, and probed with a 5^{\prime} external probe. The asterisk denotes an ES clone that carries both the targeted Polg $\mathrm{A}^{257 \text { Aneo }}$ and wild-type alleles.

FIG. 10. Body weight and bone mineral density as a function of age. (A) Body weight of males, (B) Body weight of females, (C) Bone mineral density (femur) in males and females combined. Wild-type and D257A mice at approximately 6 months and 10 months of age were anesthetized with $240 \mathrm{mg} / \mathrm{kg}$ tribromoethanol, secured to an lightly adhesive tray and subjected to X-ray densitometery using a PIXImus ${ }^{\text {TM }}$ densitometer (GE Lunar, Madison Wis.). Bone mineral density (BMD) was calculated using PIXImus software version 1.45.

FIG. 11. Sequencing of mtDNA in various tissues of wild-type and D257A mice. We isolated mitochondria from heart, duodenum (duo) and liver from from individual wild-type and D257A animals at 5-6 months of age. Mitochondrial DNA was isolated and digested with DraIII and BgIII followed by treatment with exonuclease III in order to degrade any contamination with nuclear DNA. A 525 bp mtDNA fragment that spans a portion of the D-loop region and mt-Cytb (cytochrome b) gene was PCR amplified and cloned into the pCR4-TOPO cloning vector. One hundred ninety-two clones from each tissue source, representing $\sim 100,000 \mathrm{bp}$, were sequenced and the DNA sequences aligned using Aligner software (Codon Code). The frequency of PCR - and cloning-induced mutations ($1 / 16,000$ bp), was determined by reamplifying, cloning and sequencing individual clones. (A) Tissue distribution of mtDNA mutations in wild-type and D257A mice after background substraction. Two animals were used for each tissue/genotype. (B) Mutational spectrum in wild-type and D257A mice. Transition mutations represented the largest class of mutations in all tissues examined. Transversions varied greatly in tissues of wild-type mice ($3-26 \%$), and represented a higher proportion of mutations in the heart (26%) of wild-type tissues. The proportion of transversions was higher ($16-25 \%$) and more uniform in the D257A tissues, consistent with the fact that most mtDNA mutations in D257A mice are likely to arise from the same mechanism, nucleotide misincorporation by POLG. The total number of mutations represented in the graph ranged from 110 (sperm, wild-type) to 637 (heart, D257A).

FIG. 12. Red blood cell counts. (A) Red blood cell counts in individual wild-type and D257A mice plotted versus age. (B) Mean red blood cell counts in young and old wild-type mice. Means were compared by t test; $* \mathrm{P}<0.05$.

FIG. 13. Organ Weights. (A) Organ weights in wild-type and D257A mice at 3 months of age. (B) Organ weights in wild-type and D257A mice at 3 months of age. Means were compared by t test; * $\mathrm{P}<0.05$.

DETAILED DESCRIPTION OF THE INVENTION

In General

Mutations in mitochondrial DNA (mtDNA) accumulate in a variety of tissues of mammalian species and contribute to aging through poorly defined mechanisms. We have addressed this issue by characterizing mice that express a proof-reading deficient version of the mitochondrial DNA polymerase gamma (Polg) and accumulate mtDNA mutations in at least two tissues, preferably in both mitotic and post-mitotic tissues described below. Accelerated aging in these animals is characterized by marked alterations in organs displaying rapid cellular turnover, such as the intestinal epithelium, testis and thymus, as well as loss of skeletal muscle mass, heart dysfunction, hearing loss, graying and alopecia. Accumulation of mtDNA mutations is not associated with increased markers of oxidative stress, but is correlated with the induction of apoptosis in target tissues.

We have engineered an animal model of accelerated aging. The present invention broadly relates to a transgenic mouse model for mammalian aging including a mouse having a genomic mutation in an exonuclease domain of a mitochondrial DNA polymerase gamma (Polg) gene. We envision that mutations in the ExoI, ExoII or ExoIII domains would be suitable, as described below.

Mouse Mode
Specifically, one embodiment the present invention provides for a transgenic mouse model for mammalian aging. Preferably, the mouse has a genomic mutation in an exonuclease domain, preferably ExoII, of a mitochondrial DNA polymerase gamma (Polg) gene. The impairment of the exonuclease domain activity results from the expression of a DNA proof-reading deficient version of the mitochondrial DNA polymerase gamma (Polg) gene and accumulation of mitochondrial DNA mutations in both mitotic and postmitotic mouse tissues, which is correlated with the activation of caspase- 3 and the induction of apoptosis in mouse tissues.
The examples below show creation of a POLG mutation in mice derived from 129 SV AB2.2ES cells. However, we believe that the mutation can be introduced into any mouse strain with successful results because the same type of mutation would work similarly in any mouse strain. As with the mouse model described below in the Examples, one would typically target one of the exonuclease domains of mitochondrial DNA polymerase gamma (Polg) gene, preferably that gene described at NM_017462. N. Lecrenier, et al., Gene 185:147-152, 1997, incorporated by reference, discloses the sequence and characterization of mitochondrial DNA polymerase.
By "exonuclease domain" we mean nucleotides at 819-836, 1026-1067 or 1413-1442, as numbered in NM_017462 or SEQ ID NO:1. SEQ ID NO:2 is the amino acid sequence of the wild-type POL gene. SEQ ID NO:3 is the sequence of a preferred POLG mutations, D257A.

The examples below show the creation of the genetically manipulated "knock-in" mouse from embryonic stem cells. This is a preferred method of creating a transgenic mouse of the present invention.
In one preferred embodiment, the mutation is a double base substitution (AC to CT) at residues 1054 to 1055 of ExoII in the mouse Polg gene, as numbered in NM 017462. However, we believe that other mutations will be equally suitable for the present invention. As described above, the mouse must accumulate mtDNA mutations in at least two tissues. One may review the examples to determine how this accumulation is best measured. The present invention specifically includes other mutations that will result in a mt mutation accumulation. For example, one may wish to do single or double base mutations between residues 819-836 (ExoI), 1026-1067 (ExoII) or 1413-1442 (ExoIII) of the POLG gene.
The mouse model exhibits symptoms of aging which include, but are not limited to, abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss (sarcopenia), neurodegeneration, increased presence of oxidative stress markers, and decreased mitochondrial function. The primary symptoms would be the following: impaired hearing function and heart function, loss of bone and muscle mass and, at the molecular basis, the induction of apoptosis.

Method of Screening

Another embodiment of the invention provides a method of screening for a potentially therapeutic agent useful for delaying the onset of aging-related symptoms. The method includes providing a mouse model as described above, wherein the mouse exhibits aging-related symptoms and administering the agent to the mouse model. One would then determine whether the agent is capable of delaying the onset
of aging-related symptoms in the mouse model treated with the agent compared to an untreated mouse model. Specifically, one may wish to examine either singly or a set of symptoms selected from the group consisting of abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss (sarcopenia), neurodegeneration, loss of bone mass and increased presence of oxidative stress markers. Preferably, one should administer the compound to the mice early in life, and measure survival rates and organ function later in life.

In a related embodiment, the invention provides a method of screening for a potentially therapeutic agent useful for treating medical conditions such as progressive external ophthalmoplegia, sensorimotor polyneuropathy, ataxia, Parkinson's syndrome or early menopause. The agent could be an agent that acted at the genetic level, at a pharmaceutical level or is a dietary product.

Generation of a Mouse Model

In yet another embodiment, the invention provides a method of generating a mouse model for mammalian aging. The method includes introducing into a mouse a germline transmission of a mutation in an exonuclease domain, preferably exonuclease domain II, of a mitochondrial DNA polymerase gamma (Polg) gene as described above. Preferably, the mutation is a double base substitution (AC to CT) at residues 1054 to 1055 of the mouse Polg gene. The mutation results in the production of a polgexo-/+ mouse. One would then typically crossbreed the polgexo-exo+ mouse and generate a homozygous polg ${ }^{\text {exo-/exo- }}$ mouse which exhibits at least one symptom of aging, wherein the symptoms of aging are selected from the group consisting of abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss (sarcopenia), neurodegeneration, increased presence of oxidative stress markers, and decreased mitochondrial function.

EXAMPLES

Mitochondrial DNA Mutations, Oxidative Stress and Apoptosis in Mammalian Aging
mtDNA mutations lead to a premature aging phenotype. Mitochondrial DNA replication in mammalian cells lacks DNA mismatch repair, relying solely on the $3^{\prime}-5^{\prime}$ exonuclease activity of POLG to correct DNA mismatches that arise due to nucleotide misincorporation during DNA replication. We cloned the locus encoding the catalytic subunit of mouse POLG, PolgA, and used gene targeting in embryonic stem cells to introduce a AC to CT two base substitution at position 1054-1055 of the PolgA cDNA (FIG. 9). This mutation results in a critical aspartate to alanine residue substitution in the second conserved exonuclease domain of POLG. This substitution profoundly impairs the proofreading ability of mouse POLG (A. Trifunovic, et al., supra, 2004), and the equivalent mutation in yeast POLG results in a marked increase in the mtDNA mutation rate (F. Foury and S. Vanderstraeten, EMBO Journal 11:2717-26, 1992). Germline transmission of the mutation resulted in the production of polg$A^{D 257 A /+}$ mice, which were intercrossed to generate homozygous $\operatorname{Polg} \mathrm{A}^{\text {D2574/D257A }}$ mice, hereafter denoted D257A. Although we expected that D257A mice
would display a mtDNA mutator phenotype, we observed no evidence of embryonic lethality or developmental abnormalities in these animals. Young D257A mice were indistinguishable from wild-type littermates, but long-term follow up revealed a striking premature aging appearance beginning at ~ 9 months of age, consisting of hair loss, graying and kyphosis (FIG. 1A to C). These observations were associated with a reduced lifespan (maximum survival of 460 days as compared with >852 days for wild-type littermates, $\mathrm{P}<0.0001$, FIG. 1D). We also observed an agerelated decrease in body weight and bone density (FIG. S2), which is a hallmark of aging in rodents (H. R. Massie, et al., Exp. Gerontol. 25:469-481, 1990) and humans (E. Seeman, J. Appl. Physiol. 95:2142-2151, 2003). Although initially fecund, we observed sterility of both male and female D257A animals at -5 months of age.

To examine if mtDNA mutations accumulate to an equal extent in mitotic and post-mitotic tissues of D257A mice, we performed large-scale sequencing of a 525 bp region of mtDNA that spans the control region and a fragment of the gene encoding cytochrome b . Tissues were derived from heart, liver, duodenum and sperm of -6 -month-old D257A mice and wild-type controls. DNA sequencing of over $300,000 \mathrm{bp}$ of mtDNA for each tissue revealed that D257A mice display a frequency of mtDNA mutations in this region that is ~ 3 times the level observed in wild-type animals for all tissues examined except sperm, which displayed only a slight increase (-35%) in mutation frequency (FIG. 11). Possibly, selection for viable sperm results in the elimination of sperm that carry high mtDNA mutational loads. Most mutations were transition mutations, with the level of transversions varying greatly in wild-type tissues ($3-26 \%$), and less so in D257A tissues (16-25\%) (FIG. 11). These observations suggest that different mechanisms contribute to the mutational spectrum of mtDNA in various tissues of wildtype mice, but reduction of mtDNA replication fidelity is the major mutational mechanism in mtDNA of D257A mice. Surprisingly, we find that the frequency of mtDNA mutations in 6 -month-old wild-type mice is as high as 6.7×10^{-4} mutations/bp, representing over 10 mutations/mitochondrial genome. Our findings indicates that large levels of mtDNA mutations exist in adult animals in both mitotic and postmitotic tissues, and that further age-related accumulation of mtDNA mutations may contribute to several aging phenotypes. The modest increase (-3 -fold) in mtDNA mutation frequency reported here for D257A mice is surprising in view of the dramatic phenotype observed in these animals, the severe impact of this mutation on exonuclease activity in vitro (A. Trifunovic, et al., supra, 2004), and the marked increase in mitochondrial mutation frequency in yeast carrying the equivalent mutation (F. Foury, S. Vanderstraeten, supra, 1992). This observation suggests that mitochondria that harbor large numbers of mutated mtDNA molecules are degraded, or that cells that carry large numbers of such mutations do not survive.
mtDNA mutations impact tissues of high cellular turnover. We next performed necropsy and histological examination of D257A mice of various ages. A remarkable phenotype was dysplasia of the intestinal epithelium, characterized by an age-related loss of crypts in some regions of the cecum (FIGS. 2A and B), villar fusion, and complex villar branching in regions of the duodenum (FIGS. 2 C and D). The intestinal epithelium is a tissue of very high cellular turnover, and it appears to be particularly susceptible to the accumulation of mtDNA mutations and subsequent loss of tissue homeostasis. This finding is of interest given the recent report of accumulation of pathogenic
mtDNA mutations in human colonic crypt stem cells with aging (R. W. Taylor, et al., J. Clin. Invest. 112:1351-1360, 2003). We also observed reduced testicular size and a progressive depletion of spermatogonia in the testis of D257A mice, leading to a degeneration of the seminiferous epithelium by ~ 6 months of age (FIGS. 2E and F). Sperm are generated continuously throughout reproductive life through germline cell division, and therefore germline stem cells are likely to accumulate high levels of mtDNA mutations in D257A mice.

Thymic atrophy is a common aging phenotype in several mammalian species. We observed that the earliest detectable phenotype of D257A mice is a profound thymic atrophy starting at $2-3$ months of age (FIG. 2G). Thymus weight is $40.6 \pm 4.4 \mathrm{mg}$ in wild-type mice as compared to 16.0 ± 1.88 mg in D257A mice at 3 months of age ($\mathrm{P}<0.0003$, FIG. 2 H). Hematopoietic stem cell precursors of mature T-cells originate from the bone marrow and migrate to the thymus, which is the major site of T-lymphocyte maturation. Within the cortex of the thymus, precursors of T cells undergo extensive cell proliferation, but more than 95% of thymocytes die by apoptosis before they reach the medulla and the blood stream (K. Abbas, A. H. Litchman, J. S. Pober, in Cellular and Molecular Immunology, A. K. Abbas, A. H. Litchaman, J. S. Pober, Eds. (Saunders, Philadelphia, 1997), pp. 171-193). Thus, thymic atrophy in D257A may be due to reduced cellular proliferation, increased apoptosis, or both. We did not observe overt depletion of hematopoietic cells in the bone marrow of D257A mice. However, loss of bone marrow homeostasis seems likely given that red blood cell counts were reduced significantly in D257A mice as a function of age (FIG. 12). Hair graying in aging in humans and mice has recently been linked to loss of melanocyte stem cells (E. K. Nishimura, et al., Science 2004 Dec 23; Epub ahead of print), and D257A mice display early onset graying (FIGS. 1B and C). When taken as a whole, this collection of phenotypes suggests that accelerated aging associated with mtDNA mutations in D257A mice is at least partly due to depletion of stem cell progenitors and loss of homeostasis in highly proliferative tissues.

One possible mechanism for the D257A phenotypes described above is a defect in cellular proliferation associated with the accumulation of mtDNA mutations. In order to characterize the effects of the D257A mutation and subsequent accumulation of mtDNA mutations on replicative senescence, we derived several independent mouse embryonic fibroblasts lines (MEFs) from D257A and wild-type littermates and measured the number of cell doublings prior to senescence. Passaging of wild-type MEFs under normal, high-oxygen tension (20%) leads to rapid senescence associated with oxygen toxicity, whereas passaging MEFs under low oxygen tension (2%) does not lead to replicative senescence (S. Parrinello, et al., Nat. Cell Biol. 5:741-747, 2003). At 20% oxygen, both wild-type and D257A MEFs underwent rapid senescence (FIGS. 3A and B). In contrast, we did not observe senescence or reduced growth of either wildtype or D257A MEFs following over 40 days of tissue culture (FIGS. 3C and D). Thus, accelerated aging in D257A mice is not likely to be due to an intrinsic defect in cellular proliferation.
mtDNA mutations result in accelerated age-related hearing loss, sarcopenia and heart dysfunction. We next examined post-mitotic tissues known to play critical roles in mammalian aging. Age-related hearing loss (presbycusis) is a hallmark of aging in multiple species, including mice (Q . Y. Zheng, et al., Hear. Res. 130:94-107, 1999), and in humans it affects over 60% of individuals aged 70 or older
(M. A. Gratton and A. E. Vazquez, Curr. Clin. Otolaryngol. Head Neck Sur. 11:367-371, 2003). Presbycusis is associated with the age-related accumulation of mtDNA mutations in auditory tissue, although a causal nature for this relationship has not been established (M. D. Seidman, et al., Arch. Otolaryngol. Head Neck Surg. 123:1039-1045, 1997; M. D. Seidman, Laryngoscope 110:727-738, 2000). Hearing loss can be monitored by an elevation in auditory-evoked brainstem responses (ABR). We conducted an ABR threshold analysis in young (2 months) and old (9 months) D257A mice and wild-type littermates. Our results revealed no difference in auditory function between wild-type and D257A mice at 2 months of age (FIG. 4G), but we found marked elevation of ABR thresholds at 4,8 and 16 kHz ($\mathrm{P}<0.0001$) in D257A mice by 9 months of age, indicating severe hearing loss (FIG. 4H). Histological analysis revealed age-related loss of spiral ganglion neurons (FIGS. 4C and F), a common feature of age-related hearing loss (S. L. McFadden, et al., Audiology 40:313-321, 2001; E. M. Keithley, et al., Hear. Res. 188:21-28, 2004). Thus, the age-related accumulation of mtDNA mutations can have a causal role in presbycusis.

Aging in rodents (J. Wanagat, et al., FASEB J. 15:322-332, 2001), rhesus monkeys (N. G. Gokey, et al., Aging Cell 3:319-326, 2004) and humans (J. Lexell, et al., J. Neurol. Sci. 84:275-294, 1988) is also characterized by loss of muscle mass (sarcopenia) and associated frailty. This loss of muscle mass has been correlated with the accumulation of mtDNA mutations (J. W. Pak, et al., Aging Cell 2:1-7, 2003), but there is no direct evidence linking agerelated, sporadic mtDNA mutations and sarcopenia. Consistent with a causal role for mtDNA mutations in sarcopenia, we observed muscle loss in 9-month-old D257A mice (FIG. 13). Specifically, muscle weights were significantly reduced in both gastrocnemius ($\mathrm{p}<0.002, \sim 10 \%$ decrease) and quadriceps ($\mathrm{p}<0.005, \sim 10 \%$ decrease) muscles of D257A mice at 9 months of age (FIG. S5). We note that this difference was not observed between D257A and wild-type mice at 3 months of age (FIG. 13), and also that at 9 months of age D257A mice are not cachexic, indicating that the decline in muscle mass is age-related and not likely to be an indirect consequence of physiological decline in D257A mice. Therefore, age-related accumulation of mtDNA mutations is likely to be a contributing factor in age-related sarcopenia and associated frailty.
The heart is one of the most energy demanding organs in mammals, with up to 35% of cardiomyocyte volume taken up by the mitochondria (R. P. Crisman, et al., Am. J. Physiol. 248:H8-H14, 1985). Because of this dependence of the heart on high mitochondrial density, one might expect impaired structure and/or function in the heart of D257A animals. In fact, mtDNA mutations accumulate with aging in the heart, but to what extent this contributes to either age-associated cardiac pathology or the decline in heart function that occurs with normal aging is not clear. Previously reported histological data in D257A mice (Trifunovic, et al., supra, 2004) and mice carrying a heart-specific mutator POLG (D. Zhang, et al., Genomics 69:151-161, 2000) suggests that mtDNA mutations lead to age-related heart hypertrophy. To assess left ventricular (LV) systolic and diastolic function as well as structure, we used in vivo M-mode and Doppler echocardiography in D257A and wild-type controls at 12 months of age. We observed increased heart chamber size and LV dilation in D257A mice (FIGS. 5A and B). Additionally, we noted that this dilation was associated with normal wall thickness but a significant decrease in percent fractional shortening (FRS), a measure
of heart contraction (FIG. 5B). Thus, D257A mice have a dilated, hypocontractile LV hypertrophy. Interestingly, isovolumic relaxation time (IVRT), a measure of diastolic function, was significantly prolonged in D257A animals (FIG. 5B), consistent with the impaired LV relaxation that occurs with normal aging in rodents and humans (D. A. Brenner, et al., Circulation 104:221-226, 2001; P. Spirito and B. J. Maron, Br. Heart J. 59:672-679, 1988; P. S. Hees, et al., Am. J. Physiol. Heart Circ. Physiol. 286:H782-J788, 2004).
mtDNA mutations and oxidative stress. It is estimated that 2 to 3% of the oxygen consumed by aerobic cells results in the production of superoxide ($\left.\mathrm{O}_{2}-\right)$, which is converted to hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ by superoxide dismutase. The basic tenet of the free radical theory of aging (D. Harman, J. Gerontol. 11:298-300, 1956) is that aging-related loss of function is due to the progressive accrual of damage inflicted by ROS. Importantly, mitochondria are thought to produce most cellular ROS, and ROS can induce damage to DNA, lipids and proteins. The original hypothesis has been refined with a ROS mtDNA mutation hypothesis, according to which aging may be caused by accumulation of ROSmediated mtDNA mutations over time (J. E. Fleming, et al., supra, 1982). It is further postulated that accumulation of mtDNA mutations leads to a "vicious cycle", further increasing ROS generation and mitochondrial dysfunction (J. E. Fleming, et al., supra, 1982; M. K. Shigenaga, et al., Proc. Natl. Acad. Sci. USA 91:10771-10778, 1994). We tested this hypothesis by isolating mitochondria from the heart and liver of young and old (3 months vs. 9 months) D257A mice and wild-type littermates and measuring hydrogen peroxide production. Surprisingly, we found that $\mathrm{H}_{2} \mathrm{O}_{2}$ production was decreased in heart mitochondria of 9-monthold D257A mice (FIG. 6A). We also assayed mitochondrial protein carbonyls, a marker of oxidative damage to proteins, and found no significant differences in D257A and wild-type animals in mitochondrial (FIG. 6B) or cytosolic fractions of either heart and liver (data not shown). Thus, isolated mitochondria from D257A animals do not show signs of increased oxidative stress.

Because reduced mitochondrial function and associated energetic deficits may reduce cellular antioxidant capacity, we also examined markers of ROS production in tissue extracts of D257A mice. Lipid peroxidation is a central mechanism of ROS-mediated cellular injury, and can be assessed through the measurement of F2-isoprostanes, pros-taglandin-like compounds formed in vivo from the free radical-initiated peroxidation of arachidonic acid (L. J. Roberts, $2^{\text {nd }}$ and J. D. Morrow, Cell. Mol. Life Sci. 59:808-820, 2002). We used a highly sensitive gas chromatography/ mass-spectrometry method to measure F2-isoprostanes in liver and skeletal muscle, and observed no differences between D257A mice and wild-type controls (FIG. 6C). We next examined oxidative damage to DNA and RNA in 9 -month old wild-type and D257A mice through the measurement of 8-hydroxyguanosine and 8-hydroxydeoxyguanosine using HPLC. We observed no difference in the levels of 8-hydroxydeoxyguanosine levels in liver DNA (FIG. 6D), and observed a significant reduction in the steady state levels of 8-hydroxyguanosine in liver RNA of D257A mice (FIG. $6 \mathrm{D}, \mathrm{P}<0.05$). Thus, our observations do not support the hypothesis that accumulation of mtDNA mutations contributes to increased ROS production in aging. Instead, our findings demonstrate that aging mediated by mtDNA mutations can occur in the absence of increased oxidative damage to DNA, protein or lipids.

Apoptosis underlies aging induced by mtDNA mutations. The central signaling component of apoptosis is a proteolytic system involving a family of cysteine proteases called caspases. In the mitochondrial pathway of apoptosis, mitochondrial dysfunction can lead to mitochondrial outer membrane permeabilization (MOMP), the release of cytochrome c into the cytosol, and activation of caspase-3, a key effector caspase found activated in cells committed to death (D. W. Nicholson, et al., Nature 376:37-43, 1995). To determine the extent of apoptosis in tissues of D257A mice, we monitored the levels of cleaved caspase-3 in cytosolic fractions. Levels of cleaved caspase-3 were significantly elevated in the cytosolic fractions of testis, duodenum, and thymus of 3-month-old D257A mice (FIG. 7), and this induction preceded overt degeneration in these tissues. In skeletal muscle, levels of cleaved caspase 3 were not significantly altered in 3-month-old D257A mice, but were significantly increased at 9 months of age (FIG. 7), when animals displayed loss of muscle mass. Thus, we hypothesize that activation of caspase-3 and subsequent apoptosis is likely to be a causal event in loss of tissue homeostasis due to age-related accumulation of mtDNA mutations in multiple tissues of D257A mice.
Apoptosis is also associated with nuclear DNA fragmentation and formation of mono- and oligo-nucleosomes. Because the intestinal epithelium, thymus and testis were severely affected in D257A mice, we also examined these tissues with terminal transferase-mediated dUTP nick-end labeling (TUNEL), an assay that detects apoptotic cells in situ. Counting of TUNEL positive cells in the duodenum, testis and thymus of 3-month old D257A mice revealed a consistent trend for elevation of TUNEL positive cells in all tissues examined, and this trend was associated with higher variability in individual D257A mice, as expected from the stochastic nature of mtDNA mutations (FIG. 8). We also determined by ELISA that the content of cytosolic monoand oligo-nucleosomes (180-base pair nucleotides or multiples) was significantly increased in testis and thymus of 3 -month-old D257A mice (data not shown). Taken as a whole, our observations strongly suggest that loss of critical, irreplaceable cells through apoptosis is the central mechanism of tissue dysfunction associated with the accumulation of mtDNA mutations.
Conclusion. The finding that a two-base substitution in the PolgA gene in the context of a $3 \times 10^{9} \mathrm{bp}$ mammalian genome results in the acceleration of multiple age-related phenotypes is striking. Our observations in D257A mice and those recently described by Trifunovic, et al. in a mouse model that carries the same mutation (A. Trifunovic, et al., supra, 2004) provide strong evidence for a role of mtDNA mutations in organismal aging. Our findings demonstrate that the D257A mutation leads to accumulation of high levels of mtDNA mutations in tissues of high cell turnover, such as the intestine, resulting in loss of tissue homeostasis. We have also functionally characterized post-mitotic tissues in D257A mice, and uncovered defects in heart and auditory function, two systems highly affected by aging in humans. The wide tissue distribution of phenotypes in D257A mice suggests that the accumulation of mtDNA mutations associated with aging is likely to exert serious functional consequences, and that mtDNA mutations contribute to agerelated physiological decline. Importantly, we have demonstrated that accelerated aging through a mitochondrial pathway can occur in the absence of increased ROS production, and may be causally linked to increased apoptosis.

The concept that DNA damage contributes to aging is supported by the finding that humans and mice carrying
mutations in several genes involved in DNA repair, including XPD (J. de Boer, et al., Science 296:1276-1279, 2002), Ku86 (H. Vogel, et al., Proc. Natl. Acad. Sci. USA 96:10770-10775, 1999), and WRN(S. Chang, et al., Nat. Genet. 36:877-882, 2004), display progeroid syndromes. It is likely that several types of DNA damage contribute to the aging process (P. Hasty and J. Vijg, Aging Cell 3:55-65, 2004), and our findings suggest that increased apoptosis may be a central mechanism for accelerated aging. The finding that increased mutations in mtDNA result in aging phenotypes in D257A mice can be readily correlated with normal aging, since mtDNA mutations clearly accumulate to high levels during aging (Y. Wang, et al., supra, 2001; S. Melov, et al., supra, 1997; M. Corral-Debrinksi, et al., supra, 1992; C. M. Lee, et al., supra, 1993; M. Khaidakov, et al., supra, 2003). Surprisingly, our findings do not support one of the major tenets of the free radical hypothesis of aging because accumulation of mtDNA mutations in D257A animals does not lead to increased oxidative stress in either isolated mitochondria or tissues. Because of the stochastic nature of mtDNA mutation accumulation, it is possible that there is a wide distribution of mtDNA mutational load in cells of any given tissue, and that the cells most affected do produce increased ROS levels. However, the observed decrease in hydrogen peroxide production in isolated mitochondria from the heart of D257A mice suggests that reduced mitochondrial function associated with increased mtDNA mutations leads to an overall reduction in mitochondrial ROS production. Possibly, this observation reflects adaptive alterations in mitochondria in the context of an increasing mtDNA mutational load.

If $m t D N A$ mutations contribute to age-related tissue dysfunction, what mitochondrial adaptations contributed to the evolution of long-lived animals? Because cells contain a mixture of wild-type and mutant mtDNAs (heteroplasmy), mtDNA mutations are likely to need to reach a critical threshold prior to cellular dysfunction and apoptosis. It is likely that long-lived organisms evolved mechanisms to minimize the mtDNA mutational load and its consequences because the rate of accumulation of mitochondrial mutations is much faster in mice as compared to humans (E. Wang, et al., Mutat. Res. 377:157-166, 1997). Because POLG is a highly conserved enzyme, it appears unlikely that differences in the fidelity of mtDNA replication account for the different rates of accumulation of mtDNA mutations in various organisms. Possibly, the mtDNA mutational load and its consequences are regulated at multiple levels, including mtDNA repair pathways, ROS production and the elimination of dysfunctional mitochondria. Adaptations that increase the mitochondrial apoptotic threshold, such as increased ROS detoxification or modulation of the p 53 and p66shc (F. Orsini, et al., J. Biol. Chem. 279:25689-25695, 2004) mediated mitochondrial apoptotic pathways, may also have an impact on lifespan in mammals in part by suppressing the effects of mtDNA mutations. In humans, several genetic disorders associated with mitochondrial mutations have been described which are often associated with severe age-related functional decline in tissues with high metabolic demands, including skeletal muscle and brain (D. C. Wallace, Science 283:1482-1488, 1999). Mutations of POLG in humans lead to a complex multisystem disorder that can be associated with progressive ophtalmoplegia, sensorimotor polyneuropathy, ataxia, parkinsonism and early menopause (P. Luoma, et al., Lancet 364, 875-882, 2004; M. Filosto, et al., Arch. Neurol. 60:1279-1284, 2003; M. Mancuso, et al., Neurology 62:316-318, 2004). The most severe POLG mutations are dominant and result in alterations in the DNA
polymerase domain, resulting in reduced DNA polymerase activity and a 2 - to 35 -fold decrease in nucleotide selectivity in vitro (M. A. Graziewicz, et al., Nat. Struct. Mol. Biol. 11:770-776, 2004). Mutations in the exonuclease domain of POLG have also been reported in humans (M. Filosto, et al., supra, 2003), and these are associated with reduced DNA replication fidelity in vitro and accumulation of point mutations in vivo (R. Del Bo, et al., Neurology 61:903-908, 2003). Therefore, similar to our observations in D257A mice, it is likely that accumulation of sporadic mtDNA mutations in humans contributes to the physiological decline associated with aging.

A definitive evaluation of the impact of mtDNA mutations to normal aging in specific species will require the generation of organisms that are engineered to have reduced mtDNA mutation rates (G. M. Martin and L. A. Loeb, Nature 429:357-359, 2004). Based on our observations, we hypothesize that mtDNA mutations result in increased apoptosis, leading to functional decline in postmitotic tissues and depletion of stem cell renewal capacity in tissues that display rapid cell turnover. In agreement with this hypothesis, caloric restriction, the only nutritional intervention that retards aging, retards the accumulation of mtDNA mutations in primates and rodents (E. Bua, et al., FASEB J. 18:582-584, 2004; L. E. Aspnes, et al., FASEB J. 11:573-581, 1997), and reduces mitochondria-mediated apoptotic pathways (H. Y. Cohen, et al., Science 305: $390-392,2004)$. The availability of mitochondrial mutator mice should allow for the identification of genetic, nutritional and pharmacological interventions that reduce the impact of mtDNA mutations in mammalian aging.

Materials and Methods

Generation of D257A mice.
We used a human cDNA fragment (kindly provided by Dr. W. Copeland) encoding the conserved exonuclease domain region of POLG to screen a λ FIXII mouse 129 Sv genomic library (Stratagene). We identified two positive clones that hybridized to the cDNA. DNA restriction enzyme mapping was performed on both clones, which demonstrated that they correspond to overlapping regions in the mouse genome. One clone, λ GK-1 was used for further characterization. We sequenced the entire 12.3 Kb insert and found that it encoded exons 1 through 18 (FIG. 9). This particular genomic fragment contained sequences encoding all three conserved exonuclease domains of POLG: ExoI, ExoII and ExoIII. We constructed a targeting vector containing two arms of homologous DNA, approximately 5 Kb each. On the 5^{\prime} targeting vector arm we introduced an AC to CT double base substitution at positions 1054-55 of the mouse PolgA mRNA using a PCR based site-directed mutagenesis strategy. The entire fragment used in this strategy was sequenced to confirm that there were no additional base substitutions introduced by the PCR strategy. The substitution changes the coding of residue 257 from aspartic acid (D) to alanine (A), and introduces in the process a XhoI restriction enzyme site at this position. As a selectable marker for gene targeting, we used a phosphoglycerate kinase promoter-driven neomycin phosphotransferase (neo) gene. Insertion of the neo cassette is designed to occur within intronic DNA (see FIG. 9). We named this allele PolgA ${ }^{\text {D2574neo }}$. We also flanked this neo cassette with Cre recombinase recognition (loxP) sites, which were used for Cre recombinase-mediated excision of the flanked neo cassette in vivo (see below). We named the excised allele Polg $\mathrm{A}^{\text {D257A }}$.

Once constructed, the targeting vector was linearized and introduced into 129Sv AB2.2 ES cells (a gift from Dr. A.

Bradley). Four hundred two neomycin-resistant ES cell clones were expanded and frozen into 96 -well plates. Southern analysis (FIG. S1) of these clones using a 3^{\prime} probe identified a targeting frequency of $\sim 11 \%$ (43 positives out of 402 clones screened). The Southern assay involves detection of an 11.5 Kb targeted allele, as compared to a 15.6 Kb wild-type fragment in a $\mathrm{ClaI} / \mathrm{NsiI}$ double digest of genomic DNA (FIG. 9). We next performed a PCR assay across the relevant exon 3 region to determine which targeted clones had acquired the desired AC to CT double base substitution at positions $1054-55$. PCR with the chosen primers results in an 857 bp product which contains no Xhol sites in wild-type PolgA, but which contains one XhoI site in the PolgA ${ }^{2}$ allele. We determined that 95% (40 out of 42) of ES cell clones contained the desired double-base substitution as determined by digestion of PCR products with XhoI, followed by agarose gel electrophoresis.

We next expanded seven correctly targeted ES cell clones and injected these cells into blastocysts derived from C57BI/ 6 J (B6) female mice. Injected blastocysts were implanted in pseudo-pregnant females for generation of chimeric mice. Eleven chimeric mice were identified as determined by coat color. Of these, five chimeras representing three different ES cell clone lines resulted in germline transmission of the polgA ${ }^{\text {D25Aneo }}$ allele when mated to B 6 females. Mice carrying one copy of the polg $\mathrm{A}^{D 257 A n e o}$ allele were healthy, fertile, and were used to generate homozygote polgA mice.

We performed POLG western analysis in heart, skeletal muscle and cell lines derived from polg $A^{\text {D257Aneo }}$ mice and determined that POLG protein is expressed in both heterozygous and homozygous polgA ${ }^{D 2574 n e o}$ mice, suggesting that neither the neo cassette introduced at the PolgA gene, nor the polg $A^{D 257 A}$ double base-substitution impairs transcription or translation of the PolgA gene. Indeed, expression of the PolgA ${ }^{\text {D257Aneo }}$ allele was confirmed by allele specific RTPCR (data not shown). Heterozygous polgA ${ }^{\text {D257Aneo }}$ mice were also crossed to the mixed 129/ICR background Cre recombinase-expressing strain $\mathrm{TgN}(\mathrm{CMV}-\mathrm{Cre}) 1 \mathrm{AN}$ (A. Nagy et al., Curr. Biol. 8:661-664, 1998). Cre is driven from a CMV promoter in this strain, which has been used previously to remove selectable markers flanked by loxP sites (A. Nagy et al., supra, 1998). Excision of the neo cassette, as determined by PCR of genomic DNA, was observed in all tissues tested (brain, heart, kidney, liver, spleen, tail). Additionally, these animals transmitted the rearranged (neo excised) PolgA ${ }^{D 257 A}$ locus to their offspring. These animals differ from wild-type animals at the PolgA locus by the specific two-base pair alteration introduced in positions 1054-1055 and by a small region (171 bp) containing a loxP site left after the Cre-mediated recombination. Mixed background $129 \mathrm{~Sv} / \mathrm{ICR}$ polg $\mathrm{A}^{\text {D257Aneo/+ }}$ mice were crossed with B6 mice through up to four backcross generations.

Generation and Analysis of Mouse Embryonic Fibroblasts (MEFs).

Females were mated and checked daily for mucous plugs. Animals were sacrificed at 12.5 dpc and embryos isolated from the uterus. Heads were removed for DNA isolation and genotyping. Embryo bodies were minced using sterile scissors and placed in 3 mL syringes with 1 mL of trypsin. The material was passed through an 18 -inch gauge needle and incubated for 10 minutes at $37^{\circ} \mathrm{C}$. Following trypsin inactivation, the embryonic mixture was transferred into a 6 cm dish. After $24-48$ hours, cells were transferred to a 10 cm dish. Cells were frozen upon confluence as passage 1.

For studies of replicative senescence, cultures were passaged using a $1: 4$ subculture regimen and incubated at 37° C. in a hypoxic atmosphere of $93 \% \mathrm{~N}_{2}, 5 \% \mathrm{CO}_{2}$, and $2 \% \mathrm{O}_{2}$ or normoxic atmosphere of $75 \% \mathrm{~N}_{2}, 5 \% \mathrm{CO}_{2}$, and $20 \% \mathrm{O}_{2}$. Cells were cultured in Ham's F10 nutrient mixture (Life Technologies) supplemented with 10% fetal bovine serum (Hyclone), 20 mM L-glutamine (Gibco BRL), and penicillin/streptomycin (Gibco BRL).

Sequencing of mtDNA.

Mitochondria were isolated from heart, duodenum and liver from individual animals (2/group, 5-6 months of age) by differential centrifugation as previously described (Y. Hatefi, Methods Enzymol. 53:48-54, 1978). For sperm analysis, sperm was isolated by incubating sliced cauda epididymis in PBS at $37^{\circ} \mathrm{C}$. for 30 minutes followed by removal of the cauda and sperm pelleting by centrifugation. DNA was isolated by overnight digestion with $0.5 \mathrm{mg} / \mathrm{ml}$ proteinase K in TENS buffer (50 mM Tris, $\mathrm{pH} 8.0 ; 100 \mathrm{mM}$ EDTA; $200 \mathrm{mM} \mathrm{NaCl} ; 1 \%$ SDS), followed by ethanol precipitation. DNA preparations were digested with DraIII and BgIII followed by treatment with Exonuclease III in order to degrade any contaminating nuclear DNA. A mitochondrial DNA fragment of 525 bp was amplified by PCR (MTC1 primer, gCCAACTAgCCTCCATCTCATACTT, nt 15196-15220 in B6 mtDNA, SEQ ID NO: 4; MTC2 primer, gggCgggTTgTTggTTTCAC, nt 15701-15720, SEQ ID NO: 5) using Easy-A Hi-Fidelity ${ }^{\text {TM }}$ cloning enzyme (Stratagene). PCR products were cloned into pCR4-TOPO ${ }^{\text {TM }}$ vector using TOPO ${ }^{\text {TM }}$ TA Cloning Kit (Invitrogen). One hundred ninetytwo colonies of each individual tissue source were grown and plasmid DNA isolated using the QIAPREP TURBO 96 Mini-prep Kit (Qiagen). Plasmid DNA was sequenced using standard M13 forward and reverse primers. Reaction products were purified using Clean-seq magnetic beads (Agencourt) and sequenced on an ABI 3730x1 capillary sequencer. DNA sequences were aligned to the B 6 mtDNA reference sequence (Accession: NC_005089) using Aligner software (CodonCode ${ }^{\mathrm{TM}}$) for identification of mutations. Each tissue source yielded approximately 180,000 bases of sequence, totaling over 300,000 bases per tissue per genotype for the two pair analysis.

Histological Procedures.

Tissues and organs were collected from mice following sacrifice according to a standard necropsy protocol. The entire thymus was fixed in 10% buffered formalin solution, as were both testes. A segment of each duodenum and small intestine, 3.5 cm long beginning at the pylorus, was opened longitudinally, pinned to a paper card, and fixed for at least 24 hours. Before further processing, the intestine was rolled into a spiral and pinned in position. Each testis was sliced longitudinally into two equal pieces following fixation. Fixed tissues were processed through a series of ethanol solutions of increasing concentrations, cleared in xylene, and embedded in paraffin. Prior to the final step of embedment, the rolled intestines were sliced into two halves, representing a division of the intestine into two longitudinal pieces. The two halves were embedded together so that subsequent sections were mirror images. Sections of all tissues were cut at $5 \mu \mathrm{~m}$ and two slices were mounted on Fisher Superfrost Plus slides.
For histopathology of inner ear, mice were decapitated under deep anesthesia with $240 \mathrm{mg} / \mathrm{kg}$ tribromoethanol. After removing the temporal bones, the cochleae were perfused with 2% paraformaldehyde and 2.5% glutaraldehyde in phosphate buffered saline (PBS) through the round
and oval windows, immersed in the same fixative for 24 hours, and decalcified in 10\% EDTA (pH 7.2) for 24 hours. The cochleae were then rinsed with PBS, dehydrated through a graded series of alcohol, and embedded in epoxy resin. Thin sections cut parallel to the modiolus were stained with 0.5% toluidine blue and were observed under a light microscope.

TUNEL Staining.

Paraffin was removed from the sections with xylene followed by ethanol and rinsed in water. TUNEL staining for apoptotic nuclei was performed using the DeadEnd ${ }^{T M}$ Colormetric TUNEL System (Promega, Madison) according to the manufacturer's instructions. Following preliminary studies, permeabilization with proteinase K was omitted as unnecessary for staining in these tissues. Labeling reactions were performed for 60 minutes at $25^{\circ} \mathrm{C}$. in a humidified chamber. Color development was accomplished with DAB for 8 minutes. Duplicate sections were counter-stained with hematoxylin and all slides were covered with a coverglass mounted with Permount.

Sections were examined with a Leica DM LB microscope using a $40 \times$ objective. Positively-stained apoptotic nuclei were counted in sections of intestine, thymus, and testes by direct observation. For sections of intestine, the entire length represented in the sections were viewed and counted. The number of villi represented in the length were counted under the $10 \times$ objective. Apoptosis was evaluated as the number of positively-stained nuclei per 100 villi. Sections of thymus were sampled by random movement of the mechanical microscope stage to bring new, non-overlapping areas into view. Five fields of $300 \mu \mathrm{~m} \times 225 \mu \mathrm{~m}$, as seen using the $40 \times$ objective, were sampled for each thymus (total $=0.36 \mathrm{~mm}^{2}$). Counts were standardized from the mean number of apop-totic-positive cells per field to number per $1 \times 10^{5} \mu \mathrm{~m}^{2}$. Apoptotic nuclei in testes were counted in a representative longitudinal cross-section of one testis from each mouse. The number of cross-sections of tubules for each sample was determined from counts on low magnification mosaic photos of each testis. The number of apoptotic nuclei per crosssection of seminiferous tubule was calculated for each mouse.

Assessment of Hearing Function.

Hearing function was tested in 2 month old and 9 month old wild-type and D257A mice. Auditory brainstem responses (ABRs) were measured with a tone burst stimulus (4,8 , and 16 kHz) using an ABR recording system (Intelligent Hearing System, Miami, Fla.). Animals were anesthetized with a mixture of xylazine hydrochloride (10 $\mathrm{mg} / \mathrm{kg}$, i.m.) and ketamine hydrochloride ($40 \mathrm{mg} / \mathrm{kg}$, i.m.), and needle electrodes were placed subcutaneously at the vertex (active electrode), beneath the pinna of the measured ear (reference electrode), and beneath the opposite ear (ground). The stimulus duration, presentation rate, and rise/ fall time were $3 \mathrm{~ms}, 19.3 / \mathrm{s}$, and 1 ms respectively. Responses of 1024 sweeps were averaged at each intensity level (5 dB steps) to assess threshold. Threshold was defined as the lowest intensity level at which a clear reproducible waveform was visible in the trace. Five mice per genotype at each age were used for the study.

Measurement of Heart Function.

Transthoracic echocardiography was performed using an Acuson Sequoia (Siemens) ultrasonograph with a $15-\mathrm{MHz}$ transducer. For acquisition of two-dimensional guided M-mode images at the tips of papillary muscles and Doppler studies, mice were sedated by IP administration of 100
$\mathrm{mg} / \mathrm{kg}$ ketamine and maintained on a heated platform in a left lateral decubitus position. The chest was shaved and prewarmed coupling gel applied. Transmitral velocities were measured using Doppler pulse wave imaging. All images were saved to an on-board optical disk.
End diastolic and systolic left ventricular (LV) diameter as well as anterior and posterior wall (AW and PW respectively) thicknesses were measured on line from M-mode images using the leading edge-to-leading edge convention. All parameters were measured over at least three consecutive cardiac cycles and averaged. Left ventricular fractional shortening was calculated as [(LV diameter diastole -LV diameter $\left.r_{\text {systote }}\right) / \mathrm{LV}$ diameter $_{\text {diastote }} l \times 100$ and LV mass was calculated by using the formula [1.05×((Posterior Wall diastole + Anterior \quad Wall $_{\text {diastole }}+\mathrm{LV} \quad$ diameter $\left._{\text {diastole }}\right)^{3}-(\mathrm{LV}$ diameter diastole 3)]. Relative wall thickness was calculated as $2 \times$ Posterior wall $_{\text {diastool }} / \mathrm{LV}$ diameter $_{\text {diastole }}$. Heart rate was determined from at least three consecutive intervals from the pulse wave Doppler tracings of the LV outflow tract. Isovolumic relaxation time was measured as the time from the closing of the aortic value to the opening of the mitral value from pulse wave Doppler tracings of the LV outflow tract and mitral inflow region. The same person obtained all images and measures.

Measurement of DNA and RNA Oxidation Markers.

Liver nuclei-pellets were dissolved in 3 M guanidine isothiocyanate, 0.2% sodium N -lauroylsarcosinate, 20 mM Tris, pH 7.5 containing 10 mM freshly dissolved deferoxamine mesylate by pipetting on ice. Fat and proteins were removed by extraction with phenol/chloroform/isoamylalcohol (25:24:1). The aqueous phase was withdrawn and after chloroform/isoamylalcohol (24:1) extraction to remove traces of phenol, nucleic acids were precipitated by addition of isopropanol ($-80^{\circ} \mathrm{C} ., 1 \mathrm{~h}$). After washing in 70% ethanol, nucleic acids pellets were dissolved in water containing 30 $\mu \mathrm{M}$ deferoxamine mesylate and hydrolysed using nuclease P_{1} and alkaline phosphatase. Nucleoside content of guanosine (RNA), 8-hydroxyguanosine (RNA), 2'-deoxyguanosine (DNA) and 8-hydroxy-2'-deoxyguanosine (DNA) was determined using HPLC-EC-UV (T. Hofer and L. Moller, Chem. Res. Toxicol. 15:426-432, 2002).
Mitochondrial and Cytosolic Extracts.
Animals were sacrificed at 3 months and 9 months of age. Animals were anesthetized with isoflurane gas, which was administered via inhalation using a precision vaporizer at 3%. Following anesthesia the chest cavity was opened and the heart was removed rapidly, followed by liver, thymus, testes, duodenum, skeletal muscle, and inner ear tissue. Mitochondrial and cytosolic protein fractions were isolated using differential centrifugation. Briefly, heart and liver were finely minced and homogenized on ice in 1:10 (wt/vol) ice-cold isolation buffer (heart buffer composition: 220 mM mannitol, 70 mM sucrose, 1 mM EDTA, and 10 mM Tris- $\mathrm{HCl}, 0.2 \%$ fatty acid free BSA, pH 7.4 ; liver buffer composition: 210 mM mannitol, 70 mM sucrose, 1 mM EDTA, 5 mM HEPES, pH 7.35) using a POTTER-ELVEHJEM glass homogenizer. The homogenates from heart and liver were centrifuged for 10 minutes at 700 g and 1000 g , respectively, and the resulting supernatants were centrifuged for 20 minutes at $8,000 \mathrm{~g}$ (heart) or $10,000 \mathrm{~g}$ (liver). The $8,000 \mathrm{~g}$ and $10,000 \mathrm{~g}$ supernatants (representing crude cytosolic fractions) were frozen at $-80^{\circ} \mathrm{C}$. for analysis. Pellets were resuspended in a small volume of isolation buffer and centrifuged at $8,000 \mathrm{~g}$ (heart) or $10,000 \mathrm{~g}$ (liver) for 10 minutes. All centrifugation steps were carried out at $4^{\circ} \mathrm{C}$. The final mitochondrial pellets were suspended in
isolation buffer (without BSA, for heart mitochondria and without EDTA, for liver mitochondria) and used immediately for measurement of mitochondrial $\mathrm{H}_{2} \mathrm{O}_{2}$ and ATP production. For cytosolic extraction from thymus, duodenum, testes and gastrocnemius muscle, tissues were homogenized in 1:10 (wt/vol) (1:5 for skeletal muscle) ice-cold isolation buffer (20 mM HEPES, $10 \mathrm{mM} \mathrm{KCl}, 250 \mathrm{mM}$ sucrose, $1.5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EDTA, pH 7.4$)$. The homogenates were centrifuged at $800-1000 \mathrm{~g}$ depending on the tissue for 10 minutes, and the resulting supernatants were centrifuged at $10,000 \mathrm{~g}$ for 20 minutes. The supernatants (crude cytosol) were immediately frozen at $-80^{\circ} \mathrm{C}$. for further biochemical analysis.

Determination of Cytosolic Mono- and Oligonucleosomes. Endogenous endonucleases activated during apoptosis cleave double-stranded DNA in the linker region between nucleosomes to generate mono- and oligonucleosomes of 180 bp or multiples. Apoptotic DNA fragmentation was quantified in the thymus and testes by measuring the amount of cytosolic mono- and oligonucleosomes using a Cell Death ${ }^{\text {TM }}$ ELISA kit (ROCHE MOLECULAR BIOCHEMICALS, Germany) with the peroxidase substrate ABTS (A. Dirks and C. Leeuwenburgh, Am. J. Physiol. Regul. Integr. Comp. Physiol. 282:R519-R527, 2002; S. K. Lee, et al., Anticancer Res. 22:97-102, 2002). All samples were run in triplicate and the means expressed as arbitrary OD units normalized to milligram of cytosolic protein, with sample protein concentrations determined by the Bradford method (M. M. Bradford, Analyt. Biochem. 72:248-254, 1976).

Determination of Cleaved Caspase-3 Content.

The active form of caspase-3, cleaved caspase-3, was quantified by Western blotting. Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated fragments. The specific antibody used (see below) detects endogenous levels of the large fragment ($17 / 19 \mathrm{kDa}$) of activated caspase- 3 resulting from cleavage adjacent to Asp175. For quantification of cleaved caspase-3 by Western blot analysis, cytosolic proteins from the thymus, testes, duodenum and gastrocnemius muscle were separated using $4-20 \%$ PAGEr $\left.{ }^{(}\right)$Gold pre-cast Tris-glycine gels (BioWittaker Molecular Applications, Rockland, Me., USA) under denaturing conditions, and then transferred to nitrocellulose membranes ($0.2 \mu \mathrm{~m}$, Trans-Blot ${ }^{\circledR}$) Transfer Medium, BioRad Laboratories, California, USA). Protein concentration was determined using the Bradford assay (M. M. Bradford, supra, 1976), and subsequently normalized so that the protein content among samples was identical. Subsequently, 20 $\mu \mathrm{l}$ of sample was loaded to each well. A $15 \mu \mathrm{l}$ sample of HL-60 cell extract induced with etoposide (EMD Biosciences, Inc., San Diego, Calif.) was used as a positive control. Only protein bands within an individual gel were used for comparisons. Membranes were blocked for 1 h using a blocking solution containing PBS and 5% milk. Membranes were then incubated overnight in the 5\% blocking solution containing the rabbit monoclonal primary anticleaved caspase-3 antibody (Cell Signaling, Beverly, Mass., USA) with an appropriate dilution (1:100 for gastrocnemius and testes, 1:300 for thymus, and 1:1000 for duodenum). The following day membranes were incubated for 1 hour at room temperature with anti-rabbit IgG horseradish peroxi-dase-linked whole secondary antibody (1:1000, Amersham Biosciences UK Ltd, Amersham, UK). Specific protein bands were visualized using ECL reagent (Amersham Pharmacia Biotech, UK). The resulting Western blots were exposed to film (Hyperfilm ${ }^{\text {TM }}$ ECI $^{T M}$, Amersham Pharmacia Biotech, UK) and analyzed using the KODAK Imaging

System (Kodak 440CF). Values were expressed as arbitrary OD units. Triplicate measurements were taken and the resulting means (\pm SEM) were used for analysis.

Oxidant Production.

$\mathrm{H}_{2} \mathrm{O}_{2}$ production was measured in intact heart and liver mitochondria over a period of 15 minutes at $37^{\circ} \mathrm{C}$. following the method of Barja (G. Barja, J. Bioenerg. Biomembr. 34:227-233, 2002). Briefly, incubation buffer (145 mM KCl , 30 mM HEPES, $5 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO} 4,3 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mM}$ EGTA, and 0.1% fatty-acid free BSA, pH 7.4) was added to test tubes followed by the addition of mitochondria $(0.25 \mathrm{mg}$ protein $/ \mathrm{ml}$), horseradish peroxidase ($5.7 \mathrm{U} / \mathrm{ml}$), homovanilic acid (0.1 mM), and substrate (2.5 mM pyruvate $/$ malate) so that the total volume was equal to 1.5 ml . The tubes were incubated in a shaking water bath at $37^{\circ} \mathrm{C}$. for 15 minutes, and the reaction was stopped by placing the tubes in ice and adding 0.5 ml cold stop solution (0.1 M glycine, 25 mM EDTA-NaOH, pH 12.0). Fluorescence was determined at 312 nm excitation and 420 nm Emission using a SPECTRAmax Gemini ${ }^{\mathrm{TM}}$ XS dual-scanning microplate spectrofluorometer (Molecular Devices, Sunnyvale, Calif.). Arbitrary fluorescence units were converted to known amounts of $\mathrm{H}_{2} \mathrm{O}_{2}$ using a glucose-glucose oxidase standard curve. All measurements were performed in duplicate, and results were expressed as nmol of $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{min} / \mathrm{mg}$ protein.

ATP Production.

Mitochondria isolated from heart and liver were used immediately after isolation to determine mitochondrial ATP content and rate of ATP production following the method of Drew (B. Drew and C. Leeuwenburgh, Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R1259-R1267, 2003). ATP production was determined using a luminometer (model TD-20/20, Turner Designs, Sunnyvale, Calif.), employing an assay that utilizes firefly luciferase, which fluoresces in proportion to the presence of ATP and d-luciferin. In order to determine ATP content, freshly isolated mitochondria were added to a cuvette containing 1 mM pyruvate, 1 mM malate, and a luciferin-luciferase ATP monitoring reagent (ATP Determination Kit A-22066, Molecular Probes, Eugene, Oreg.). This was followed immediately by the addition of 2.5 mM ADP to determine ATP production. A blank cuvette containing no sample was assayed to account for nonspecific ATP production, and known concentrations of ATP were used to establish a standard curve. All mitochondrial samples were assayed in triplicate, and an average of these results was used in quantifying ATP content and rate of production. Results (mean \pm SEM) for ATP content were expressed as nmol ATP/mg protein, and for ATP production as nmol ATP/mg protein/min.
Statistical Analysis.
All analyses were performed in triplicate and the means obtained were used for independent t-tests. Statistical analyses were carried out using the Prism 4.0 statistical analysis program (GraphPad, San Diego Calif.). Statistical significance was set at $\mathrm{P}<0.05$. All data are reported as mean \pm SEM.
Those of ordinary skill in the art will readily appreciate that the foregoing represents merely certain preferred embodiments of the invention. Various changes and modifications to the procedures and compositions described above can be made without departing from the spirit or scope of the present invention, as set forth in the following claims below.

<160> NUMBER OF SEQ ID NOS: 5	
<210> SEQ ID NO 1	
<211> LENGTH: 4523	
<212> TYPE: DNA	
<213> ORGANISM: Mus musculus	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (4458)..(4458)	
<223> OTHER INFORMATION: n is $\mathrm{a}, \mathrm{c}, \mathrm{g}$, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (4465)..(4466)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (4472)..(4472)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (4474)..(4474)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (4501)..(4501)	
<223> OTHER INFORMATION: n is a, c, g, or t	
<400> SEQUENCE: 1	
gggaagttgc ggctgctccc gagaccgcac gccaccctga ggctgcgtgg gccgcgcgec	60
gcgacgccge gtcgtcgceg gggctgtggg ctgccgcaga acgggaagcg cgaagcggac	120
cgaggacttg tgtgaggaag gcaggcatgg tgagacctat ttcactgaca ggagcacaga	180
gaggggacge gtctctctct gagtctttcg gccactaaaa gcagtcaagc tggagcceaa	240
agcccggtgc cecgactcac agcgggggge tccetgcacc aaccatgagc cgcetgctct	300
ggaagaaggt ggctggcgcc aaggtcgect cagggccagt accagcaacc gagggctggg	360
tctccagctc egtcctcgca cccgtcceca gegacgggeg gecgecgtcg caaatgcect	420
cctccgagaa tgggcagctg cggctcaacc ctctgctcat ceagatgttg tcgagaggec	480
tgcacgagca gatcttcggg tgcggcgggg aaatgcccga cgaggecgeg gtgcagcgea	540
gcgtagagca cctgcagaag cacgggctct gggggcagcc ggceacgcce ttgccagacg	600
tggagctgcg cctgccccgg ctcttcgggg gcaacctgga ccagcacttc cgcctcctgg	660
cccagaagca gagcctgcct tacttggagg cggccgcctc gttattggag gcccaattge	720
cccccgagcc caagagctgg gcttgggcgg agggctggaa ceggtacggc cccgaggggg	780
aggccgaacc egtggceatc cccgaggage gggecetggt gttcgacgtg gaggtctgct	840
tggcagaggg aacctgccec actttggcgg tggccatatc cecctcggce tggtattcct	900
ggtgcagccg gcggctggtg gaagagcgtt actcttggac cagccagcta tcgccggctg	960
acctaacccc tttgggggge tccactagtg ccagcagctc caccaagcag gatgggcagg	1020
aacagttagt ggtggggcac aatgtttcct ttgaccgagc ccatatcagg gaacagtatc	1080
tgattcagga ctcccggatg cgttttctcg atactatgag catgcacatg gccatctcgg	1140
ggctgagcag ettccagcge agcetgtgga tgggagccaa gcagggaaag caacaagace	1200
cagcagtcca caaagcgagg gcagaagtcc ccgaggaaag ccaatggtcc agcgattcat	1260
cttgggactg gatggatatc agcagtgcea ataatcttgc agatgtgcac aacctttatg	1320
tggggggacc tccettagag aaggagcotc ggaagctgtt cgtcaaaggc agcatgaggg	1380
atatccgaga gaacttccag gatctgatgc agtactgcge ccgtgatgtg tgggccacct	1440

-continued

-continued

-continued

-continued


```
<210> SEQ ID NO 3
<211> LENGTH: 1238
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (257)..(257)
<223> OTHER INFORMATION: Mutation, Aspartic Acid to Alanine.
<400> SEQUENCE: 3
```


-continued

-continued


```
<210> SEQ ID NO 4
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 4
```

gccaactagc ctccatctca tactt
$<210>$ SEQ ID NO 5
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
$<400>$ SEQUENCE : 5

60
We claim:

1. A transgenic mouse model for mouse aging comprising a mouse having a targeted site-directed mutation in the exonuclease domain II of the endogenous mitochondrial DNA polymerase gamma gene, wherein said targeted sitedirected mutation is the substitution of an aspartic acid
residue to an alanine residue at position 257 as set forth in SEQ ID NO:3, wherein said mutation results in an elevated mitochondrial mutation frequency in at least two tissues in said mouse model.
2. The mouse model of claim 1 wherein the exonuclease domain mutation results in the expression of a DNA proof-
reading deficient version of the mitochondrial DNA polymerase gamma (Polg) gene and accumulation of mitochondrial DNA mutations in both mitotic and post-mitotic mouse tissues, which is correlated with the activation of caspase-3 and the induction of apoptosis in mouse tissues.
3. The mouse model of claim 1 wherein the mouse exhibits symptoms of accelerated or premature aging compared to a mouse not having the mutation in the exonuclease domain of the Polg gene.
4. The mouse model of claim 1 wherein the aging symptoms are selected from the group consisting of abnormalities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss neurodegeneration, increased presence of apoptotic markers, and loss of bone mass.
5. A method of screening for a potentially therapeutic agent useful for delaying the onset of aging-related symptoms, the method comprising the steps of:
(a) providing a mouse model of claim 1 , wherein the mouse exhibits aging-related symptoms;
(b) administering the agent to the mouse model; and
(c) determining whether the agent is capable of delaying the onset of aging-related symptoms in the mouse 25 model treated with the agent compared to an untreated mouse model.
6. The method of claim $\mathbf{5}$ wherein the aging-related symptoms are selected from the group consisting of abnor-
malities in tissues of high cellular turnover, heart dysfunction, graying hair and alopecia, auditory function loss, cochlear degeneration, immune cell loss, anemia, male germ cell loss leading to lack of sperm and infertility, skeletal muscle mass loss, bone loss, neurodegeneration and increased presence of apoptotic stress markers.
7. The method of claim $\mathbf{5}$ wherein the age-related symptoms are selected from the group consisting of altered hearing function, altered heart function, loss of bone, loss of muscle mass and induction of apoptosis.
8. The method of claim 5 wherein the therapeutic agent is a genetically-, a pharmaceutical- or a dietary-based agent.
9. A method of screening for a potentially therapeutic agent useful for treating medical conditions comprising progressive external ophthalmoplegia, sensorimotor polyneuropathy, ataxia, Parkinson's syndrome or early menopause defined by mitochondrial DNA mutations in a POLG gene, the method comprising the steps of:
(a) providing a mouse model of claim 1, wherein the mouse exhibits symptoms of progressive external ophthalmoplegia sensorimotor polyneuropathy, ataxia, Parkinson's syndrome or early menopause;
(b) administering the agent to the mouse model; and
(c) determining whether the agent is capable of improving symptoms for any of the medical conditions of step (a) in the mouse model treated with the agent compared to an untreated mouse model.
