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(57) ABSTRACT 

A decimal floating-point adder is described that performs 
addition and subtraction on decimal floating-point operands. 
The decimal floating-point adder includes an alignment unit 
that receives a first floating-point number and a second float
ing-point number, and aligns significands associated with the 
floating-point numbers such that exponents associated with 
the floating-point numbers have equal values. The decimal
floating-point adder further includes a binary adder that adds 
the aligned significands. The floating-point adder includes a 
correction unit and an output conversion unit to produce a 
final resultant decimal floating-point number. The decimal 
floating-point adder may be pipelined so that complete result
ant decimal floating-point numbers may be output each clock 
cycle. 

44 Claims, 10 Drawing Sheets 
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DECIMAL FLOATING-POINT ADDER 

This application claims the benefit of U.S. Provisional 
Application Ser. No. 60/605,784, entitled "DECIMAL 
FLOATING-POINTADDER,"filedAug. 31, 2004, the entire 5 

content of which is incorporated herein by reference. 

TECHNICAL FIELD 

The invention relates to computing devices and, more par- 10 

ticularly, to techniques for performing arithmetic operations 
within computing devices. 

BACKGROUND 

2 
point binary adders. As a result, the decimal adder and the 
techniques described herein may be especially suited for 
numerically intensive commercial applications. 

In one embodiment, a processor comprises a pipelined 
decimal-floating-point adder having a plurality of stages. The 
decimal-floating-point adder performs an arithmetic opera
tion on a first decimal floating-point number and a second 
decimal floating-point number and outputs a decimal float
ing-point result each clock cycle. 

In another embodiment, a processor comprises a decimal 
floating-point adder that performs an arithmetic operation on 
a first decimal floating-point number and a second decimal 
floating-point number and outputs a decimal floating-point 
number. The decimal floating-point adder includes an align-

15 ment unit having a first input to receive a first significand and 
a first exponent associated with the first floating-point num
ber, and a second input to receive a second significand and a 
second exponent associated with the second floating-point 
number. The alignment unit aligns the first significand and the 

Although most people use decimal arithmetic when per
forming manual calculations, computers typically only sup
port binary arithmetic in hardware. This is primarily due to 
the fact that modem computers typically only represent two 
logic values: zero and one. While it is possible to use these 
two logic values to represent decimal numbers, doing so is 
wasteful in terms of storage space and often computationally 
less efficient. For example, in binary, four bits can represent 
sixteen values; while in binary coded decimal (BCD), four 
bits only represent ten values. Since most computer systems 25 
do not provide hardware support for decimal arithmetic, num
bers are typically input in decimal, converted from decimal to 
binary, processed using binary arithmetic and then converted 
back to decimal for output. 

20 second significand so that the first exponent and the second 
exponent have an equal value. 

In spite of the current dominance of hardware support for 30 

binary arithmetic, there are several motivations that encour
age the provision of support for decimal arithmetic. First, 
applications that deal with financial and other real-world data 
often introduce errors since many common decimal numbers 
carmot be represented exactly in binary. For example, the 35 

decimal number "0.1" is a repeating fraction when repre
sented in binary. Second, people typically think about com
putations in decimal, even when using computers that operate 
only on binary representations, and therefore may experience 
what is perceived as incorrect behavior when processing deci- 40 

ma! values. Third, converting between binary and decimal 
floating-point numbers is computationally intensive. For 
example, conversion on modem processors may take thou
sands of processing cycles. 

In an effort to alleviate some of the problems that occur 45 

when a computer only supports binary arithmetic in hard
ware, several software packages and prograniming language 
extensions for decimal arithmetic have been developed. 
Although some of these packages are successful in eliminat
ing binary-to-decimal and decimal-to-binary conversion 50 

errors, the packages are often hundreds to thousands of times 
slower than binary operations implemented in hardware. 

SUMMARY 

In another embodiment, a method comprises receiving a 
first operand and a second operand with alignment unit within 
a processor. The first operand includes a first significand and 
a first exponent associated with a first decimal floating-point 
number, and the second operand includes a second signifi
cand and a second exponent associated with a second decimal 
floating-point number. The method further comprises align-
ing the first significand and the second significand with the 
alignment unit so that the first exponent and the second expo
nent have an equal value, and computing a resultant decimal 
floating-point number from the aligned first and second sig
nificands and the equal value of the first exponent and the 
second exponent. 

In another embodiment, a method comprises processing 
with an adder a first significand associated with a first decimal 
floating-point number and a second significand associated 
with a second decimal floating-point number to produce a 
resultant significand. The method further comprises generat
ing one or more flag bits with a flag generation unit to indicate 
a bit within resultant significand to which a carry will propa
gate as a result of the addition, adjusting the resultant signifi
cand with a correction unit to produce a corrected significand 
based on the flag bits, and outputting a resultant decimal 
floating-point number from the corrected significand. 

In another embodiment, a decimal floating-point adder 
comprises a binary adder that adds a first significand associ
ated with a decimal first floating-point number and a second 
significand associated with a second decimal floating-point 
number to produce a sum in binary form. The decimal float-
ing-pint adder further comprises a flag generation unit that 
outputs one or more flag bits to indicate a bit within resultant 
significand to which a carry will propagate as a result of the 

55 addition, and a correction unit that adjusts the sum to produce 
a corrected significand based on the flag bits. In general, the invention is directed to techniques for per

forming decimal floating-point arithmetic and, more particu
larly, decimal floating-point addition and subtraction. For 
example, a processing unit is described that includes a deci
mal floating-point adder for performing addition and subtrac- 60 

tion on decimal-floating-point operands. 
Embodiment of the decimal floating-point adder may be 

pipelined so that complete resultant decimal floating-point 
numbers may be output each clock cycle instead of comput
ing only a single digit of the result every clock cycle. More- 65 

over, a pipelined decimal floating-point adder may achieve a 
critical path delay slightly greater than comparable fixed-

In another embodiment, a method comprises adding a first 
significand associated with a first decimal first floating-point 
number and a second significand associated with a second 
decimal floating-point number to produce a resultant signifi
cand. The first and second significands have a number of bits 
to store a plurality of decimal digits and the resultant signifi
cand has a number of bits to store the decimal digits plus a 
guard buffer to store an additional decimal digit and an addi
tional bit to store a most significant carry-out. The method 
further comprises shifting the resultant significand toward a 
least significant digit when either of the carry-out or the guard 
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buffer contains a non-zero value, and outputting a resultant 
decimal floating-point number based on the shifted resultant 
significand. 

4 
ment unit 18, an excess-3 conversion unit 20, an operation 
unit 22, an inversion and sticky expansion unit 24, a binary 
adder/flag generation unit 26, a correction unit 28, a sign unit 

In another embodiment, a processor comprises a binary 
adder that adds a first significand associated with a first float- 5 

ing-point number and a second significand associated with a 
second floating-point number to produce a resultant signifi
cand. The first and second significands have a number of bits 

30, a shift and round unit 32 and an output conversion unit 34. 
Input conversion unit 14 receives two operands, "OPER-

AND A" and "OPERAND B," and converts the significands 
of each of the operands to binary coded decimal (BCD). The 
input operands are decimal floating-point numbers and may 
conform, for example, to the 64-bit decimal floating point to store a plurality of decimal digits and the resultant signifi

cand has a number of bits to store the decimal digits plus a 
guard buffer to store an additional decimal digit and an addi
tional bit to store a most significant carry-out. The processor 
further comprises a shift unit that shifts the resultant signifi
cand toward a least significant digit when either the carry-out 
or the guard buffer contains a non-zero value. 

The details of one or more embodiments of the invention 
are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the 
invention will be apparent from the description and drawings, 
and from the claims. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a block diagram illustrating a processing unit that 
performs decimal arithmetic in accordance with the inven
tion. 

FIGS. 2A and 2B illustrate a flow diagram illustrating 
exemplary operation of a decimal floating-point adder that 
performs floating-point arithmetic in accordance with the 
invention. 

FIG. 2C shows the formats of the input significands 
received by a binary adder/flag generation unit of the decimal 
floating-point adder and the resultant sum. 

FIG. 3 is a flow diagram illustrating an exemplary opera
tion of an alignment unit of the decimal floating-point adder 
of FIG. 1. 

FIG. 4 is a flow diagram illustrating exemplary operation of 
a correction unit of the decimal floating-point adderofFIG.1. 

FIG. 5 is a flow diagram illustrating exemplary operation of 
a shift and round unit of the decimal floating-point adder of 
FIG. 1. 

FIGS. 6-8 are graphs presenting simulation and synthesis 
results for the decimal floating-point adder. 

DETAILED DESCRIPTION 

FIG. 1 is a block diagram illustrating an example embodi
ment of a processing unit 10 that performs decimal arithmetic 
in accordance with the techniques described herein. In par
ticular, FIG. 1 illustrates a portion of processing unit 10 that 
includes a floating-point adder 12 for performing decimal 
arithmetic. For ease of illustration, adder 12 is described in 
reference to FIG. 1 as a 64-bit decimal floating-point adder. 
Adder 12 may, however, be modified to support arithmetic 
operations on decimal floating-point numbers of different bit 
lengths, such as 32-bit or 128-bit decimal floating-point num
bers. 

10 numbers specified in the IEEE-754 standard for floating
point arithmetic. In that case, input conversion unit 14 con
verts the two floating-point numbers (i.e., OPERAND A and 
OPERAND B) into corresponding sign-bits (SAl and SBl), 
10-bit biased binary exponents (EAl and EBl), and 16-digit 

15 significands (CAl and CBl). The 16-digit significands CAl 
and CBl are represented by 64 bits and, more particularly, 4 
bits represent each of the 16 digits of the significands using a 
BCD encoding. 

Sign-bits SAl and SBl, 10-bit biased binary exponents 
20 EAl and EBl, and 16-digit significands CAl and CBl are 

input to operand exchange unit 16. In general, operand 
exchange unit 16 processes the unpacked operands to ensure 
that the operands are ordered according to their exponent 
values, i.e., EAl and EBl. Specifically, operand exchange 

25 unit 16 exchanges the two operands whenEBl is greater than 
EAl, thereby ensuring that the exponent of the first 
exchanged operand, i.e., EA2 is always greater than or equal 
to the exponent of the second exchanged operand, i.e., EB2. 
Operand exchange unit 16 may be implemented, for example, 

30 using a comparator that compares EAl and EBl and sends a 
selection signal to two multiplexers, each of which inputs the 
significands, exponents, and signs from both operands. The 
BCD significands and the binary exponents, which may be 
potentially exchanged, output by operand exchange unit 16 

35 are denoted CAZ, CB2, EA2, and EB2 in FIG. 1, while the 
sign bits are denoted as SA4 and SB4. 

Alignment unit 18 aligns the significands CAZ and CB2 
such that their corresponding exponents are equal. As will be 
described in detail below, alignment unit 18 determines the 

40 largest number of digits by which CAZ can be shifted toward 
the most significant digit, thus decreasing its exponent EA2 
towards the value of the lesser exponent EB2. Alignment unit 
18 also determines if and by how many digits to shift signifi
cand CB2 toward the least significant digit in order to com-

45 plete the alignment process. As significand CB2 is shifted 
toward the least significant digit, corresponding exponent 
EB2 increases toward EA2. If any digits in EB2 are shifted 
past the least significant digit, they are shifted into a round 
digit that is to the right of the least significant digit. Digits 

50 shifted past the round digit are accumulated using a sticky bit, 
which is set to one if any non-zero digits are shifted past the 
round digit. Alignment unit 18 may selectively shift both of 
the operands in parallel. The significand that is associated 
with the larger exponent, i.e., CAZ, is shifted toward the most 

55 significant digit and the operand associated with the smaller 
exponent, i.e., CB2, is shifted toward the least significant digit 
until the two significands have associated exponents that are 
equal. Alignment unit 18 outputs the aligned significands As described herein, adder 12 can be pipelined to have a 

critical path that is only slightly greater than a 64-bit fixed
point binary adder. Moreover, the described techniques allow 60 

adder 12 to produce a complete result of a decimal addition 
every clock cycle instead of computing only a single digit of 
the result every clock cycle. As a result, adder 12 may be 
especially suited for numerically intensive commercial appli
cations. 

CA3 and CB3 as well as the common exponent ERZ. 
Excess-3 conversion unit 20 receives aligned significands 

CA3 and CB3 and converts them to an excess-3 decimal 
encoding. Excess-3 conversion unit 20 may, for example, add 
a constant value of3 to each digit of both the significands CA3 
and CB3. The excess-3 format is an advantageous decimal 

65 form due to the fact the excess-3 addition produces a natural 
decimal carry. In addition, the excess-3 format is "self-com
plimentary" in that the nine's complement of an excess-3 

In the illustrated embodiment, adder 12 includes an input 
conversion unit 14, an operand exchange unit 16, an align-
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digit can be obtained simply by inverting the four bits that 
represent the digit, which is useful when performing subtrac
tion. Both binary adder/flag generation unit 26 and correction 
unit 28 use the excess-3 format. 

While aligmnent unit 18 aligns the significands and 5 

excess-3 conversion unit 20 converts the aligned significands 

6 
decimal encoded input operands (40) and converts the sig
nificands of each of the operands to unpacked BCD (42). 
Input conversion unit 14 may, for example receive two input 
operands that conform to 64-bit decimal floating-point num
bers in the IEEE-754 floating-point arithmetic standard and 
convert the two IEEE-754 decimal encoded operands (e.g., 
OPERAND A and OPERAND B of FIG. 1) into correspond
ing sign-bits (SAl and SBl), 10-bit biased binary exponents 
(EAl, and EBl), and 16-digit significands (CAl and CBl). 

Next, operand exchange unit 16 determines whether the 
two converted operands are ordered according to their expo
nent values, i.e., EAl and EBl. In one embodiment, operand 
exchange unit 16 determines whether EBl is greater than 

to excess-3, operation unit 22 determines the effective opera
tion based on the operands' signs (SA4 and SB4) and the 
requested arithmetic operation ("OPERATION"), which sig
nals either addition or subtraction. Operation unit 22 may 10 

operate in parallel with aligmnent unit 18 and excess-3 con
version unit 20, and produces an EFFECTIVE OPERATION 
output signal representing the effective operation and a 
REVERSE output signal which indicates whether the sign of 
the final result should be reversed. 15 EAl ( 44). Operand exchange unit 16 may, for example, com

prise a comparator that compares EAl and EBl. Alterna
tively, operand exchange unit 16 may perform a subtraction 
and determine the larger of the two exponents based on the 
sign of the result. When EBl is greater than EAl, operand 

Inversion and sticky expansion unit 24 determines whether 
an inversion of either of the operands is appropriate based on 
the EFFECTIVE OPERATION signal received from opera
tion unit 24, and inverts one or both of the operands based on 
the determination. An inversion of one of the operands may, 
for example, be appropriate in the case that the effective 
operation is a subtraction. In addition, inversion and sticky 
expansion unit 24 may perform an expansion of a "sticky" bit 

20 exchange unit 16 exchanges the operands (46). 

to a 4-bit sticky digit based on its value and the effective 
operation. As described in further detail below, the 4-bit 25 

sticky digit represents an additional least significant digit that 
is utilized to perform the rounding operation specified by the 
ROUND input. 

Significands CAS and CBS are passed from inversion and 
sticky expansion unit 24 to binary adder/flag generation unit 30 

26, which performs the necessary addition. In parallel with 
the addition, binary adder/flag generation unit 26 computes 
flag bits ("FLAG"), which are used by correction unit 28. 
Although illustrated in integrated fashion, the binary adder 
and the flag generation unit may be implemented separately. 35 

Correction unit 28 adjusts the computed sum CRl of the 
addition, based on the flag bits, the effective operation, and 
CS, which represents the carry-outs of the sum digits. 

Shift and round unit 32 determines whether the corrected 
result CR2 needs to be shifted and rounded. Sign unit 30 40 

determines the sign of the result (SR) in parallel with the 
operation of shift and round unit 32. Output conversion unit 

After exchanging the operands, or after converting the 
operands to BCD in the case where no exchange is necessary, 
alignment unit 18 aligns the significands CAZ and CB2 such 
that their corresponding exponents are equal (48). As 
described briefly above, aligmnent unit 18 determines the 
largest number of digits by which significand CAZ can be 
shifted toward the most significant digit. In one embodiment, 
alignment unit 18 calculates the maximum number of digits 
for the left shift of significand CAZ according to the equation: 

Left-shift amount~min{EA2-EB2; X-M}, (1) 

where EA2 and EB2 are the exponents of the potentially 
exchanged operands, M is the index of the most significant 
non-zero digit of significand CAZ, and Xis the index of the 
most significant digit available for the operand. For example, 
in a sixteen-digit implementation X equals seventeen. 

Alignment unit 18 also determines if and by how many 
digits to shift significand CB2 toward the least significant 
digit in order to complete the alignment process. In one 
embodiment, aligmnent unit 18 calculates the number of 
digits for the right shift of significand CB2 according to the 
equation: 

Right-shift amount~max{EA2-EB2+M-X, 0}, (2) 

where EA2 and EB2 are the exponents of the potentially 
exchanged operands, M is the index of the most significant 
non-zero digit of significand CAZ, and Xis the index of the 

34 receives the output of shift and round unit 32, i.e., CR3 and 
ER3, as well as the computed sign of the result (SR), and 
converts the result to the specifications ofIEEE-7 54 or other 45 

decimal floating-point format. Specifically, output conver
sion unit 34 encodes the results in accordance with the IEEE-
754 decimal encoding specification and outputs the encoded 
decimal floating-point number, completing the decimal float
ing-point operation. 50 

most significant digit available for the operand. 

Processing unit 10 may be a microprocessor or coprocessor 
for use within a laptop computer, general-purpose computer 
or high-end computing system. Alternatively, processing unit 

Alignment unit 18 may shift significand CAZ or both of the 
significands CAZ and CB2 in parallel in accordance with the 
calculated shift values. The significand that is associated with 
the larger exponent, i.e., CAZ, is shifted toward the most 

55 significant digit by the left-shift amount calculated and the 
operand associated with the smaller exponent, i.e., CB2, is 
shifted toward the least significant digit by the value right
shift amount calculated. Once shifted, the two significands 

10 may be a microcontroller, application specific integrated 
circuit (ASIC) or other component. Moreover, processing 
unit 10 may be implemented as a single integrated circuit in 
which adder 12 constitutes only a portion of the implemented 
functionality. Alternatively, adder 12 may be implemented in 
one or more stand-alone integrated circuits. Further, compo
nents of processing unit 10 and adder 12 may be implemented 60 

as discrete combinatorial logic, logic arrays, microcode, firm
ware or combinations thereof. 

FIGS. 2A and 2B illustrate a flow diagram illustrating 
exemplary operation of a floating-point adder, such as adder 
12 of FIG. 1, that performs floating-point arithmetic in accor
dance with the techniques described herein. Initially, adder 12 
and, more particularly, input conversion unit 14 receives two 

have associated exponents that are equal. 

Alignment unit 18 may shift the significands using, for 
example, barrel shifters. In order to produce the same result 
that would be obtained if the addition was performed using 
infinite precision and then rounded, the alignment unit 18 
may include a 4 -bit guard buffer on the most significant side 

65 of CAZ as well as a 4-bit round digit buffer and a 1-bit sticky 
bit buffer on the least significant digit side ofCB2. Alignment 
unit 18 shifts any non-zero digit through the round digit buffer 
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and into the sticky bit buffer, which are later used for round
ing. The sticky bit is set to one if any non-zero digits are right 
shifted past the round digit. 

Excess-3 conversion unit 20 receives aligned significands 
CA3 and CB3 and converts the significands to an excess-3 5 

decimal encoding (50). Excess-3 conversion unit 20 may, for 
example, add a constant value of 3 to each digit of both 
operands. In one embodiment, excess-3 conversion unit 20 
may convert a given 4-bit BCD number 'abed' to the corre
sponding excess-3 number 'wxyz' using the following equa- 10 

tions: 

w=a 'bd+a 'bc+abc' (3) 

x=a 'bc'd'+b 'c'd+a'b 'c (4) 
15 

y~b 'c'd'+a'c'd'+a 'cd (5) 

z=b 'c'd'+a 'c'd'+a'cd' (6) 

While aligmnent unit 18 aligns the significands and 
20 

excess-3 conversion unit 20 converts the aligned significands 
to excess-3, operation unit 22 determines the effective opera
tion based on the operands' signs (SA4 and SB4) and the 
operation input ("OPERTION") (52). Operation unit 18 also 
determines whether the sign of the final result should be 

25 
reversed (54). In this particular implementation only two 
effective operations are necessary; addition and subtraction. 
The techniques of the invention, however, may be extended to 
include other arithmetic operations. TABLE 1 illustrates the 
output signals (EFFECTIVE OPERATION and REVERSE) 

30 
produced by operation unit 18 based on the sign inputs, i.e., 
SA4 and SB4, and the OPERATION input. 

TABLE 1 

8 
of the result. In addition, one extra bit is needed on the most 
significant digit side of the result to a hold a 1-bit carry-out. 
The extra bit to hold the carry-out is placed in a position 
toward the most significant digit of the extra buffer. FIG. 2C 
shows the formats of input significands received by binary 
adder/flag generation unit 26 and their resulting sum. 

In parallel with the addition, binary adder/flag generation 
unit 26 computes flag bits (62). The flag bits indicate the most 
significant bit within sum CRl to which a carry will propagate 
as a result of adding one to CRl. In one embodiment, the flag 
bits take the form of a string of ones followed by a string of 
zeros, where the string of ones begins with the least signifi
cant bit of the sum CRl and continues until the first zero bit of 
the sum CRl. In other words, the flag bits indicate the string 
of bits through which a carry would propagate if added to the 
least significant bit of the sum CRl. For example, the flag bits 
that correspond to the binary sum '1111 1011' are '0000 
0111,' indicating that a carry would propagate to the third 
least significant bit of the sum CRl. 

Correction unit 28 uses the sum, flag bits and digit carry
outs generated by binary adder/flag generation unit 26 to 
adjust the result of binary adder/flag generation unit 26 (64). 
Additionally, the adjustment made by correction unit 28 
depends on the effective operation determined by operation 
unit 22. Correction unit 28 may, for example, include two 
different rules; one that applies when the effective operation 
is an addition and one that applies when the effective opera
tion is a subtraction. In one exemplary correction rule for an 
addition effective operation, correction unit 28 determines 
where digit carry-outs occur during the addition performed 
by binary adder 26 and then adjusts each sum digit where 
there is no digit carry-out by subtracting a corrective value of 
six from each sum digit. Performing this correction compen
sates for the initial value of the three that was added to each 

-----"o""'u'-"T-"-P""U"""T""'s ____ 
35 digit in both significands. 

INPUTS 

SA4 SB4 OPERATION 

EFFECTIVE 

OPERATION REVERSE 

In one exemplary correction rule for a subtraction opera
tion, correction unit 28 determines whether the final carry-out 
is a one. When the final carry-out is a one, the final result is 

+ + Add 

+ + Subtract 

+ Add 
+ Subtract 

+ Add 
+ Subtract 

Add 
Subtract 
Subtract 

Add 
Subtract 

Add 

No 
No 
No 
No 
Yes 
Yes 

40 
positive and two corrective measures are taken. First, the 
flagged bits are inverted. After this, a corrective factor of six 
is subtracted from each sum digit where the digit carry-out 
XO Red with the digit flag carry-out gives a result of zero. A 
digit flag carry-out is the most significant bit (MSB) of the 

Add Add Yes 45 
four flag bits corresponding to each digit of the result. 

Subtract Subtract Yes 

Next, inversion and sticky expansion unit 24 determines 
whether the effective operation is a subtraction (56) and, if so, 
inverts one of the significands (58). If the input operands have 50 

been exchanged by operand exchange unit 16, the significand 
that inversion and sticky expansion unit 24 inverts must 
reflect that previous exchange. In addition, inversion and 
sticky expansion unit 24 performs an expansion of the sticky 
bit to a 4-bit digit representation based on its value and the 55 

effective operation (59). 
Binary adder/flag generation unit 26 performs the neces

sary addition on significands CAS and CBS received from 
inversion and sticky expansion unit 24 (60). The addition 
performed by binary adder/flag generation unit 26 accounts 60 

for the 4-bit guard buffer on the most significant digit side of 
the left-shifted significand as well as the 4-bit round digit and 
sticky digit buffers on the least significant digit side of the 
right-shifted significand. In other words, the result from 
binary adder/flag generation unit 26 includes at least one extra 65 

buffer on the most significant digit side of the result as well as 
a round digit and sticky digit on the least significant digit side 

When the final carry-out is a zero, the final result is negative 
and again two corrective measures are taken. First, all of the 
sum bits are inverted, and secondly, a corrective factor of six 
is subtracted from all places that have a digit carry-out of one. 

Next, shift and round unit 32 determines whether either the 
carry out from the binary addition or the 4-bit guard buffer on 
the most significant side of the result is occupied by a non
zero value (66). If either of the two extra buffers contains a 
non-zero value, shift and round unit 32 performs a right-shift 
of either one or two digits in order to bring the result back into 
the representable range of coefficients, which in this case 
entails a precision of sixteen digits (67). If the carry-out 
contains a non-zero value, for example, shift and round unit 
32 right-shifts CR2 by two digits. Shift and round unit 32 also 
adjusts the final exponent in conjunction with shifting the 
result significand. An additional right-shift of one digit may 
need to be performed to account for a possible carry-out from 
rounding. This only occurs when the shifted significand is all 
nines and a one is added to it for rounding. When performing 
the right shifts, any non-zero digit shifted passed the sticky 
digit or an initial non-zero sticky digit, causes the sticky bit, 
which is used for rounding, to be set to one. 
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To maintain accuracy, shifting is done before rounding. If 
any of the guard digit, round digit or sticky bit are non-zero, 
shift and round unit 32 rounds the result (68, 69). Shift and 
round unit 32 may support a number of rounding modes, 
including a round to nearest even number, round to nearest up, 
round to nearest down, round toward positive infinite, round 
toward negative infinity, round toward zero, and round away 
from zero. A 3-bit code may be used to specify the rounding 
mode. For all rounding modes the 4-bit round digit and the 
1-bit sticky bit (collective, "RS") are truncated and the trun
cated result is either incremented by one or left unchanged. 
The increment operation is performed in a carry-lookahead 
fashion, in which a parallel-prefix tree first determines the 
number of consecutive nines starting at the least significant 
digit of the shifted result. Then, this information is used to 
quickly generate a value that is the truncated result plus one. 
The increment condition for each of the rounding modes is 
described in TABLE 2, wherein RS indicates a 4-bit round 
digit and a 1-bit sticky, R indicates a 4-bit round digit, LSD 
indicates the least significant digit of the result, and S indi
cates a 1-bit sticky digit. 

ROUND MODE 

Round to nearest even 
Round to nearest up 
Round to nearest down 
Round toward positive infinity 
Round toward negative infinity 
Round toward zero 
Round away from zero 

TABLE2 

INCREMENT CONDITION 

R > 5 I (R - 5 & LSD[0] - 1 I S !- 0) 
RS>- 50 
RS >5 0 
(result>- 0) & (RS !- 0) 
(result< 0) & (RS !- 0) 
None 
RS !-0 

10 
Next, alignment unit 18 left shifts CAZ and right shifts 

CB2, as necessary, in parallel until the exponents are aligned. 
In particular, alignment unit 18 performs left shifts CAZ the 
minimum ofEA2-EB2 and X-M in accordance with equa-

5 tion 1. For example, alignment unit 18 may determines 
whether EA2-EB2 is less than or equal to X-M (82). When 
EA2-EB2 is less than or equal to X-M, alignment unit 18 
shifts CAZ toward the most significant digit by EA2-EB2 
digits (84). However, when EA2-EB2 is greater than X-M, 

10 alignment unit 18 shifts CAZ toward the most significant digit 
by X-M digits (86). During the left shift, aligriment unit 18 
may shift a most significant digit (MSD) ofCA2 into the extra 
4-bit guard buffer (88). The existence of the extra guard buffer 
toward the most significant digit of the most significant digit 

15 position allows adder 12 to produce the same result that 
would be produced if the result was computed to infinite 
precision and then rounded. 

In parallel with the left shifting of CAZ, alignment unit 18 
right shifts CB2 when necessary based on the maximum of 

20 EA2-EB2 and M-X. For example, aligriment unit 18 may 
initially determine whether EA2-EB2+M-X is greater than 
zero (90). When EA2-EB2+M-X is greater than zero, align
ment unit 18 shifts CB2 toward the least significant digit by 
EA2-EB2+M-X bits (92). During the right shift of CB2, 

25 alignment unit 18 may shift one or more digits into extra 
buffers toward the least significant digit of the least significant 
digit (LSB) position CB2 (96). For example, aligriment unit 
18 may include a round digit buffer and a sticky bit buffer 
toward the least significant digit of the LSB position ofCB2, 

30 and shift digits into either or both of the buffers. When EA2-
EB2+M-X is not greater than zero, aligriment unit 18 does 
not shift CB2 (94). In this case, the left-shift operation of 
significand CAZ is sufficient to align the two significands and 
CB2 need not be shifted. 

Sign unit 30 determines the sign of result (SR) in parallel 
with the operation of shift and round unit 32 (70). Sign unit 30 
receives the EFFECTIVE OPERATION signal and the 35 

REVERSE signal from operation unit 22 and a COUT signal 
from binary adder 26. Based on these inputs, sign unit 30 
determines the sign of the result according to TABLE 3. 

After the significands are shifted such that both signifi
cands have the same binary exponent, aligriment unit 18 
outputs the aligned significands to excess-b 3 conversion unit 
20 and outputs the common exponent to shift and round unit 
32 (98). 

TABLE3 

INPUTS 

EFFECTNE 
OPERATION REVERSE COUT 

Add No 0 
Add No 
Add Yes 0 
Add Yes 

Subtract No 0 
Subtract No 
Subtract Yes 0 
Subtract Yes 

OUTPUT 

SIGN OF 
RESULT (SR) 

+ 
+ 

+ 
+ 

40 

45 

50 

As an example, consider operation of alignment unit 18 
upon receiving the following input: 

CA2-0500 0000 0000 0000, 

CB2-0000 0000 0004 3720, 

Taking into account the available significand buffers (i.e., the 
4-bit guard buffer toward the most significant digit position of 
CAZ and the 4-bit round digit buffer toward the least signifi-

Finally, output conversion unit 34 inputs the output of shift 
and round unit 32, i.e., CR3 and ER3, as well as the computed 
sign of the result (SR), and converts the input to the decimal 
specifications of IEEE-754 or other decimal floating-point 
format (72). Although the flow diagrams of FIGS. 2A and 2B 
illustrate progression of a single decimal arithmetic operation 
sequentially, adder 12 may be pipelined so that output con- 60 

version unit 34 produces a complete result each clock cycle 
once the pipeline is fully primed. 

cant digit position of CB2) and the sticky bit buffer toward the 
least significant digit of the round digit buffer, the two input 

55 significands are represented as: 

FIG. 3 is a flow diagram illustrating exemplary operation of 
aligriment unit 18 in further detail. Initially, alignment unit 18 
receives significands CAZ and CB2 as well as binary expo
nents EA2 and EB2 associated with CAZ and CB2, respec
tively (80), from operand exchange unit 16. 

CA2-0 0500 0000 0000 0000 

CB2-0000 0000 0004 3720 00 

Using equation (1 ), alignment unit 18 determines that CAZ 
must be left-shifted by two digits: 

left-shift amount-min{ 6-0, 17-15 }-2. 

In parallel, alignment unit 18 uses equation (2) to deter-
65 mine that CB2 must be right-shifted by 4 digits: 

right-shift amount-max { 6-0+15-17, 0 }cc4. 
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the techniques of the invention. In the first example, correc
tion unit 28 adjusts the output of binary adder 26 during the 
addition of floating-point numbers 953 and 642. The inputs to 
binary adder 26 and the result output from binary adder 26 for 

Alignment unit 18 shifts CAZ left toward the most signifi
cant digit and and CB2 right toward the least significant digit 
by their respective amounts. In particular, CAZ is shifted 
toward the most significant digit by 2 digits and CB2 is shifted 
toward the least significant digit by 4 digits. The resulting 
significands (CA3 and CB3) and their common binary expo
nent (ER3) produced by alignment unit 18 are illustrated 
below: 

5 an addition operation are illustrated below: 

CA3~5 0000 0000 0000 0000, 
10 

CB3~oooo 0000 0000 0004 31, and 

The shifting of the significands does not affect the result 15 

unless non-zero digits are shifted out of the 64-bit (16-digit) 
significand field. In this case, one non-zero digit is shifted out 
of CB3. To compensate for shifting these digits out of the 
significand field, however, these digits are shifted through the 
round digit buffer and sticky bit buffer, which are later used 20 

for rounding. 
FIG. 4 is a flow diagram illustrating exemplary operation of 

correction unit 28 of FIG. 1 in further detail. Initially, correc
tion unit 28 receives a sum of the aligned significands and flag 
bits from binary adder 26 as well as the effective operation bit 25 

from operation unit 22 (100). 
Next, correction unit 28 determines whether the operation 

is an addition based on the effective operation signal from 
operation unit 22 (102). When the effective operation is an 
addition, correction unit 28 determines whether there is a 30 

digit carry-out for each of the digits (104). Correction unit 28 
subtracts a corrective value of six from each of the sum digits 
that does not have a digit carry-out (106). Correction unit 28 
may, for example, add 1010 to each of the sum digits that does 
not have a digit carry-out, which effectively subtracts a cor- 35 

rective value of six. When a resultant digit has a digit carry
out, correction unit 28 does not perform any adjustment on 
the digit. 

When the effective operation is a subtraction, correction 
unit 28 determines whether the carry-out of the most signifi- 40 

cant digit is a 1 (110). When the carry-out of the most signifi
cant digit is a 1, the final result must be positive and two 
corrective measures are taken. First, correction unit 28 inverts 
flagged sum bits, i.e., sum bits that correspond to set flag bits 
(112). Next, correction unit 28 performs an exclusive OR 45 

(XOR) operation with the sum digit's carry-out and the flag 
carry-out corresponding to that digit (114). Correction unit 28 
determines, for each sum digit, whether the XOR operation of 
the sum digit's carry-out and the flag carry-out for that digit 
gives a result of zero (116). Correction unit 28 subtracts a 50 

corrective value of six from each of the sum digits for which 
the XOR operation of the sum digit carry-out and the flag 
carry-out results in a zero (118). When the XOR operation of 
the sum digit's carry-out and the flag carry-out for that digit 
does not have a zero result, correction unit 28 does not per- 55 

form any adjustment on the sum digits. 
When the carry-out of the most significant digit is not a 1, 

the final result must be negative and two corrective measures 
are needed. First, correction unit 28 inverts all the sum bits 
(122). Correction unit 28 then determines which of the sum 60 

digits have a digit carry-out (124). For each digit having a 
digit carry-out, correction unit 28 subtracts a corrective value 
of six from the corresponding sum digit (126). Correction unit 

CAS = 1100 1000 0110 [953] 

+CBS= 1001 0111 0100 [642] 

CR!= 0101 1111 1011 

Cout = 1000 0000 0100 

CS= 0 0 

CRl is the result of the addition of significands CAS and CBS. 
Cout represents the carry-outs of each of the bits, while CS 
represents the carry-outs of the sum digits. 

As described above, correction unit 28 determines whether 
there is a digit carry-out for each of the digits. As illustrated by 
the value of '1' in Cs, only the most significant digit of the 
three digits has a digit carry-out. Correction unit 28 subtracts 
a corrective value of six from each of the sum digits that does 
not have a digit carry-out, i.e., the two least significant digits 
in this case, to produce a corrected result (CR2). 

CR!= 

+Correction= 

0101 1111 1011 

0000 1010 1010 

CR2 = 10101 1001 0101 [1595] 

In a second example, correction unit 28 adjusts the output 
of binary adder 26 during the subtraction of floating-point 
numbers 548 and 169. The inputs to binary adder 26, the 
inverted version of significand CBS, i.e., CBS', the bit carry
outs (Cout), the sum digit carry-outs (Cs), the flag bits, the 
carry-outs of the flag bits (Cf), and the result output from 
binary adder 26 (CRl) for the subtraction operation are illus
trated below: 

CAS = 1000 0111 1011 [548] 

+CBS= 0100 1001 1100 [169] 

CBS'= 1011 0110 0011 

CR!= 0011 1101 1110 

Cout= 1000 0110 0011 

Cs= 0 0 

Flag = 0000 0000 0001 

Cf= 0 0 0 

As described above with respect to a subtraction operation, 

28 does not perform any adjustment on the sum digits that do 
not have a digit carry-out. 

The following examples demonstrate exemplary operation 
of correction unit 28 making corrections in accordance with 

correction unit 28 determines whether the sum digit carry-out 
of the most significant digit is a' 1.' When the carry-out of the 
most significant digit is a '1,' as it is in this case, correction 
unit 28 inverts flagged sum bits of the result CRl. Note that 
the only flagged sum bit is the least significant digit, which 

65 was inverted to give the adjusted result shown below. 

CR! adj~00l 11101 1111 
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Correction unit 28 then determines, for each sum digit, 
whether the XOR operation of the sum digit carry-out (Cs) 
and the flag carry-out (Cf) gives a result of zero and subtracts 

14 
shifts the corrected result CR2 by two digits (132). In particu
lar, shift and round unit 32 shifts the value contained in the 
carry-out buffer two digits in the direction of the least signifi-

a corrective value of six from each of the sum digits for which 
the XOR operation of the sum digit carry-out and the flag 5 

carry-out results in a zero. In the illustrated example, the XOR 
of the two least significant digits results in a zero and thus the 
correction is as illustrated below. 

cant digit. 
When the carry-out buffer holds a zero, shift and round unit 

32 determines whether the extra buffer toward the least sig-
nificant digit of the carry-out buffer is non-zero (134). When 
the extra buffer is not a non-zero value, shift and round unit 32 
shifts the corrected result (CR2) one digit toward the least 

CR! adj= 0011 1101 1111 

+Correction= 0000 1010 1010 

CR2 = 0011 0111 1001 [379] 

In a third example, correction unit 28 adjusts the output of 
binary adder 26 during the subtraction of floating-point num
bers 527 and 926. The inputs to binary adder 26, the inverted 
version of significand CBS, i.e., CBS', the bit carry-outs 
(Cout), the sum digit carry-outs (Cs), and the result output 
from binary adder 26 (CRl) for the subtraction operation are 
illustrated below: 

CAS = 1000 0101 1010 [527] 

+CBS= 1100 0101 1001 [926] 

CBS'= 0011 1010 0110 

CR!= 1100 0000 0000 

Cout= 0011 1111 1110 

Cs= 0 

The carry-out of the most significant digit is a not' 1' in this 
case. Thus, correction unit 28 inverts all the sum bits of the 
result CRl as illustrated by CRl adj below 

CR! adj~00l l 11111111 

Correction unit 28 subtracts a corrective value of six from 
each of the sum digits with carry-out. In the illustrated 
example, the two least significant digits have a carryout and 
thus the correction is as illustrated below. 

CR! adj= 0011 1111 1111 

+Correction= 0000 1010 1010 

CR2 = 0011 1001 1001 [-399] 

FIG. 5 is a flow diagram illustrating exemplary operation of 
shift and round unit ofFIG.1 in further detail. In general, once 
the addition is complete, the result may need to be adjusted in 
the case that either of the two extra buffers on the most 
significant side of the result is occupied by values other than 
zero. In this case, a right-shift of either one or two digits will 
be executed in order to bring the result back into the repre
sentable range of coefficients, which in this case entails a 
precision of sixteen digits. As was the case for significand 
alignment, the final exponent is adjusted in conjunction with 
shifting the result significand. 

Specifically, shift and round unit 32 initially receives the 
result (CR2) from correction unit 28 and determines whether 
a carry-out buffer of the result is non-zero (130). When the 
carry-out buffer is non-zero, shift and round unit 32 right 

10 significant digit (136). When the extra buffer holds a zero, 
shift and round unit 32 performs no shift on the corrected 
result (137). 

If shift and round unit 32 performs a shift of the corrected 
result, shift and round unit 32 must also adjust the final 

15 exponent accordingly. Specifically, shift and round unit 32 
must increment the final exponent by two when result is 
shifted two digits (139) and increment the final exponent by 
one when the result is shifted by one digit (138). 

Next, shift and round unit 3 2 truncates the round and sticky 
20 digit buffers (140). Shift and round unit 32 determines which 

rounding mode shift and round unit 32 is in (142), and deter
mines whether an increment condition associated with the 
rounding mode is met (144). As previously described, shift 
and round unit 32 may support a number of rounding modes, 

25 some of which are listed in TABLE 2 above. 

30 

When the increment condition associated with the round
ing mode is not met, the truncated result is used. When the 
increment condition is met, shift and round unit 32 deter
mines the number of consecutive nines starting at the least 
significant digit (148), and generates a value equal to the 
truncated result plus one using this information (150). The 
increment operation may be performed in a carry-lookahead 
fashion in which a parallel-prefix tree determines the number 
of consecutive nines starting at the least significant digit of the 

35 shifted result. 
Finally, shift and round unit 32 determines whether there is 

a carry-out on the rounded result (152). This only occurs 
when the shifted significand is all nines and a one is added to 
it for rounding. When there is a carry-out on the rounded 

40 result, shift and round unit 32 shifts the rounded result one 
digit toward the least significant digit and increments the 
exponent by one (154). 

Simulation Results 
The described decimal floating-point adder was modeled 

45 in Verilog at the register transfer level. Functional testing was 
performed on several comer cases as well as on over one 
million random cases. In particular, the signs, operations, 
rounding modes, and significand values used during the test 
were randomly generated. The exponents were generated 

50 with a weighted algorithm so that there was a very small 
chance that either operand would become zero after align
ment. 

Initial synthesis testing and comparison has been per
formed using a 0.11 micron CMOS standard cell library. 

55 Using this library, the design was first synthesized as a single 
combinational block without any optimization flags set to 
identify the delay contributions of each component in the 
overall design. 

FIG. 6 is a graph that illustrates the contributions that each 
60 component provides to the critical path delay of the purely 

combinational (non-pipelined) design. It should be noted that 
the unpacking and operand exchange as well as the conver
sion to excess-3, inversion, and sticky expansion are com
bined in this figure due to their delay minimal contributions. 

65 It should also be noted that while the significand alignment 
process consumes approximately 42% of the critical path 
delay, roughly 84% of this time, or 36% overall, is spent 
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determining the shift amounts, while the remainder is spent 
actually performing the shifts. 

It is estimated that, in the simulated embodiment, the com
binational adder portion of the design has a critical path delay 
of 0.6 ns. This estimate has been supported though the syn- 5 

thesis of a Cogged-Stone adder block by itself. 

16 
shifting the first significand and the second significand 

when the first exponent does not equal the second expo
nent; and 

outputting the equal exponent value as a function of the 
shifting. 

5. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises shifting a most 
significant digit of the first significand into a guard buffer. 

6. The method of claim 1, wherein aligning the first sig
lO nificand and the second significand comprises: 

In addition to evaluating the purely combinational design 
with very low effort synthesis, several higher effort pipelined 
designs, all of which are optimized for delay, have been 
evaluated. More specifically, embodiment of the decimal 
floating-point adder has been synthesized into pipelines of 
length one (no pipelining), two, three, four, and five. These 
synthesized configurations have provided insight into the 
tradeoffs between critical path delay, area, and latency for 
various pipeline depths of our design. FIG. 7, for example, 15 

illustrates critical path delay versus pipeline depth for the 
synthesized embodiments. FIG. 8 plots the corresponding 
area for each synthesized pipelined embodiment for the par
ticular 0.11 micron CMOS standard cell library. 

The results provided in FIGS. 7 and 8 show that in the 20 

simulated embodiments a purely combinational decimal 
floating-point adder has a critical path delay of3.83 ns and an 
area of 0.148 mm2

, while an embodiment with five pipeline 
stages has a critical path delay of0.98 ns and a corresponding 
area of0.199 mm2 .As one example, input conversion unit 14 25 

and operand exchange unit 16 may be implemented in a first 
stage. Alignment unit 18, excess-3 conversion unit 20 and 
inversion and sticky expansion unit 24 may be implemented 
in a second stage. Binary adder/flag generation unit may be 
implemented in a third stage. Correction unit 28, sign unit 32, 30 

and shift and round unit 32 may be implemented in a fourth 
stage, while output conversion unit 34 may be implemented in 
a fifth stage. More or less registers may be utilized to increase 
or decrease the number of stages within the pipeline. 

Various embodiments of the invention have been 35 

described. These and other embodiments are within the scope 
of the following claims. 

The invention claimed is: 
1. A method comprising: 
receiving a first operand and a second operand with an 40 

alignment circuit within a processing circuit, wherein 
the first operand includes a first significand and a first 
exponent associated with a first decimal floating-point 
number, and the second operand includes a second sig
nificand and a second exponent associated with a second 45 

decimal floating-point number; 
aligning the first significand and the second significand 

with the alignment circuit of the processing circuit so 
that the first exponent and the second exponent have an 
equal value, wherein aligning the first significand and 50 

the second significand comprises shifting the first sig
nificand in parallel with shifting the second significand; 
and 

computing, with the processing circuit, a resultant decimal 
floating-point number from the shifted first and second 55 

significands and the equal value of the first exponent and 
the second exponent. 

2. The method of claim 1, wherein computing the resultant 
decimal floating-point number comprises computing an 
arithmetic summation of the first operand and the second 60 

operand. 

computing a number of digits to shift the first significand 
toward a most significant digit; and 

shifting the first significand toward the most significant 
digit by the computed number of digits. 

7. The method of claim 6, wherein computing the number 
of digits to shift the first significand is determined according 
to the equation: 

left-shift amount ~min{EA1-EB2; X-M}, 

where EAi and EB2 represents the first and second exponents 
prior to alignment, respectively, M is an index of a most 
significant non-zero digit of the first significand, and Xis an 
index of the most significant digit available for the first sig
nificand. 

8. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises shifting the 
second significand toward a least significant digit to align the 
first and second significands. 

9. The method of claim 8, further comprising shifting at 
least one digit of the second significand into a sticky bit 
buffer. 

10. The method of claim 8, further comprising shifting at 
least one bit of the second significand into a round digit buffer. 

11. The method of claim 8, further comprising: 
calculating a number of digits to shift the second signifi

cand to align the first and second significands; and 
shifting the second significand toward the least significant 

digit by the calculated number of digits. 
12. The method of claim 11, wherein calculating the num

ber of digits to shift the second significand comprises calcu
lating the number of digits to shift the second significand 
according to the equation: 

right-shift amount ~max{EA1-EB2+M-X, 0}, 

EAi and EB2 are the first and second exponents, respectively, 
M is the index of a most significant non-zero digit of first 
significand, and X is the index of the most significant digit 
available for the first significand. 

13. A method comprising: 
processing with an adder circuit a first significand associ

ated with a first decimal floating-point number and a 
second significand associated with a second decimal 
floating-point number to produce a resultant significand; 

generating one or more flag bits with a flag generation 
circuit to indicate a bit within the resultant significand to 
which a carry propagates as a result of the addition; 

adjusting the resultant significand with a correction circuit 
to produce a corrected significand based on the flag bits; 
and 

outputting, with the adder circuit, a resultant decimal float
ing-point number from the corrected significand. 

3. The method of claim 1, wherein computing the resultant 
decimal floating-point number comprises performing an 
arithmetic subtraction with the first operand and the second 
operand. 

14. The method of claim 13, wherein generating one or 
65 more flag bits comprises: 

4. The method of claim 1, wherein aligning the first sig
nificand and the second significand comprises: 

identifying one or more digits within the resultant signifi
cand at which carry-outs occur due to the addition; and 
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generating the flag bits to include a string of ones and a 
string of zeros, wherein each of the ones corresponds to 
a respective one of the bits to which a carry is propa
gated. 

18 
26. The decimal floating-point adder circuit of claim 24, 

wherein the correction circuit adjusts the digits of the result
ant significand based on the carry-outs and the flag bits when 
an effective operation performed by the adder circuit is arith-

15. The method of claim 14, wherein adjusting the resultant 
significand comprises adjusting the digits of the resultant 
significand for which carry-outs occur with a corrective value 
when an effective operation performed by the adder is arith
metic addition. 

5 metic subtraction. 
27. The decimal floating-point adder circuit of claim 26, 

wherein the correction circuit inverts each digit of the result
ant significand when a carry-out of the most significant digit 
is zero, and subtracts a corrective value of six from each digit 

16. The method of claim 15, wherein adjusting the resultant 
significand comprises subtracting the corrective value of six 
(0110 binary) from each digit for which a carry-out does not 
occur. 

10 of the result that has digit carry-out of one. 
28. The decimal floating-point adder circuit of claim 26, 

wherein the correction circuit inverts bits of the result that are 
flagged by the flag bits when a carry-out of a most significant 
digit of the resultant significand is non-zero, performs an 17. The method of claim 16, wherein subtracting a correc

tive value of six (01 IO binary) comprises adding a value often 
(1010 binary) to each digit for which a carry-out does not 
occur. 

15 exclusive OR (XOR) operation on each carry-out for the 
digits of the resultant significand and the corresponding flag 
bit, and subtracts a corrective value of six from each digit of 
the resultant significand where the result of the XOR opera-18. The method of claim 14, wherein adjusting the resultant 

significand comprises adjusting the digits of the result of the 
addition based on the carry-outs and the flag bits when an 20 

effective operation performed by the adder is arithmetic sub
traction. 

19. The method of claim 18, further comprising: 
inverting each bit of the resultant significand when a carry

out of the most significant digit is zero; and 
subtracting a corrective value of six from each digit of the 

result that has digit carry-out of one. 
20. The method of claim 18, further comprising: 

25 

inverting bits of the result that are flagged by the flag bits 
when a carry-out of a most significant digit of the result- 30 

ant significand is non-zero; 
performing an exclusive OR (XOR) operation on each 

carry-out for the digits of the resultant significand and 
the corresponding flag bit; and 

35 
subtracting a corrective value of six from each digit of the 

resultant significand where the result of the XOR opera
tion is a zero. 

21. The method of claim 13, wherein processing with the 
adder circuit comprises processing with a binary adder cir-

40 
cuit. 

22. A decimal floating-point adder circuit comprising: 
a binary adder circuit that adds a first significand associated 

with a decimal first floating-point number and a second 
significand associated with a second decimal floating- 45 
point number to produce a sum in binary form; 

a flag generation circuit that outputs one or more flag bits to 
indicate a bit within resultant significand to which a 
carry propagates as a result of the addition; and 

a correction circuit that adjusts the sum to produce a cor- 50 
rected significand based on the flag bits. 

tion is a zero. 
29. A method comprising: 
adding, with an adder circuit of a processing circuit, a first 

significand associated with a first decimal floating-point 
number and a second significand associated with a sec
ond decimal floating-point number to produce a result
ant significand, wherein the first and second significands 
have a number of bits to store a plurality of decimal 
digits and the resultant significand has a number of bits 
to store the decimal digits plus a guard buffer to store an 
additional decimal digit and an additional bit to store a 
most significant carry-out; 

shifting the resultant significand toward a least significant 
digit when either of the carry-out or the guard buffer 
contains a non-zero value; and 

outputting, with the processing circuit, a resultant decimal 
floating-point number based on the shifted resultant sig
nificand. 

30. The method of claim 29, wherein shifting the resultant 
significand comprises: 

shifting the resultant significand of the addition two digits 
toward the least significant digit when the carry-out 
buffer contains a non-zero value; and 

shifting the result of the addition one digit toward the least 
significant digit when the carry out buffer contains a zero 
and the guard buffer contains a non-zero value. 

31. The method of claim 29, further comprising increment
ing an exponent associated with the resultant significand in 
parallel with the shift. 

32. The method of claim 29, further comprising: 
identifying a rounding mode based on a rounding mode 

identifier; and rounding the resultant decimal floating
point number in accordance with the identified rounding 
mode. 

23. The decimal floating-point adder circuit of claim 22, 
further comprising an output conversion circuit to convert the 
sum to decimal form and output a resultant decimal floating
point number based on the corrected significand. 55 

33. The method of claim 29, wherein the resultant signifi-
cand has an additional number ofleast significant bits to store 
a round digit and a sticky bit, and wherein rounding the 
resultant decimal floating-point number comprises: 

24. The decimal floating-point adder circuit of claim 23, 
wherein the flag generation circuit identifies one or more 
digits within the resultant significand at which carry-outs 
occur, and generates the flag bits to include a string of ones 
and a string of zeros, wherein each of the ones corresponds to 60 

a respective one of the identified bits at which carry is propa
gated. 

25. The decimal floating-point adder circuit of claim 24, 
wherein the correction circuit adjusts the digits of the result
ant significand for which carry-outs occur with a corrective 65 

value when an effective operation performed by the adder 
circuit is arithmetic addition. 

truncating the round digit and the sticky bit from the result
ant significand; and 

determining whether to increment the truncated resultant 
significand based on the truncated round digit and the 
sticky bit. 

34. The method of claim 33, further comprising increment
ing the truncated result by one when the round digit and the 
sticky bit satisfy an increment condition of the rounding 
mode. 
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35. The method of claim 32, further comprising: 
determining whether rounding of the result produced a 

carry-out; and 
shifting the rounded resultant decimal floating-point num

ber by one digit toward the least significant digit when 5 

the rounding produced the carry-out. 
36. A processing circuit comprising: 

20 
round unit truncates the round digit and the sticky bit from the 
resultant significand and determines whether to increment the 
truncated resultant significand based on the truncated round 
digit and the sticky bit. 

42. The processing circuit of claim 41, wherein the round
ing circuit increments the truncated result by one when the 
round digit and the sticky bit satisfy an increment condition of 
the rounding mode. 

43. The processing circuit of claim 40, wherein the shifting 
1 o circuit determines whether the rounding produced a carry-out 

and shifts the rounded resultant significand by one digit 
toward the least significant digit when the rounding produced 

a binary adder circuit that adds a first significand associated 
with a first floating-point number and a second signifi
cand associated with a second floating-point number to 
produce a resultant significand, wherein the first and 
second significands have a number of bits to store a 
plurality of decimal digits and the resultant significand 
has a number of bits to store the decimal digits plus a 
guard buffer to store an additional decimal digit and an 15 

additional bit to store a most significant carry-out; and 
a shift circuit that shifts the resultant significand toward a 

least significant digit when either the carry-out or the 
guard buffer contains a non-zero value. 

37. The processing circuit of claim 36, further comprising 20 

an output conversion circuit to output a resultant decimal 
floating-point number based on the shifted resultant signifi
cand, resultant exponent, and resultant sign. 

38. The processing circuit of claim 36, wherein the shift 
circuit shifts the resultant significand of the addition two 25 

digits toward the least significant digit when the carry-out 
buffer contains a non-zero value, and shifts the result of the 
addition one digit toward the least significant digit when the 
carry out buffer contains a zero and the guard buffer contains 
a non-zero value. 

39. The processing circuit of claim 36, wherein the shift 
circuit increments an exponent associated with the resultant 
significand in parallel with the shift. 

40. The processing circuit of claim 36, further comprising 

30 

a round circuit identifies a rounding mode based on a round- 35 

ing mode input and rounds the resultant significand in accor
dance with the identified rounding mode. 

41. The processing circuit of claim 40, wherein the result
ant significand has an additional number of least significant 
bits to store a round digit and a sticky bit, and wherein the 

a carry-out. 
44. A method comprising: 
receiving, with an adder circuit of a processing circuit, a 

first decimal floating-point number and a second deci
mal floating-point number with a decimal floating-point 
adder; 

aligning, with an aligmnent circuit of the processing cir
cuit, a first significand associated with the first floating
point number and a second significand associated with 
the second floating-point number such that a first expo
nent associated with first floating-point number and a 
second exponent associated with the second floating
point number are equal; 

adding, with the adder circuit, the aligned first and second 
significands using a binary adder to produce a resultant 
significand; 

correcting, with the processing circuit, the resultant signifi
cand of the binary addition of the first and second sig
nificand using identified locations of carry-outs and gen
erated flag bits; 

rounding, with the processing circuit, the resultant signifi
cand in accordance with a specified rounding mode; and 

outputting, with the processing circuit, a resultant decimal 
float-point number based on the resultant significand 
and the equal exponent for the aligned first and second 
significands. 

* * * * * 
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