
c12) United States Patent
Schulte et al.

(54) DECIMAL FLOATING-POINT ADDER

(75) Inventors: Michael J. Schulte, Madison, WI (US);
John D. Thompson, Franklin, WI (US);
Nandini Karra, Folsom, CA (US)

(73) Assignee: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 877 days.

(21) Appl. No.: 10/941,645

(22) Filed:

(65)

Sep.15,2004

Prior Publication Data

US 2006/0047739 Al Mar. 2, 2006

Related U.S. Application Data

(60) Provisional application No. 60/605,784, filed on Aug.
31, 2004.

(51) Int. Cl.
G06F 7142 (2006.01)

(52) U.S. Cl. 708/505; 708/680
(58) Field of Classification Search 708/505,

(56)

708/680
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3,991,307 A
4,118,786 A
4,138,731 A
4,172,288 A
4,276,596 A *
4,488,252 A
4,677,583 A
4,805,131 A
4,864,527 A
4,866,656 A
5,007,010 A

11/1976 Peddle et al.
10/ 1978 Levine et al.
2/1979 Kamimoto et al.

10/ 1979 Anderson
6/ 1981 Flynn et al. 712/245

12/1984 Vassar
6/ 1987 Ohtsuki et al.
2/ 1989 Adiletta et al.
9/ 1989 Peng et al.
9/1989 Hwang
4/ 1991 Flora

I 1111111111111111 11111 1111111111 lllll lllll 111111111111111 111111111111111111
US007546328B2

(IO) Patent No.: US 7,546,328 B2
(45) Date of Patent: Jun.9,2009

5,027,308 A 6/1991 Sit et al.

5,424,968 A 6/1995 Okamoto

5,732,007 A 3/1998 Grushin et al.

5,745,399 A 4/1998 Eaton et al.

5,808,926 A 9/1998 Gorshtein et al.

5,928,319 A 7/1999 Haller et al.

5,931,896 A 8/1999 Kawaguchi

6,148,316 A 11/2000 Herbert et al.

6,292,819 Bl 9/2001 Bultmann et al.

(Continued)

OTHER PUBLICATIONS

Cowlishaw, "Decimal Floating-Point : Algorism for Computers",
Proceedings of the 16th IEEE Symposium on Compute Arithmetic
(ARITH'03) 2003 IEEE.*

(Continued)

Primary Examiner-Tan V Mai
(74) Attorney, Agent, or Firm-Shumaker & Sieffert, P.A.

(57) ABSTRACT

A decimal floating-point adder is described that performs
addition and subtraction on decimal floating-point operands.
The decimal floating-point adder includes an alignment unit
that receives a first floating-point number and a second float
ing-point number, and aligns significands associated with the
floating-point numbers such that exponents associated with
the floating-point numbers have equal values. The decimal
floating-point adder further includes a binary adder that adds
the aligned significands. The floating-point adder includes a
correction unit and an output conversion unit to produce a
final resultant decimal floating-point number. The decimal
floating-point adder may be pipelined so that complete result
ant decimal floating-point numbers may be output each clock
cycle.

44 Claims, 10 Drawing Sheets

US 7,546,328 B2
Page 2

U.S. PATENT DOCUMENTS

6,546,411 Bl 4/2003 Singh
7,299,254 B2 11/2007 Alagarsamy et al.

2001/0051969 Al 12/2001 Oberman et al.
2002/0129075 Al 9/2002 Park et al.
2002/0133525 Al 9/2002 Chen et al.
2003/0055859 Al 3/2003 Seidel et al.
2003/0101207 Al 5/2003 Dhong et al.

OTHER PUBLICATIONS

Logan, "What Is Scientific Notation And How Is It Used?" (c) 1995,
Revised Jul. 11, 2001, http://members.aol.com/profchrn/sci_not.
html.*
Cowlishaw et al , "A Decimal Floating-Point Specification", pp.
147-154, 2003 IEEE.*
Thompson et al, "A 64-bit Decimal Floating-Point Adder", 2004
IEEE.*
Martin S. Schmookler et al., "High Speed Decimal Addition," IEEE
Transactions on Computers, vol. C-20, No. 8, pp. 862-866, Aug.
1971.

Mark A. Erle et al., "Decimal Multiplication Via Carry-Save Addi
tion," IEEE J ,F' International Conference on Application-Specific
Systems, Architectures and Processors, 11 pages, 2003.
Behrooz Shirazi et al., "RBCD: Redundant Binary Coded Decimal
Adder," IEEE Proceedings, vol. 136, PartE, No. 2, pp. 156-160, Mar.
1989.
Behrooz Shirazi et al., "VLSI Designs for Redundant Binary-Coded
Decimal Addition," Proceedings of the 7th Annual International
Conference on Computers and Communications, pp. 52-56, Mar.
1988.
Robert D. Kenney et al., "Multi operand Decimal Addition," Proceed
ings of the IEEE Computer Society Annual Symposium on VLSI, 10
pages. Feb. 2004.
Draft Standard for Floating-Point Arithmetic P754/D0.10.9, http://
7 54r.ucbtest.org/drafts/7 54r.pdf, IEEE, 136 pages, Apr. 6, 2005.
U.S. Appl. No. 11/014,674, filed Dec. 16, 2004, entitled "Processing
Unit Having Multioperand Decimal Addition,".
Office Action dated May 1, 2008, for U.S. Appl. No. 11/014,674, (14
pages).
Office Action dated Oct. 31, 2008, for U.S. Appl. No.11/014,674, (15
pages).

* cited by examiner

U.S. Patent Jun.9,2009 Sheet 1 of 10

PROCESSING UNIT

12~

OPERAND A OPERANDS

INPUT CONVERSION UNIT

CA1

OPERAND EXCHANGE UNIT

10

US 7,546,328 B2

ROUND

OPERATION

14

16

CA2 CB2 EA2 EB2
18

SA4 SB4

~ CA3 20
N ~===-='-~~"""'===~,...,___,

FIG. 1

CA4

CAS

BINARY ADDER/FLAG
GENERATION UNIT

CORRECTION UNIT

CR2

SHIFT AND ROUND UNIT

OUTPUT CONVERSION UNIT

RESULT

26
COUT

28

32

34

OPERATION UNIT

:;o
m
< m
:;o
C/)
m

SR

22

U.S. Patent Jun.9,2009 Sheet 2 of 10

START

40

RECEIVE INPUT OPERANDS

42

CONVERT INPUT
OPERANDS' SIGNIFICANDS

TO BCD

NO

46

EXCHANGE OPERANDS

ALIGN SIGNIFICANDS

CONVERT TO EXCESS-3

NO

58

48

50

US 7,546,328 B2

52

DETERMINE EFFECTIVE
OPERATION

DETERMINE WHETHER
RESULT NEEDS TO BE

REVERSED

54

INVERT ONE OF
SIGNIFICANDS

1----... TO BLOCK 59
OF FIG. 2B

FIG. 2A

U.S. Patent Jun.9,2009

EXPAND STICKY BIT

PERFORM BINARY
ADDITION

COMPUTE FLAG BITS

PERFORM CORRECTION

NO

SHIFT

YES

ROUND

FIG. 28

Sheet 3 of 10 US 7,546,328 B2

59

60

62

64

66

67

68 NO

69

FROM BLOCK 58
OF FIG. 2A

DETERMINE SIGN OF
RESULT

CONVERT TO IEEE-754

END

72

U.S. Patent Jun.9,2009 Sheet 4 of 10 US 7,546,328 B2

I BUFFER I CAS SIGNIFICAND

CBS SIGNIFICAND ROUND STICKY
+

I BUFFER I CR1 SIGNIFICAND ROUND STICKY

FIG. 2C

U.S. Patent

NO

FIG. 3

Jun.9,2009 Sheet 5 of 10 US 7,546,328 B2

START

80

RECEIVE SIGNIFICANDS AND
EXPONENTS

YES
84

LEFT-SHIFT CA2 BY
EA2-EB2

YES

RIGHT-SHIFT CB2
BY EA2-EB2 + M-X

NO

92

86 94

LEFT-SHIFT CA2 BY
X-M

SHIFT MSB INTO
EXTRA BUFFER IF

NECESSARY

88

DO NOT RIGHT
SHIFT CB2

SHIFT LSB INTO
ROUND OR STICKY

BUFFER

98

OUTPUT SHIFTED
SIGNIFICANDS AND

COMMON EXPONENT

END

96

U.S. Patent Jun.9,2009 Sheet 6 of 10 US 7,546,328 B2

START
RECEIVE SUM OF ALIGNED

SIGNIFICANDS, FLAG BITS, AND
OPERATION INPUT

100

YES

106

SUBTRACT CORRECTIVE
VALUE OF SIX FROM SUM

DIGIT

END

122

INVERT SUM BITS

SUBTRACT CORRECTIVE
VALUE OF SIX FROM SUM

DIGIT

END

126

NO

NO

112

INVERT FLAGGED SUM BITS

114

XOR SUM DIGIT CARRY-OUT
WITH THE DIGIT FLAG

CARRY-OUT

SUBTRACT CORRECTIVE
VALUE OF SIX FROM SUM

DIGIT

END

118

FIG. 4

U.S. Patent Jun.9,2009

RIGHT SHIFT RESULT
BY TWO DIGITS

132

137

Sheet 7 of 10 US 7,546,328 B2

YES START

NO SHIFT ____ N_O-----<

INCREMENT FINAL
EXPONENT BY

TWO

139

DETERMINE NUMBER OF
NINES STARTING AT LSB

GENERATE CURRENT
VALUE PLUS ONE

148

150

YES

FIG. 5

SHIFT RESULT RIGHT ONE
DIGIT

INCREMENT FINAL
EXPONENT BY ONE

138

140

TRUNCATE ROUND AND
STICKY BITS

DETERMINE ROUNDING
MODE

YES

END

154

SHIFT ROUNDED RESULT
RIGHT ONE DIGIT AND
INCREMENT THE FINAL

EXPONENT BY ONE

142

U.S. Patent Jun.9,2009 Sheet 8 of 10 US 7,546,328 B2

100%

90%

a, 80% Cl
C'G

~ Unpack & Exchng. -C 70% a,
u 113 Sig. Alignment ...
a, 60% a.. 131 Excess-3 & Inv.
>,
C'G 50% E3 Add & Flag a;

C • Correction .c 40% -C'G • Shift & Round a..
30% iv • Exception & Pack u ..
20% ·.::

0

10%

0%

1

FIG. 6

U.S. Patent

4.5

4

3.5 -"' .s 3
>,
RI 2.5 iii

C
't:J 2 a,
> a,
:c 1.5
(.)

~
1

0.5

0

FIG. 7

Jun.9,2009

1 2

Sheet 9 of 10

3

Pipeline Depth

US 7,546,328 B2

4 5

U.S. Patent

-CT
II)

E

250000

200000

2. 150000
ca
f
<
"" 100000 !
.c

~

FIG. 8

Jun.9,2009

2

Sheet 10 of 10

3

Pipeline Depth

US 7,546,328 B2

4 5

US 7,546,328 B2
1

DECIMAL FLOATING-POINT ADDER

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/605,784, entitled "DECIMAL
FLOATING-POINTADDER,"filedAug. 31, 2004, the entire 5

content of which is incorporated herein by reference.

TECHNICAL FIELD

The invention relates to computing devices and, more par- 10

ticularly, to techniques for performing arithmetic operations
within computing devices.

BACKGROUND

2
point binary adders. As a result, the decimal adder and the
techniques described herein may be especially suited for
numerically intensive commercial applications.

In one embodiment, a processor comprises a pipelined
decimal-floating-point adder having a plurality of stages. The
decimal-floating-point adder performs an arithmetic opera
tion on a first decimal floating-point number and a second
decimal floating-point number and outputs a decimal float
ing-point result each clock cycle.

In another embodiment, a processor comprises a decimal
floating-point adder that performs an arithmetic operation on
a first decimal floating-point number and a second decimal
floating-point number and outputs a decimal floating-point
number. The decimal floating-point adder includes an align-

15 ment unit having a first input to receive a first significand and
a first exponent associated with the first floating-point num
ber, and a second input to receive a second significand and a
second exponent associated with the second floating-point
number. The alignment unit aligns the first significand and the

Although most people use decimal arithmetic when per
forming manual calculations, computers typically only sup
port binary arithmetic in hardware. This is primarily due to
the fact that modem computers typically only represent two
logic values: zero and one. While it is possible to use these
two logic values to represent decimal numbers, doing so is
wasteful in terms of storage space and often computationally
less efficient. For example, in binary, four bits can represent
sixteen values; while in binary coded decimal (BCD), four
bits only represent ten values. Since most computer systems 25
do not provide hardware support for decimal arithmetic, num
bers are typically input in decimal, converted from decimal to
binary, processed using binary arithmetic and then converted
back to decimal for output.

20 second significand so that the first exponent and the second
exponent have an equal value.

In spite of the current dominance of hardware support for 30

binary arithmetic, there are several motivations that encour
age the provision of support for decimal arithmetic. First,
applications that deal with financial and other real-world data
often introduce errors since many common decimal numbers
carmot be represented exactly in binary. For example, the 35

decimal number "0.1" is a repeating fraction when repre
sented in binary. Second, people typically think about com
putations in decimal, even when using computers that operate
only on binary representations, and therefore may experience
what is perceived as incorrect behavior when processing deci- 40

ma! values. Third, converting between binary and decimal
floating-point numbers is computationally intensive. For
example, conversion on modem processors may take thou
sands of processing cycles.

In an effort to alleviate some of the problems that occur 45

when a computer only supports binary arithmetic in hard
ware, several software packages and prograniming language
extensions for decimal arithmetic have been developed.
Although some of these packages are successful in eliminat
ing binary-to-decimal and decimal-to-binary conversion 50

errors, the packages are often hundreds to thousands of times
slower than binary operations implemented in hardware.

SUMMARY

In another embodiment, a method comprises receiving a
first operand and a second operand with alignment unit within
a processor. The first operand includes a first significand and
a first exponent associated with a first decimal floating-point
number, and the second operand includes a second signifi
cand and a second exponent associated with a second decimal
floating-point number. The method further comprises align-
ing the first significand and the second significand with the
alignment unit so that the first exponent and the second expo
nent have an equal value, and computing a resultant decimal
floating-point number from the aligned first and second sig
nificands and the equal value of the first exponent and the
second exponent.

In another embodiment, a method comprises processing
with an adder a first significand associated with a first decimal
floating-point number and a second significand associated
with a second decimal floating-point number to produce a
resultant significand. The method further comprises generat
ing one or more flag bits with a flag generation unit to indicate
a bit within resultant significand to which a carry will propa
gate as a result of the addition, adjusting the resultant signifi
cand with a correction unit to produce a corrected significand
based on the flag bits, and outputting a resultant decimal
floating-point number from the corrected significand.

In another embodiment, a decimal floating-point adder
comprises a binary adder that adds a first significand associ
ated with a decimal first floating-point number and a second
significand associated with a second decimal floating-point
number to produce a sum in binary form. The decimal float-
ing-pint adder further comprises a flag generation unit that
outputs one or more flag bits to indicate a bit within resultant
significand to which a carry will propagate as a result of the

55 addition, and a correction unit that adjusts the sum to produce
a corrected significand based on the flag bits. In general, the invention is directed to techniques for per

forming decimal floating-point arithmetic and, more particu
larly, decimal floating-point addition and subtraction. For
example, a processing unit is described that includes a deci
mal floating-point adder for performing addition and subtrac- 60

tion on decimal-floating-point operands.
Embodiment of the decimal floating-point adder may be

pipelined so that complete resultant decimal floating-point
numbers may be output each clock cycle instead of comput
ing only a single digit of the result every clock cycle. More- 65

over, a pipelined decimal floating-point adder may achieve a
critical path delay slightly greater than comparable fixed-

In another embodiment, a method comprises adding a first
significand associated with a first decimal first floating-point
number and a second significand associated with a second
decimal floating-point number to produce a resultant signifi
cand. The first and second significands have a number of bits
to store a plurality of decimal digits and the resultant signifi
cand has a number of bits to store the decimal digits plus a
guard buffer to store an additional decimal digit and an addi
tional bit to store a most significant carry-out. The method
further comprises shifting the resultant significand toward a
least significant digit when either of the carry-out or the guard

US 7,546,328 B2
3

buffer contains a non-zero value, and outputting a resultant
decimal floating-point number based on the shifted resultant
significand.

4
ment unit 18, an excess-3 conversion unit 20, an operation
unit 22, an inversion and sticky expansion unit 24, a binary
adder/flag generation unit 26, a correction unit 28, a sign unit

In another embodiment, a processor comprises a binary
adder that adds a first significand associated with a first float- 5

ing-point number and a second significand associated with a
second floating-point number to produce a resultant signifi
cand. The first and second significands have a number of bits

30, a shift and round unit 32 and an output conversion unit 34.
Input conversion unit 14 receives two operands, "OPER-

AND A" and "OPERAND B," and converts the significands
of each of the operands to binary coded decimal (BCD). The
input operands are decimal floating-point numbers and may
conform, for example, to the 64-bit decimal floating point to store a plurality of decimal digits and the resultant signifi

cand has a number of bits to store the decimal digits plus a
guard buffer to store an additional decimal digit and an addi
tional bit to store a most significant carry-out. The processor
further comprises a shift unit that shifts the resultant signifi
cand toward a least significant digit when either the carry-out
or the guard buffer contains a non-zero value.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a processing unit that
performs decimal arithmetic in accordance with the inven
tion.

FIGS. 2A and 2B illustrate a flow diagram illustrating
exemplary operation of a decimal floating-point adder that
performs floating-point arithmetic in accordance with the
invention.

FIG. 2C shows the formats of the input significands
received by a binary adder/flag generation unit of the decimal
floating-point adder and the resultant sum.

FIG. 3 is a flow diagram illustrating an exemplary opera
tion of an alignment unit of the decimal floating-point adder
of FIG. 1.

FIG. 4 is a flow diagram illustrating exemplary operation of
a correction unit of the decimal floating-point adderofFIG.1.

FIG. 5 is a flow diagram illustrating exemplary operation of
a shift and round unit of the decimal floating-point adder of
FIG. 1.

FIGS. 6-8 are graphs presenting simulation and synthesis
results for the decimal floating-point adder.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an example embodi
ment of a processing unit 10 that performs decimal arithmetic
in accordance with the techniques described herein. In par
ticular, FIG. 1 illustrates a portion of processing unit 10 that
includes a floating-point adder 12 for performing decimal
arithmetic. For ease of illustration, adder 12 is described in
reference to FIG. 1 as a 64-bit decimal floating-point adder.
Adder 12 may, however, be modified to support arithmetic
operations on decimal floating-point numbers of different bit
lengths, such as 32-bit or 128-bit decimal floating-point num
bers.

10 numbers specified in the IEEE-754 standard for floating
point arithmetic. In that case, input conversion unit 14 con
verts the two floating-point numbers (i.e., OPERAND A and
OPERAND B) into corresponding sign-bits (SAl and SBl),
10-bit biased binary exponents (EAl and EBl), and 16-digit

15 significands (CAl and CBl). The 16-digit significands CAl
and CBl are represented by 64 bits and, more particularly, 4
bits represent each of the 16 digits of the significands using a
BCD encoding.

Sign-bits SAl and SBl, 10-bit biased binary exponents
20 EAl and EBl, and 16-digit significands CAl and CBl are

input to operand exchange unit 16. In general, operand
exchange unit 16 processes the unpacked operands to ensure
that the operands are ordered according to their exponent
values, i.e., EAl and EBl. Specifically, operand exchange

25 unit 16 exchanges the two operands whenEBl is greater than
EAl, thereby ensuring that the exponent of the first
exchanged operand, i.e., EA2 is always greater than or equal
to the exponent of the second exchanged operand, i.e., EB2.
Operand exchange unit 16 may be implemented, for example,

30 using a comparator that compares EAl and EBl and sends a
selection signal to two multiplexers, each of which inputs the
significands, exponents, and signs from both operands. The
BCD significands and the binary exponents, which may be
potentially exchanged, output by operand exchange unit 16

35 are denoted CAZ, CB2, EA2, and EB2 in FIG. 1, while the
sign bits are denoted as SA4 and SB4.

Alignment unit 18 aligns the significands CAZ and CB2
such that their corresponding exponents are equal. As will be
described in detail below, alignment unit 18 determines the

40 largest number of digits by which CAZ can be shifted toward
the most significant digit, thus decreasing its exponent EA2
towards the value of the lesser exponent EB2. Alignment unit
18 also determines if and by how many digits to shift signifi
cand CB2 toward the least significant digit in order to com-

45 plete the alignment process. As significand CB2 is shifted
toward the least significant digit, corresponding exponent
EB2 increases toward EA2. If any digits in EB2 are shifted
past the least significant digit, they are shifted into a round
digit that is to the right of the least significant digit. Digits

50 shifted past the round digit are accumulated using a sticky bit,
which is set to one if any non-zero digits are shifted past the
round digit. Alignment unit 18 may selectively shift both of
the operands in parallel. The significand that is associated
with the larger exponent, i.e., CAZ, is shifted toward the most

55 significant digit and the operand associated with the smaller
exponent, i.e., CB2, is shifted toward the least significant digit
until the two significands have associated exponents that are
equal. Alignment unit 18 outputs the aligned significands As described herein, adder 12 can be pipelined to have a

critical path that is only slightly greater than a 64-bit fixed
point binary adder. Moreover, the described techniques allow 60

adder 12 to produce a complete result of a decimal addition
every clock cycle instead of computing only a single digit of
the result every clock cycle. As a result, adder 12 may be
especially suited for numerically intensive commercial appli
cations.

CA3 and CB3 as well as the common exponent ERZ.
Excess-3 conversion unit 20 receives aligned significands

CA3 and CB3 and converts them to an excess-3 decimal
encoding. Excess-3 conversion unit 20 may, for example, add
a constant value of3 to each digit of both the significands CA3
and CB3. The excess-3 format is an advantageous decimal

65 form due to the fact the excess-3 addition produces a natural
decimal carry. In addition, the excess-3 format is "self-com
plimentary" in that the nine's complement of an excess-3

In the illustrated embodiment, adder 12 includes an input
conversion unit 14, an operand exchange unit 16, an align-

US 7,546,328 B2
5

digit can be obtained simply by inverting the four bits that
represent the digit, which is useful when performing subtrac
tion. Both binary adder/flag generation unit 26 and correction
unit 28 use the excess-3 format.

While aligmnent unit 18 aligns the significands and 5

excess-3 conversion unit 20 converts the aligned significands

6
decimal encoded input operands (40) and converts the sig
nificands of each of the operands to unpacked BCD (42).
Input conversion unit 14 may, for example receive two input
operands that conform to 64-bit decimal floating-point num
bers in the IEEE-754 floating-point arithmetic standard and
convert the two IEEE-754 decimal encoded operands (e.g.,
OPERAND A and OPERAND B of FIG. 1) into correspond
ing sign-bits (SAl and SBl), 10-bit biased binary exponents
(EAl, and EBl), and 16-digit significands (CAl and CBl).

Next, operand exchange unit 16 determines whether the
two converted operands are ordered according to their expo
nent values, i.e., EAl and EBl. In one embodiment, operand
exchange unit 16 determines whether EBl is greater than

to excess-3, operation unit 22 determines the effective opera
tion based on the operands' signs (SA4 and SB4) and the
requested arithmetic operation ("OPERATION"), which sig
nals either addition or subtraction. Operation unit 22 may 10

operate in parallel with aligmnent unit 18 and excess-3 con
version unit 20, and produces an EFFECTIVE OPERATION
output signal representing the effective operation and a
REVERSE output signal which indicates whether the sign of
the final result should be reversed. 15 EAl (44). Operand exchange unit 16 may, for example, com

prise a comparator that compares EAl and EBl. Alterna
tively, operand exchange unit 16 may perform a subtraction
and determine the larger of the two exponents based on the
sign of the result. When EBl is greater than EAl, operand

Inversion and sticky expansion unit 24 determines whether
an inversion of either of the operands is appropriate based on
the EFFECTIVE OPERATION signal received from opera
tion unit 24, and inverts one or both of the operands based on
the determination. An inversion of one of the operands may,
for example, be appropriate in the case that the effective
operation is a subtraction. In addition, inversion and sticky
expansion unit 24 may perform an expansion of a "sticky" bit

20 exchange unit 16 exchanges the operands (46).

to a 4-bit sticky digit based on its value and the effective
operation. As described in further detail below, the 4-bit 25

sticky digit represents an additional least significant digit that
is utilized to perform the rounding operation specified by the
ROUND input.

Significands CAS and CBS are passed from inversion and
sticky expansion unit 24 to binary adder/flag generation unit 30

26, which performs the necessary addition. In parallel with
the addition, binary adder/flag generation unit 26 computes
flag bits ("FLAG"), which are used by correction unit 28.
Although illustrated in integrated fashion, the binary adder
and the flag generation unit may be implemented separately. 35

Correction unit 28 adjusts the computed sum CRl of the
addition, based on the flag bits, the effective operation, and
CS, which represents the carry-outs of the sum digits.

Shift and round unit 32 determines whether the corrected
result CR2 needs to be shifted and rounded. Sign unit 30 40

determines the sign of the result (SR) in parallel with the
operation of shift and round unit 32. Output conversion unit

After exchanging the operands, or after converting the
operands to BCD in the case where no exchange is necessary,
alignment unit 18 aligns the significands CAZ and CB2 such
that their corresponding exponents are equal (48). As
described briefly above, aligmnent unit 18 determines the
largest number of digits by which significand CAZ can be
shifted toward the most significant digit. In one embodiment,
alignment unit 18 calculates the maximum number of digits
for the left shift of significand CAZ according to the equation:

Left-shift amount~min{EA2-EB2; X-M}, (1)

where EA2 and EB2 are the exponents of the potentially
exchanged operands, M is the index of the most significant
non-zero digit of significand CAZ, and Xis the index of the
most significant digit available for the operand. For example,
in a sixteen-digit implementation X equals seventeen.

Alignment unit 18 also determines if and by how many
digits to shift significand CB2 toward the least significant
digit in order to complete the alignment process. In one
embodiment, aligmnent unit 18 calculates the number of
digits for the right shift of significand CB2 according to the
equation:

Right-shift amount~max{EA2-EB2+M-X, 0}, (2)

where EA2 and EB2 are the exponents of the potentially
exchanged operands, M is the index of the most significant
non-zero digit of significand CAZ, and Xis the index of the

34 receives the output of shift and round unit 32, i.e., CR3 and
ER3, as well as the computed sign of the result (SR), and
converts the result to the specifications ofIEEE-7 54 or other 45

decimal floating-point format. Specifically, output conver
sion unit 34 encodes the results in accordance with the IEEE-
754 decimal encoding specification and outputs the encoded
decimal floating-point number, completing the decimal float
ing-point operation. 50

most significant digit available for the operand.

Processing unit 10 may be a microprocessor or coprocessor
for use within a laptop computer, general-purpose computer
or high-end computing system. Alternatively, processing unit

Alignment unit 18 may shift significand CAZ or both of the
significands CAZ and CB2 in parallel in accordance with the
calculated shift values. The significand that is associated with
the larger exponent, i.e., CAZ, is shifted toward the most

55 significant digit by the left-shift amount calculated and the
operand associated with the smaller exponent, i.e., CB2, is
shifted toward the least significant digit by the value right
shift amount calculated. Once shifted, the two significands

10 may be a microcontroller, application specific integrated
circuit (ASIC) or other component. Moreover, processing
unit 10 may be implemented as a single integrated circuit in
which adder 12 constitutes only a portion of the implemented
functionality. Alternatively, adder 12 may be implemented in
one or more stand-alone integrated circuits. Further, compo
nents of processing unit 10 and adder 12 may be implemented 60

as discrete combinatorial logic, logic arrays, microcode, firm
ware or combinations thereof.

FIGS. 2A and 2B illustrate a flow diagram illustrating
exemplary operation of a floating-point adder, such as adder
12 of FIG. 1, that performs floating-point arithmetic in accor
dance with the techniques described herein. Initially, adder 12
and, more particularly, input conversion unit 14 receives two

have associated exponents that are equal.

Alignment unit 18 may shift the significands using, for
example, barrel shifters. In order to produce the same result
that would be obtained if the addition was performed using
infinite precision and then rounded, the alignment unit 18
may include a 4 -bit guard buffer on the most significant side

65 of CAZ as well as a 4-bit round digit buffer and a 1-bit sticky
bit buffer on the least significant digit side ofCB2. Alignment
unit 18 shifts any non-zero digit through the round digit buffer

US 7,546,328 B2
7

and into the sticky bit buffer, which are later used for round
ing. The sticky bit is set to one if any non-zero digits are right
shifted past the round digit.

Excess-3 conversion unit 20 receives aligned significands
CA3 and CB3 and converts the significands to an excess-3 5

decimal encoding (50). Excess-3 conversion unit 20 may, for
example, add a constant value of 3 to each digit of both
operands. In one embodiment, excess-3 conversion unit 20
may convert a given 4-bit BCD number 'abed' to the corre
sponding excess-3 number 'wxyz' using the following equa- 10

tions:

w=a 'bd+a 'bc+abc' (3)

x=a 'bc'd'+b 'c'd+a'b 'c (4)
15

y~b 'c'd'+a'c'd'+a 'cd (5)

z=b 'c'd'+a 'c'd'+a'cd' (6)

While aligmnent unit 18 aligns the significands and
20

excess-3 conversion unit 20 converts the aligned significands
to excess-3, operation unit 22 determines the effective opera
tion based on the operands' signs (SA4 and SB4) and the
operation input ("OPERTION") (52). Operation unit 18 also
determines whether the sign of the final result should be

25
reversed (54). In this particular implementation only two
effective operations are necessary; addition and subtraction.
The techniques of the invention, however, may be extended to
include other arithmetic operations. TABLE 1 illustrates the
output signals (EFFECTIVE OPERATION and REVERSE)

30
produced by operation unit 18 based on the sign inputs, i.e.,
SA4 and SB4, and the OPERATION input.

TABLE 1

8
of the result. In addition, one extra bit is needed on the most
significant digit side of the result to a hold a 1-bit carry-out.
The extra bit to hold the carry-out is placed in a position
toward the most significant digit of the extra buffer. FIG. 2C
shows the formats of input significands received by binary
adder/flag generation unit 26 and their resulting sum.

In parallel with the addition, binary adder/flag generation
unit 26 computes flag bits (62). The flag bits indicate the most
significant bit within sum CRl to which a carry will propagate
as a result of adding one to CRl. In one embodiment, the flag
bits take the form of a string of ones followed by a string of
zeros, where the string of ones begins with the least signifi
cant bit of the sum CRl and continues until the first zero bit of
the sum CRl. In other words, the flag bits indicate the string
of bits through which a carry would propagate if added to the
least significant bit of the sum CRl. For example, the flag bits
that correspond to the binary sum '1111 1011' are '0000
0111,' indicating that a carry would propagate to the third
least significant bit of the sum CRl.

Correction unit 28 uses the sum, flag bits and digit carry
outs generated by binary adder/flag generation unit 26 to
adjust the result of binary adder/flag generation unit 26 (64).
Additionally, the adjustment made by correction unit 28
depends on the effective operation determined by operation
unit 22. Correction unit 28 may, for example, include two
different rules; one that applies when the effective operation
is an addition and one that applies when the effective opera
tion is a subtraction. In one exemplary correction rule for an
addition effective operation, correction unit 28 determines
where digit carry-outs occur during the addition performed
by binary adder 26 and then adjusts each sum digit where
there is no digit carry-out by subtracting a corrective value of
six from each sum digit. Performing this correction compen
sates for the initial value of the three that was added to each

-----"o""'u'-"T-"-P""U"""T""'s ____
35 digit in both significands.

INPUTS

SA4 SB4 OPERATION

EFFECTIVE

OPERATION REVERSE

In one exemplary correction rule for a subtraction opera
tion, correction unit 28 determines whether the final carry-out
is a one. When the final carry-out is a one, the final result is

+ + Add

+ + Subtract

+ Add
+ Subtract

+ Add
+ Subtract

Add
Subtract
Subtract

Add
Subtract

Add

No
No
No
No
Yes
Yes

40
positive and two corrective measures are taken. First, the
flagged bits are inverted. After this, a corrective factor of six
is subtracted from each sum digit where the digit carry-out
XO Red with the digit flag carry-out gives a result of zero. A
digit flag carry-out is the most significant bit (MSB) of the

Add Add Yes 45
four flag bits corresponding to each digit of the result.

Subtract Subtract Yes

Next, inversion and sticky expansion unit 24 determines
whether the effective operation is a subtraction (56) and, if so,
inverts one of the significands (58). If the input operands have 50

been exchanged by operand exchange unit 16, the significand
that inversion and sticky expansion unit 24 inverts must
reflect that previous exchange. In addition, inversion and
sticky expansion unit 24 performs an expansion of the sticky
bit to a 4-bit digit representation based on its value and the 55

effective operation (59).
Binary adder/flag generation unit 26 performs the neces

sary addition on significands CAS and CBS received from
inversion and sticky expansion unit 24 (60). The addition
performed by binary adder/flag generation unit 26 accounts 60

for the 4-bit guard buffer on the most significant digit side of
the left-shifted significand as well as the 4-bit round digit and
sticky digit buffers on the least significant digit side of the
right-shifted significand. In other words, the result from
binary adder/flag generation unit 26 includes at least one extra 65

buffer on the most significant digit side of the result as well as
a round digit and sticky digit on the least significant digit side

When the final carry-out is a zero, the final result is negative
and again two corrective measures are taken. First, all of the
sum bits are inverted, and secondly, a corrective factor of six
is subtracted from all places that have a digit carry-out of one.

Next, shift and round unit 32 determines whether either the
carry out from the binary addition or the 4-bit guard buffer on
the most significant side of the result is occupied by a non
zero value (66). If either of the two extra buffers contains a
non-zero value, shift and round unit 32 performs a right-shift
of either one or two digits in order to bring the result back into
the representable range of coefficients, which in this case
entails a precision of sixteen digits (67). If the carry-out
contains a non-zero value, for example, shift and round unit
32 right-shifts CR2 by two digits. Shift and round unit 32 also
adjusts the final exponent in conjunction with shifting the
result significand. An additional right-shift of one digit may
need to be performed to account for a possible carry-out from
rounding. This only occurs when the shifted significand is all
nines and a one is added to it for rounding. When performing
the right shifts, any non-zero digit shifted passed the sticky
digit or an initial non-zero sticky digit, causes the sticky bit,
which is used for rounding, to be set to one.

US 7,546,328 B2
9

To maintain accuracy, shifting is done before rounding. If
any of the guard digit, round digit or sticky bit are non-zero,
shift and round unit 32 rounds the result (68, 69). Shift and
round unit 32 may support a number of rounding modes,
including a round to nearest even number, round to nearest up,
round to nearest down, round toward positive infinite, round
toward negative infinity, round toward zero, and round away
from zero. A 3-bit code may be used to specify the rounding
mode. For all rounding modes the 4-bit round digit and the
1-bit sticky bit (collective, "RS") are truncated and the trun
cated result is either incremented by one or left unchanged.
The increment operation is performed in a carry-lookahead
fashion, in which a parallel-prefix tree first determines the
number of consecutive nines starting at the least significant
digit of the shifted result. Then, this information is used to
quickly generate a value that is the truncated result plus one.
The increment condition for each of the rounding modes is
described in TABLE 2, wherein RS indicates a 4-bit round
digit and a 1-bit sticky, R indicates a 4-bit round digit, LSD
indicates the least significant digit of the result, and S indi
cates a 1-bit sticky digit.

ROUND MODE

Round to nearest even
Round to nearest up
Round to nearest down
Round toward positive infinity
Round toward negative infinity
Round toward zero
Round away from zero

TABLE2

INCREMENT CONDITION

R > 5 I (R - 5 & LSD[0] - 1 I S !- 0)
RS>- 50
RS >5 0
(result>- 0) & (RS !- 0)
(result< 0) & (RS !- 0)
None
RS !-0

10
Next, alignment unit 18 left shifts CAZ and right shifts

CB2, as necessary, in parallel until the exponents are aligned.
In particular, alignment unit 18 performs left shifts CAZ the
minimum ofEA2-EB2 and X-M in accordance with equa-

5 tion 1. For example, alignment unit 18 may determines
whether EA2-EB2 is less than or equal to X-M (82). When
EA2-EB2 is less than or equal to X-M, alignment unit 18
shifts CAZ toward the most significant digit by EA2-EB2
digits (84). However, when EA2-EB2 is greater than X-M,

10 alignment unit 18 shifts CAZ toward the most significant digit
by X-M digits (86). During the left shift, aligriment unit 18
may shift a most significant digit (MSD) ofCA2 into the extra
4-bit guard buffer (88). The existence of the extra guard buffer
toward the most significant digit of the most significant digit

15 position allows adder 12 to produce the same result that
would be produced if the result was computed to infinite
precision and then rounded.

In parallel with the left shifting of CAZ, alignment unit 18
right shifts CB2 when necessary based on the maximum of

20 EA2-EB2 and M-X. For example, aligriment unit 18 may
initially determine whether EA2-EB2+M-X is greater than
zero (90). When EA2-EB2+M-X is greater than zero, align
ment unit 18 shifts CB2 toward the least significant digit by
EA2-EB2+M-X bits (92). During the right shift of CB2,

25 alignment unit 18 may shift one or more digits into extra
buffers toward the least significant digit of the least significant
digit (LSB) position CB2 (96). For example, aligriment unit
18 may include a round digit buffer and a sticky bit buffer
toward the least significant digit of the LSB position ofCB2,

30 and shift digits into either or both of the buffers. When EA2-
EB2+M-X is not greater than zero, aligriment unit 18 does
not shift CB2 (94). In this case, the left-shift operation of
significand CAZ is sufficient to align the two significands and
CB2 need not be shifted.

Sign unit 30 determines the sign of result (SR) in parallel
with the operation of shift and round unit 32 (70). Sign unit 30
receives the EFFECTIVE OPERATION signal and the 35

REVERSE signal from operation unit 22 and a COUT signal
from binary adder 26. Based on these inputs, sign unit 30
determines the sign of the result according to TABLE 3.

After the significands are shifted such that both signifi
cands have the same binary exponent, aligriment unit 18
outputs the aligned significands to excess-b 3 conversion unit
20 and outputs the common exponent to shift and round unit
32 (98).

TABLE3

INPUTS

EFFECTNE
OPERATION REVERSE COUT

Add No 0
Add No
Add Yes 0
Add Yes

Subtract No 0
Subtract No
Subtract Yes 0
Subtract Yes

OUTPUT

SIGN OF
RESULT (SR)

+
+

+
+

40

45

50

As an example, consider operation of alignment unit 18
upon receiving the following input:

CA2-0500 0000 0000 0000,

CB2-0000 0000 0004 3720,

Taking into account the available significand buffers (i.e., the
4-bit guard buffer toward the most significant digit position of
CAZ and the 4-bit round digit buffer toward the least signifi-

Finally, output conversion unit 34 inputs the output of shift
and round unit 32, i.e., CR3 and ER3, as well as the computed
sign of the result (SR), and converts the input to the decimal
specifications of IEEE-754 or other decimal floating-point
format (72). Although the flow diagrams of FIGS. 2A and 2B
illustrate progression of a single decimal arithmetic operation
sequentially, adder 12 may be pipelined so that output con- 60

version unit 34 produces a complete result each clock cycle
once the pipeline is fully primed.

cant digit position of CB2) and the sticky bit buffer toward the
least significant digit of the round digit buffer, the two input

55 significands are represented as:

FIG. 3 is a flow diagram illustrating exemplary operation of
aligriment unit 18 in further detail. Initially, alignment unit 18
receives significands CAZ and CB2 as well as binary expo
nents EA2 and EB2 associated with CAZ and CB2, respec
tively (80), from operand exchange unit 16.

CA2-0 0500 0000 0000 0000

CB2-0000 0000 0004 3720 00

Using equation (1), alignment unit 18 determines that CAZ
must be left-shifted by two digits:

left-shift amount-min{ 6-0, 17-15 }-2.

In parallel, alignment unit 18 uses equation (2) to deter-
65 mine that CB2 must be right-shifted by 4 digits:

right-shift amount-max { 6-0+15-17, 0 }cc4.

US 7,546,328 B2
11 12

the techniques of the invention. In the first example, correc
tion unit 28 adjusts the output of binary adder 26 during the
addition of floating-point numbers 953 and 642. The inputs to
binary adder 26 and the result output from binary adder 26 for

Alignment unit 18 shifts CAZ left toward the most signifi
cant digit and and CB2 right toward the least significant digit
by their respective amounts. In particular, CAZ is shifted
toward the most significant digit by 2 digits and CB2 is shifted
toward the least significant digit by 4 digits. The resulting
significands (CA3 and CB3) and their common binary expo
nent (ER3) produced by alignment unit 18 are illustrated
below:

5 an addition operation are illustrated below:

CA3~5 0000 0000 0000 0000,
10

CB3~oooo 0000 0000 0004 31, and

The shifting of the significands does not affect the result 15

unless non-zero digits are shifted out of the 64-bit (16-digit)
significand field. In this case, one non-zero digit is shifted out
of CB3. To compensate for shifting these digits out of the
significand field, however, these digits are shifted through the
round digit buffer and sticky bit buffer, which are later used 20

for rounding.
FIG. 4 is a flow diagram illustrating exemplary operation of

correction unit 28 of FIG. 1 in further detail. Initially, correc
tion unit 28 receives a sum of the aligned significands and flag
bits from binary adder 26 as well as the effective operation bit 25

from operation unit 22 (100).
Next, correction unit 28 determines whether the operation

is an addition based on the effective operation signal from
operation unit 22 (102). When the effective operation is an
addition, correction unit 28 determines whether there is a 30

digit carry-out for each of the digits (104). Correction unit 28
subtracts a corrective value of six from each of the sum digits
that does not have a digit carry-out (106). Correction unit 28
may, for example, add 1010 to each of the sum digits that does
not have a digit carry-out, which effectively subtracts a cor- 35

rective value of six. When a resultant digit has a digit carry
out, correction unit 28 does not perform any adjustment on
the digit.

When the effective operation is a subtraction, correction
unit 28 determines whether the carry-out of the most signifi- 40

cant digit is a 1 (110). When the carry-out of the most signifi
cant digit is a 1, the final result must be positive and two
corrective measures are taken. First, correction unit 28 inverts
flagged sum bits, i.e., sum bits that correspond to set flag bits
(112). Next, correction unit 28 performs an exclusive OR 45

(XOR) operation with the sum digit's carry-out and the flag
carry-out corresponding to that digit (114). Correction unit 28
determines, for each sum digit, whether the XOR operation of
the sum digit's carry-out and the flag carry-out for that digit
gives a result of zero (116). Correction unit 28 subtracts a 50

corrective value of six from each of the sum digits for which
the XOR operation of the sum digit carry-out and the flag
carry-out results in a zero (118). When the XOR operation of
the sum digit's carry-out and the flag carry-out for that digit
does not have a zero result, correction unit 28 does not per- 55

form any adjustment on the sum digits.
When the carry-out of the most significant digit is not a 1,

the final result must be negative and two corrective measures
are needed. First, correction unit 28 inverts all the sum bits
(122). Correction unit 28 then determines which of the sum 60

digits have a digit carry-out (124). For each digit having a
digit carry-out, correction unit 28 subtracts a corrective value
of six from the corresponding sum digit (126). Correction unit

CAS = 1100 1000 0110 [953]

+CBS= 1001 0111 0100 [642]

CR!= 0101 1111 1011

Cout = 1000 0000 0100

CS= 0 0

CRl is the result of the addition of significands CAS and CBS.
Cout represents the carry-outs of each of the bits, while CS
represents the carry-outs of the sum digits.

As described above, correction unit 28 determines whether
there is a digit carry-out for each of the digits. As illustrated by
the value of '1' in Cs, only the most significant digit of the
three digits has a digit carry-out. Correction unit 28 subtracts
a corrective value of six from each of the sum digits that does
not have a digit carry-out, i.e., the two least significant digits
in this case, to produce a corrected result (CR2).

CR!=

+Correction=

0101 1111 1011

0000 1010 1010

CR2 = 10101 1001 0101 [1595]

In a second example, correction unit 28 adjusts the output
of binary adder 26 during the subtraction of floating-point
numbers 548 and 169. The inputs to binary adder 26, the
inverted version of significand CBS, i.e., CBS', the bit carry
outs (Cout), the sum digit carry-outs (Cs), the flag bits, the
carry-outs of the flag bits (Cf), and the result output from
binary adder 26 (CRl) for the subtraction operation are illus
trated below:

CAS = 1000 0111 1011 [548]

+CBS= 0100 1001 1100 [169]

CBS'= 1011 0110 0011

CR!= 0011 1101 1110

Cout= 1000 0110 0011

Cs= 0 0

Flag = 0000 0000 0001

Cf= 0 0 0

As described above with respect to a subtraction operation,

28 does not perform any adjustment on the sum digits that do
not have a digit carry-out.

The following examples demonstrate exemplary operation
of correction unit 28 making corrections in accordance with

correction unit 28 determines whether the sum digit carry-out
of the most significant digit is a' 1.' When the carry-out of the
most significant digit is a '1,' as it is in this case, correction
unit 28 inverts flagged sum bits of the result CRl. Note that
the only flagged sum bit is the least significant digit, which

65 was inverted to give the adjusted result shown below.

CR! adj~00l 11101 1111

US 7,546,328 B2
13

Correction unit 28 then determines, for each sum digit,
whether the XOR operation of the sum digit carry-out (Cs)
and the flag carry-out (Cf) gives a result of zero and subtracts

14
shifts the corrected result CR2 by two digits (132). In particu
lar, shift and round unit 32 shifts the value contained in the
carry-out buffer two digits in the direction of the least signifi-

a corrective value of six from each of the sum digits for which
the XOR operation of the sum digit carry-out and the flag 5

carry-out results in a zero. In the illustrated example, the XOR
of the two least significant digits results in a zero and thus the
correction is as illustrated below.

cant digit.
When the carry-out buffer holds a zero, shift and round unit

32 determines whether the extra buffer toward the least sig-
nificant digit of the carry-out buffer is non-zero (134). When
the extra buffer is not a non-zero value, shift and round unit 32
shifts the corrected result (CR2) one digit toward the least

CR! adj= 0011 1101 1111

+Correction= 0000 1010 1010

CR2 = 0011 0111 1001 [379]

In a third example, correction unit 28 adjusts the output of
binary adder 26 during the subtraction of floating-point num
bers 527 and 926. The inputs to binary adder 26, the inverted
version of significand CBS, i.e., CBS', the bit carry-outs
(Cout), the sum digit carry-outs (Cs), and the result output
from binary adder 26 (CRl) for the subtraction operation are
illustrated below:

CAS = 1000 0101 1010 [527]

+CBS= 1100 0101 1001 [926]

CBS'= 0011 1010 0110

CR!= 1100 0000 0000

Cout= 0011 1111 1110

Cs= 0

The carry-out of the most significant digit is a not' 1' in this
case. Thus, correction unit 28 inverts all the sum bits of the
result CRl as illustrated by CRl adj below

CR! adj~00l l 11111111

Correction unit 28 subtracts a corrective value of six from
each of the sum digits with carry-out. In the illustrated
example, the two least significant digits have a carryout and
thus the correction is as illustrated below.

CR! adj= 0011 1111 1111

+Correction= 0000 1010 1010

CR2 = 0011 1001 1001 [-399]

FIG. 5 is a flow diagram illustrating exemplary operation of
shift and round unit ofFIG.1 in further detail. In general, once
the addition is complete, the result may need to be adjusted in
the case that either of the two extra buffers on the most
significant side of the result is occupied by values other than
zero. In this case, a right-shift of either one or two digits will
be executed in order to bring the result back into the repre
sentable range of coefficients, which in this case entails a
precision of sixteen digits. As was the case for significand
alignment, the final exponent is adjusted in conjunction with
shifting the result significand.

Specifically, shift and round unit 32 initially receives the
result (CR2) from correction unit 28 and determines whether
a carry-out buffer of the result is non-zero (130). When the
carry-out buffer is non-zero, shift and round unit 32 right

10 significant digit (136). When the extra buffer holds a zero,
shift and round unit 32 performs no shift on the corrected
result (137).

If shift and round unit 32 performs a shift of the corrected
result, shift and round unit 32 must also adjust the final

15 exponent accordingly. Specifically, shift and round unit 32
must increment the final exponent by two when result is
shifted two digits (139) and increment the final exponent by
one when the result is shifted by one digit (138).

Next, shift and round unit 3 2 truncates the round and sticky
20 digit buffers (140). Shift and round unit 32 determines which

rounding mode shift and round unit 32 is in (142), and deter
mines whether an increment condition associated with the
rounding mode is met (144). As previously described, shift
and round unit 32 may support a number of rounding modes,

25 some of which are listed in TABLE 2 above.

30

When the increment condition associated with the round
ing mode is not met, the truncated result is used. When the
increment condition is met, shift and round unit 32 deter
mines the number of consecutive nines starting at the least
significant digit (148), and generates a value equal to the
truncated result plus one using this information (150). The
increment operation may be performed in a carry-lookahead
fashion in which a parallel-prefix tree determines the number
of consecutive nines starting at the least significant digit of the

35 shifted result.
Finally, shift and round unit 32 determines whether there is

a carry-out on the rounded result (152). This only occurs
when the shifted significand is all nines and a one is added to
it for rounding. When there is a carry-out on the rounded

40 result, shift and round unit 32 shifts the rounded result one
digit toward the least significant digit and increments the
exponent by one (154).

Simulation Results
The described decimal floating-point adder was modeled

45 in Verilog at the register transfer level. Functional testing was
performed on several comer cases as well as on over one
million random cases. In particular, the signs, operations,
rounding modes, and significand values used during the test
were randomly generated. The exponents were generated

50 with a weighted algorithm so that there was a very small
chance that either operand would become zero after align
ment.

Initial synthesis testing and comparison has been per
formed using a 0.11 micron CMOS standard cell library.

55 Using this library, the design was first synthesized as a single
combinational block without any optimization flags set to
identify the delay contributions of each component in the
overall design.

FIG. 6 is a graph that illustrates the contributions that each
60 component provides to the critical path delay of the purely

combinational (non-pipelined) design. It should be noted that
the unpacking and operand exchange as well as the conver
sion to excess-3, inversion, and sticky expansion are com
bined in this figure due to their delay minimal contributions.

65 It should also be noted that while the significand alignment
process consumes approximately 42% of the critical path
delay, roughly 84% of this time, or 36% overall, is spent

US 7,546,328 B2
15

determining the shift amounts, while the remainder is spent
actually performing the shifts.

It is estimated that, in the simulated embodiment, the com
binational adder portion of the design has a critical path delay
of 0.6 ns. This estimate has been supported though the syn- 5

thesis of a Cogged-Stone adder block by itself.

16
shifting the first significand and the second significand

when the first exponent does not equal the second expo
nent; and

outputting the equal exponent value as a function of the
shifting.

5. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises shifting a most
significant digit of the first significand into a guard buffer.

6. The method of claim 1, wherein aligning the first sig
lO nificand and the second significand comprises:

In addition to evaluating the purely combinational design
with very low effort synthesis, several higher effort pipelined
designs, all of which are optimized for delay, have been
evaluated. More specifically, embodiment of the decimal
floating-point adder has been synthesized into pipelines of
length one (no pipelining), two, three, four, and five. These
synthesized configurations have provided insight into the
tradeoffs between critical path delay, area, and latency for
various pipeline depths of our design. FIG. 7, for example, 15

illustrates critical path delay versus pipeline depth for the
synthesized embodiments. FIG. 8 plots the corresponding
area for each synthesized pipelined embodiment for the par
ticular 0.11 micron CMOS standard cell library.

The results provided in FIGS. 7 and 8 show that in the 20

simulated embodiments a purely combinational decimal
floating-point adder has a critical path delay of3.83 ns and an
area of 0.148 mm2

, while an embodiment with five pipeline
stages has a critical path delay of0.98 ns and a corresponding
area of0.199 mm2 .As one example, input conversion unit 14 25

and operand exchange unit 16 may be implemented in a first
stage. Alignment unit 18, excess-3 conversion unit 20 and
inversion and sticky expansion unit 24 may be implemented
in a second stage. Binary adder/flag generation unit may be
implemented in a third stage. Correction unit 28, sign unit 32, 30

and shift and round unit 32 may be implemented in a fourth
stage, while output conversion unit 34 may be implemented in
a fifth stage. More or less registers may be utilized to increase
or decrease the number of stages within the pipeline.

Various embodiments of the invention have been 35

described. These and other embodiments are within the scope
of the following claims.

The invention claimed is:
1. A method comprising:
receiving a first operand and a second operand with an 40

alignment circuit within a processing circuit, wherein
the first operand includes a first significand and a first
exponent associated with a first decimal floating-point
number, and the second operand includes a second sig
nificand and a second exponent associated with a second 45

decimal floating-point number;
aligning the first significand and the second significand

with the alignment circuit of the processing circuit so
that the first exponent and the second exponent have an
equal value, wherein aligning the first significand and 50

the second significand comprises shifting the first sig
nificand in parallel with shifting the second significand;
and

computing, with the processing circuit, a resultant decimal
floating-point number from the shifted first and second 55

significands and the equal value of the first exponent and
the second exponent.

2. The method of claim 1, wherein computing the resultant
decimal floating-point number comprises computing an
arithmetic summation of the first operand and the second 60

operand.

computing a number of digits to shift the first significand
toward a most significant digit; and

shifting the first significand toward the most significant
digit by the computed number of digits.

7. The method of claim 6, wherein computing the number
of digits to shift the first significand is determined according
to the equation:

left-shift amount ~min{EA1-EB2; X-M},

where EAi and EB2 represents the first and second exponents
prior to alignment, respectively, M is an index of a most
significant non-zero digit of the first significand, and Xis an
index of the most significant digit available for the first sig
nificand.

8. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises shifting the
second significand toward a least significant digit to align the
first and second significands.

9. The method of claim 8, further comprising shifting at
least one digit of the second significand into a sticky bit
buffer.

10. The method of claim 8, further comprising shifting at
least one bit of the second significand into a round digit buffer.

11. The method of claim 8, further comprising:
calculating a number of digits to shift the second signifi

cand to align the first and second significands; and
shifting the second significand toward the least significant

digit by the calculated number of digits.
12. The method of claim 11, wherein calculating the num

ber of digits to shift the second significand comprises calcu
lating the number of digits to shift the second significand
according to the equation:

right-shift amount ~max{EA1-EB2+M-X, 0},

EAi and EB2 are the first and second exponents, respectively,
M is the index of a most significant non-zero digit of first
significand, and X is the index of the most significant digit
available for the first significand.

13. A method comprising:
processing with an adder circuit a first significand associ

ated with a first decimal floating-point number and a
second significand associated with a second decimal
floating-point number to produce a resultant significand;

generating one or more flag bits with a flag generation
circuit to indicate a bit within the resultant significand to
which a carry propagates as a result of the addition;

adjusting the resultant significand with a correction circuit
to produce a corrected significand based on the flag bits;
and

outputting, with the adder circuit, a resultant decimal float
ing-point number from the corrected significand.

3. The method of claim 1, wherein computing the resultant
decimal floating-point number comprises performing an
arithmetic subtraction with the first operand and the second
operand.

14. The method of claim 13, wherein generating one or
65 more flag bits comprises:

4. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises:

identifying one or more digits within the resultant signifi
cand at which carry-outs occur due to the addition; and

US 7,546,328 B2
17

generating the flag bits to include a string of ones and a
string of zeros, wherein each of the ones corresponds to
a respective one of the bits to which a carry is propa
gated.

18
26. The decimal floating-point adder circuit of claim 24,

wherein the correction circuit adjusts the digits of the result
ant significand based on the carry-outs and the flag bits when
an effective operation performed by the adder circuit is arith-

15. The method of claim 14, wherein adjusting the resultant
significand comprises adjusting the digits of the resultant
significand for which carry-outs occur with a corrective value
when an effective operation performed by the adder is arith
metic addition.

5 metic subtraction.
27. The decimal floating-point adder circuit of claim 26,

wherein the correction circuit inverts each digit of the result
ant significand when a carry-out of the most significant digit
is zero, and subtracts a corrective value of six from each digit

16. The method of claim 15, wherein adjusting the resultant
significand comprises subtracting the corrective value of six
(0110 binary) from each digit for which a carry-out does not
occur.

10 of the result that has digit carry-out of one.
28. The decimal floating-point adder circuit of claim 26,

wherein the correction circuit inverts bits of the result that are
flagged by the flag bits when a carry-out of a most significant
digit of the resultant significand is non-zero, performs an 17. The method of claim 16, wherein subtracting a correc

tive value of six (01 IO binary) comprises adding a value often
(1010 binary) to each digit for which a carry-out does not
occur.

15 exclusive OR (XOR) operation on each carry-out for the
digits of the resultant significand and the corresponding flag
bit, and subtracts a corrective value of six from each digit of
the resultant significand where the result of the XOR opera-18. The method of claim 14, wherein adjusting the resultant

significand comprises adjusting the digits of the result of the
addition based on the carry-outs and the flag bits when an 20

effective operation performed by the adder is arithmetic sub
traction.

19. The method of claim 18, further comprising:
inverting each bit of the resultant significand when a carry

out of the most significant digit is zero; and
subtracting a corrective value of six from each digit of the

result that has digit carry-out of one.
20. The method of claim 18, further comprising:

25

inverting bits of the result that are flagged by the flag bits
when a carry-out of a most significant digit of the result- 30

ant significand is non-zero;
performing an exclusive OR (XOR) operation on each

carry-out for the digits of the resultant significand and
the corresponding flag bit; and

35
subtracting a corrective value of six from each digit of the

resultant significand where the result of the XOR opera
tion is a zero.

21. The method of claim 13, wherein processing with the
adder circuit comprises processing with a binary adder cir-

40
cuit.

22. A decimal floating-point adder circuit comprising:
a binary adder circuit that adds a first significand associated

with a decimal first floating-point number and a second
significand associated with a second decimal floating- 45
point number to produce a sum in binary form;

a flag generation circuit that outputs one or more flag bits to
indicate a bit within resultant significand to which a
carry propagates as a result of the addition; and

a correction circuit that adjusts the sum to produce a cor- 50
rected significand based on the flag bits.

tion is a zero.
29. A method comprising:
adding, with an adder circuit of a processing circuit, a first

significand associated with a first decimal floating-point
number and a second significand associated with a sec
ond decimal floating-point number to produce a result
ant significand, wherein the first and second significands
have a number of bits to store a plurality of decimal
digits and the resultant significand has a number of bits
to store the decimal digits plus a guard buffer to store an
additional decimal digit and an additional bit to store a
most significant carry-out;

shifting the resultant significand toward a least significant
digit when either of the carry-out or the guard buffer
contains a non-zero value; and

outputting, with the processing circuit, a resultant decimal
floating-point number based on the shifted resultant sig
nificand.

30. The method of claim 29, wherein shifting the resultant
significand comprises:

shifting the resultant significand of the addition two digits
toward the least significant digit when the carry-out
buffer contains a non-zero value; and

shifting the result of the addition one digit toward the least
significant digit when the carry out buffer contains a zero
and the guard buffer contains a non-zero value.

31. The method of claim 29, further comprising increment
ing an exponent associated with the resultant significand in
parallel with the shift.

32. The method of claim 29, further comprising:
identifying a rounding mode based on a rounding mode

identifier; and rounding the resultant decimal floating
point number in accordance with the identified rounding
mode.

23. The decimal floating-point adder circuit of claim 22,
further comprising an output conversion circuit to convert the
sum to decimal form and output a resultant decimal floating
point number based on the corrected significand. 55

33. The method of claim 29, wherein the resultant signifi-
cand has an additional number ofleast significant bits to store
a round digit and a sticky bit, and wherein rounding the
resultant decimal floating-point number comprises:

24. The decimal floating-point adder circuit of claim 23,
wherein the flag generation circuit identifies one or more
digits within the resultant significand at which carry-outs
occur, and generates the flag bits to include a string of ones
and a string of zeros, wherein each of the ones corresponds to 60

a respective one of the identified bits at which carry is propa
gated.

25. The decimal floating-point adder circuit of claim 24,
wherein the correction circuit adjusts the digits of the result
ant significand for which carry-outs occur with a corrective 65

value when an effective operation performed by the adder
circuit is arithmetic addition.

truncating the round digit and the sticky bit from the result
ant significand; and

determining whether to increment the truncated resultant
significand based on the truncated round digit and the
sticky bit.

34. The method of claim 33, further comprising increment
ing the truncated result by one when the round digit and the
sticky bit satisfy an increment condition of the rounding
mode.

US 7,546,328 B2
19

35. The method of claim 32, further comprising:
determining whether rounding of the result produced a

carry-out; and
shifting the rounded resultant decimal floating-point num

ber by one digit toward the least significant digit when 5

the rounding produced the carry-out.
36. A processing circuit comprising:

20
round unit truncates the round digit and the sticky bit from the
resultant significand and determines whether to increment the
truncated resultant significand based on the truncated round
digit and the sticky bit.

42. The processing circuit of claim 41, wherein the round
ing circuit increments the truncated result by one when the
round digit and the sticky bit satisfy an increment condition of
the rounding mode.

43. The processing circuit of claim 40, wherein the shifting
1 o circuit determines whether the rounding produced a carry-out

and shifts the rounded resultant significand by one digit
toward the least significant digit when the rounding produced

a binary adder circuit that adds a first significand associated
with a first floating-point number and a second signifi
cand associated with a second floating-point number to
produce a resultant significand, wherein the first and
second significands have a number of bits to store a
plurality of decimal digits and the resultant significand
has a number of bits to store the decimal digits plus a
guard buffer to store an additional decimal digit and an 15

additional bit to store a most significant carry-out; and
a shift circuit that shifts the resultant significand toward a

least significant digit when either the carry-out or the
guard buffer contains a non-zero value.

37. The processing circuit of claim 36, further comprising 20

an output conversion circuit to output a resultant decimal
floating-point number based on the shifted resultant signifi
cand, resultant exponent, and resultant sign.

38. The processing circuit of claim 36, wherein the shift
circuit shifts the resultant significand of the addition two 25

digits toward the least significant digit when the carry-out
buffer contains a non-zero value, and shifts the result of the
addition one digit toward the least significant digit when the
carry out buffer contains a zero and the guard buffer contains
a non-zero value.

39. The processing circuit of claim 36, wherein the shift
circuit increments an exponent associated with the resultant
significand in parallel with the shift.

40. The processing circuit of claim 36, further comprising

30

a round circuit identifies a rounding mode based on a round- 35

ing mode input and rounds the resultant significand in accor
dance with the identified rounding mode.

41. The processing circuit of claim 40, wherein the result
ant significand has an additional number of least significant
bits to store a round digit and a sticky bit, and wherein the

a carry-out.
44. A method comprising:
receiving, with an adder circuit of a processing circuit, a

first decimal floating-point number and a second deci
mal floating-point number with a decimal floating-point
adder;

aligning, with an aligmnent circuit of the processing cir
cuit, a first significand associated with the first floating
point number and a second significand associated with
the second floating-point number such that a first expo
nent associated with first floating-point number and a
second exponent associated with the second floating
point number are equal;

adding, with the adder circuit, the aligned first and second
significands using a binary adder to produce a resultant
significand;

correcting, with the processing circuit, the resultant signifi
cand of the binary addition of the first and second sig
nificand using identified locations of carry-outs and gen
erated flag bits;

rounding, with the processing circuit, the resultant signifi
cand in accordance with a specified rounding mode; and

outputting, with the processing circuit, a resultant decimal
float-point number based on the resultant significand
and the equal exponent for the aligned first and second
significands.

* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

