(12) United States Patent

Olsen et al.
(10) Patent No.: US 8,697,089 B2
(45) Date of Patent: *Apr. 15, 2014
(54) H3 EQUINE INFLUENZA A VIRUS
(71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
(72) Inventors: Christopher W. Olsen, Madison, WI (US); Gabriele A. Landolt, Fort Collins, CO (US); Alexander I. Karasin, Madison, WI (US)
(73) Assignee: Wisconsin Alumni Research Foundation, Madison, WI (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 13/842,168
Filed: Mar. 15, 2013
Prior Publication Data
US 2013/0195906 A1 Aug. 1, 2013

Related U.S. Application Data

(60) Continuation of application No. 12/503,712, filed on Jul. 15, 2009, now Pat. No. 8,535,685, which is a division of application No. 11/033,248, filed on Jan. 11, 2005, now Pat. No. 7,572,620.
(51) Int. Cl.

A61K 39/145	
C12N 7/00	(2006.01)
C12N 7/04	(2006.01)

(52) U.S. Cl.

USPC
424/209.1; 435/235.1; 435/236;
435/239
(58) Field of Classification Search None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,920,213	A	4/1990	Dale et al.	
5,925,359	A	7/1999	Van Woensel et al.	
6,406,843	B1	6/2002	Skeeles et al.	
7,572,620	B2 *	8/2009	Olsen et al.	435/235.1
7,682,619	B2	3/2010	Dubovi	
7,959,929	B2	6/2011	Crawford et al.	
2004/0146530	A1	7/2004	Sharma	
2004/0223976	A1	11/2004	Bianchi et al.	
2006/0153871	A1	7/2006	Olsen et al.	
2007/0253981	A1	11/2007	Dubovi	
2010/0062014	A1	3/2010	Olsen et al.	
2013/0209509	A1	8/2013	Olsen et al.	

FOREIGN PATENT DOCUMENTS

EP	726316	A2	$8 / 1996$
WO	WO-0160849	A2	$8 / 2001$
WO	WO-2004/112831 A2	$12 / 2004$	

OTHER PUBLICATIONS

Daly et al. 1996 J Gen Virol vol. 77 pp. 661-671.*
Peek et al., J Vet Intern Med 2004 pp. 132-134.*
UF News Apr. 22, 2004.*
Dubovi et al. AAVLD 2004 p. 158.*
"U.S. Appl. No. $11 / 033,248$, Declaration Under 37 C.F.R. 1.131 filed Apr. 18, 2008", 6 pgs.
"U.S. Appl. No. 11/033,248, Declaration Under 37 C.F.R. 1.132 by Anne Koch dated Apr. 21, 2008", 2 pgs.
"U.S. Appl. No. 11/033,248, Declaration Under 37 C.F.R. 1.132 filed Apr. 18, 2008", 4 pgs.
"U.S. Appl. No. 11/033,248, Non-Final Office Action mailed Sep. 4, 2008", 8 pgs.
"U.S. Appl. No. 11/033,248, Notice of Allowance mailed Mar. 31, 2009", 6 pgs.
"U.S. Appl. No. 11/033,248, Response filed Jan. 5, 2009 to Office Action mailed Sep. 4, 2008", 8 pgs.
"U.S. Appl. No. 11/033,248, Response filed Aug. 29, 2007 to Restriction Requirement mailed Jun. 26,. 2007", 9 pgs
"U.S. Appl. No. 11/033,248, Response to Non-Final Office Action mailed Nov. 21, 2007,", 12 pgs.
"U.S. Appl. No. 11/033,248, Response to Request for Information Under 37 C.F.R. 1.105 filed Apr. 21, 2008", 1 pg.
"U.S. Appl. No. 11/033,248, Restriction Requirement mailed Jun. 26, 2007", 8 pgs.
"U.S. Appl. No. 11/033,248, Non-Final Office Action mailed Nov. 21, 2007", 10 pgs.
"U.S. Appl. No. 12/503,712, Examiner Interview Summary mailed Jun. 21, $2012^{\prime \prime}, 2$ pgs.
"U.S. Appl. No. 12/503,712, Non Final Office Action mailed Jun. 21, 2012", 7 pgs.
"U.S. Appl. No. 12/503,712, Notice of Allowance mailed Feb. 8, 2013", 6 pgs.
"U.S. Appl. No. 12/503,712, Notice of Allowance mailed May 15, 2013", 10 pgs.
"U.S. Appl. No. 12/503,712, Response filed Apr. 2, 2012 to Restriction Requirement mailed Mar. 1, 2012", 9 pgs.
"U.S. Appl. No. 12/503,712, Response filed Apr. 2, 2013 to Non Final Office Action mailed Feb. 8, 2013", 9 pgs.
"U.S. Appl. No. 12/503,712, Response filed Sep. 21, 2012 to Non Final Office Action mailed Jun. 21, $2012^{\prime \prime}, 11$ pgs.
"U.S. Appl. No. 12/503,712, Restriction Requirement mailed Mar. 1, 2012", 7 pgs.
"U.S. Appl. No. 13/839, 111, Non Final Office Action mailed Aug. 12, 2013", 10 pgs.
"Australian Application Serial No. 2006200484, Office Action mailed Feb. 17, 2012", 3 pgs.
"Australian Application Serial No. 2006200484, Response filed Jan. 17,2013 to Office Action mailed Feb. 17, 2012", 25 pgs.
"Australian Application Serial No. 2006200484, Response filed Apr. 17, 2013 to Subsequent Examiners Report mailed Jan. 25, 2013", 15 pgs.
"Australian Application Serial No. 2006200484, Subsequent Examiners Report mailed Jan. 25, 2013", 4 pgs.
"Canadian Application Serial No. 2,535,127, Office Action mailed Oct. 4, 2012", 3 pgs

(Continued)

Primary Examiner - Mary E Mosher
Assistant Examiner - Myron Hill
(74) Attorney, Agent, or Firm - Schwegman, Lundberg \& Woessner, P.A.

(57)

ABSTRACT
The invention provides an isolated H 3 equine influenza A virus, as well as methods of preparing and using the virus, and genes or proteins thereof.

References Cited

OTHER PUBLICATIONS

"Canadian Application Serial No. 2,535,127, Response filed Apr. 4, 2013 to Office Action mailed Oct. 4, 2012", 14 pgs.
"DQ222913-Influenza A virus (A/equine/Wisconsin/1/03 (H3N8)) hemagglutinin (HA) gene, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi.nlm.nih. gov/entrez/viewer.fcgi? $\mathrm{db}=$ nucleotide \&val $=78057300>$, (Oct. 29, 2005), 2 pgs.
"DQ222914—Influenza A Virus (A/equine/Wisconsin/1/03 (H3N8)) neuraminidase (NA) gene, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi.nlm.nih. gov/entrez/viewer.fcgi?db=nucleotide\&val=78057302>, (Oct. 29, 2005), 2 pgs.
"DQ222915-Influenza A virus (A/equine/Wisconsin/1/03 (H3N8)) nucleoprotein (NP) gene, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi.nlm.nih. gov/entrez/viewer.fcgi? $\mathrm{db}=$ nucleotide\&val=78057304>, (Oct. 29, 2005), 2 pgs.
"DQ222916 Influenza A virus (A/equine/Wisconsin/1/03 (H3N8)) matrix protein 2 (M2) and matrix protein 1 (M1) genes, complete cds", Database GenBank, [Online]. Retrieved from the Internet: http://www.ncbi.nlm.nih.gov/nuccore/dq222916, (Oct. 29, 2005), 2 pgs.
"DQ222917-Influenza A virus (A/equine/Wisconsin/1/03 (H3N8)) nonstructural protein 2 (NS2) and nonstructural protein 1 (NS1) genes, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi.nlm.nih.gov/entrez/viewer. fcgi? $\mathrm{db}=$ nucleotide \& val $=78057309>$, (Oct. 29, 2005), 2 pgs.
"DQ222918-Influenza A virus (A/equine/Wisconsin/1/03 (H3N8) polymerase acidic protein 2 (PA) gene, complete cds", Database GenBank, [Online]. Retrieved fromt the Internet: <http://www.ncbi. nlm.nih.gov/nuccore/dq222918>, (Oct. 29, 2005), 2 pgs.
"DQ222919-Influenza A virus (A/equine/Wisconsin/1/03H3N8)) polmerase subunit (PB1) gene, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi.nlm.nih. gov/entrez/viewer.fcgi? $\mathrm{db}=$ nucleotide\&val $=78057314>$, (Oct. 29, 2005), 2 pgs.
"DQ222920-Influenze A virus (A/equine/Wisconsin/1/03 (H3N8)) polymerase subunit PB2 (PB2) gene, complete cds", Database GenBank, [Online]. Retrieved from the Internet: <http://www.ncbi. nlm.nih.gov/entrez/viewer.fcgi? $\mathrm{db}=$ nucleotide\&val $=78057316>$, (Oct. 24, 2005), 2 pgs.
"Hemagglutinin precursor [Influenza A virus (A/equine/Kentucky/5/ 2002 (H3N8))]", GenBank Accession No. AAX23575, (Mar. 12, 2005), 1 pg.
"Japanese Application Serial No. 2006-089224, Examiners Decision of Final Refusal mailed Sep. 4, 2012", (w/ English Translation), 14 pgs.
"Japanese Application Serial No. 2006-089224, First Office Action mailed Jun. 28, 2011", (w/ English Translation), 12 pgs.
"Japanese Application Serial No. 2006-089224, Office Action mailed Jan. 29, 2013", 1 pg.
"Japanese Application Serial No. 2006-089224, Response filed Jan. 4, 2013 to Office Action mailed Sep. 4, 2012", (w/ English Translation of Amended Claims), 9 pgs.
"Japanese Application Serial No. 2006-089224, Response filed Dec. 28, 2011 to First Office Action mailed Jun. 28, 2011", (w/ English Translation of Amended Claims), 10 pgs .
"Japanese Application Serial No. 2013-000098, Amendment filed Jan. 10, 2013", 17 pgs.
"Korean Application Serial No. 10-2006-22670, Office Action mailed Jul. 25, 2013", (w/ English Translation), 24 pgs.
"Korean Application Serial No. 10-2006-22670, Office Action mailed Nov. 2, 2012", (w/ English Translation), 22 pgs.
"Korean Application Serial No. 10-2006-22670, Response filed Mar. 18, 2013 to Office Action mailed Nov. 2, 2012", (w/ English Translation of Amended Claims), 32 pgs .
"Mexican Application No. PA/a/2006/001355, Response filed Sep. 22, 2010 to Office Action mailed Jul. 22, 2010", 31 pgs.
"Mexican Application Serial No. PA/a/2006/001355 Office Action mailed Jul. 22, 2010", (w/ English Translation), 3 pgs.
"Mexican Application Serial No. PA/a/2006/001355, Office Action mailed Sep. 29, 2010", (w/English Translation), 3 pgs.
"Mexican Application Serial No. PA/a/2006/001355, Response Nov. 30, 2010 to Office Action mailed Sep. 29, 2010", (w/ English Translation of Claims), 21 pgs .
"Mexican Application Serial No. PA/a/2006/001355, Notice of Allowance mailed Dec. 22, 2010", 2. pgs.
"Regional Reports of Outbreaks Diagnosed and Domestic Vaccination Policies", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J.A., et al., Editors, R \& W Publications Limited, (2003), 6-14.
"Session 3: Vaccine Strain Selection Scheme", Proceedings of the Fourth International Meeting of OIE and Who Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A. et al., Editors, R \& W Publications Limited, (2003), 21-29.
"Session 4: Vaccines", Proceedings of the Fourth International Meeting of OIE andd WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A., Editors, et al., R \& W Publications Limited, (2003), 31-44.
"Session 6: International Movement and Disease Control", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A., et al., Editors, R \& W Publications Limited, (2003), 55-60.
"Session 7: The Way Ahead", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A. et al., Editors, R \& W Publications Limited, (2003), 61-65.
"University of Pittsburgh Researchers Develop Virus for First Intranasal Equine Influenza Vaccine", UPMC, University of Pittsburgh News Bureau, (Nov. 23, 1999), 1-3.
Barnett, D.V.M., D. C., "Vigilance and Vaccination: The Best Defenses Against Costly Equine Influenza", (prior to Jan. 11, 2005), 4 pgs.
Bridgen, A., "Rescue of a Segmented Negative-Strand RNA Virus Entirely From Cloned Complementary DNAs", Proc. Natl. Acad. Sci. USA, 93, (1996), 15400-15404.
Castrucci, M. R, et al., "Attenuation of Influenza A Virus by Insertion of a Foreign Epitope into the Neuraminidase", Journal of Virology, 66(8), (1992), 4647-4653.
Castrucci, M. R, et al., "Reverse genetics system for generation of an influenza A virus mutant containing a deletion of the carboxyl-terminal residue of M2 protein.", JVirol., 69(5), (May 1995), 2725-8. Conzelmann, K.-K., "Genetic Engineering of Animal RNAViruses", Trends in Microbiology, 4(10), (1996), 386-393.
Conzelmann, K.-K., "Genetic manipulation of non-segmented nega-tive-strand RNA viruses", Journal of General Virology, 77(Pt. 3), (Mar. 1996), 381-389.
Conzelmann, K.-K., "Nonsegmented Negative-Strand RNA Viruses: Genetics and Manipulation of Viral Genomes", Annu. Rev. Genet., 32, (1998), 123-162.
Conzelmann, K.-K., "Rescue of Synthetic Genomic RNA Analogs of Rabies Virus by Plasmid-Encoded Proteins", Journal of Virology, 68(2), (1994), 713-719.
Crawford, P. C, et al., "Transmission of Equine Influenza Virus to Dogs", Science Express, 310(5747), http://www.sciencemag.org/ content/310/15747/482.long, (Published Online Sep. 29, 2005), 482485.

Crawford, P. C, et al., "Transmission of equine influenza virus to dogs", Science, $310(5747$), (Oct. 21, 2005), 482-485.
Daly, J. M, et al., "Antigenic and Genetic Evolution of Equine H3N8 Influenza A Viruses", J. Gen. Virol, 77, (1996), 661-671.
Daly, J. M., et al., "Influenza Infections", In: Equine Respiratory Diseases, Lekeux, P., Editor, International Veterinary Information Services, (Nov. 13, 2001), 8 pgs.
Enami, M., "An Influenza Virus Containing Nine Different RNA Segments", Virology, 185(1), (1991), 291-298.

References Cited

OTHER PUBLICATIONS

Enami, M., et al., "High-Efficiency Formation of Influenza Virus Transfectants", Journal of Virology, 65(5), (1991), 2711-2713.
Filaroski, P. D., "Equine Flu Hits Jacksonville Greyhounds", The Business Journal of Jacksonville, Apr. 22, 2004, http://jacksonville. bizjournals.com/jacksonville/stories/2004/04/19/daily33.html, (observed Apr. 23, 2904), 2 pgs.
Fodor, E., "Rescue of Influenza A Virus from Recombinant DNA", Journal of Virology, 73(11), (1999), 9679-9682.
Goto, H., "Mutations Affecting the Sensitivity of the Influenza Virus Neuraminidase to 4-Guanidino-2, 4-dideoxy 2, 3-dehydro- N acetylneuraminic Acid", Virology, 238, (1997), 265-272.
Hatta, M., et al., "Molecular Basis for High Virulence of Hong Kong H5N1", Science, 293(5536), (Sep. 7, 2001), 1840-1342.
Horimoto, T., et al,, "Reverse Genetics Provides Direct Evidence for a Correction of Hemagglutinin Cleavability and Virulence of an Avian Influenza A Virus", Journal of Virology, 68(5), (1994), 31203128.

Huddleston, J. A., et al., "The Sequence of the Nucleoprotein Gene of Human Influenza A Virus, Strain A/NT/60/68", Nucleic Acids Research, 10(3), (1982), 1029-1038.
Kendal, A. P., et al., "Further Studies of the Neuraminidase Content of Inactivated Influenza Vaccines and the Neuraminidase Antibody Responses After Vaccination of Immunologically Primed and Unprimed Populations", Infection and Immunity, 29(3), (Sep. 1980), 966-971.
Kovesdi, I., et al., "Adenoviral Vectors for Gene Transfer", Current Opinion in Biotechnology, 8(5), (Oct. 1997), 583-589.
Lai, A. C. K., et al., "Alternative Circulation of Recent Equine-2 Influenza Viruses (H3N8) From Two Distinct Lineages in the United States", Virus Research, 100(2), (2004), 159-164.
Lai, A., "Introduction; Genetic Analysis Based on Nucleotide Sequence of the HA and Other Genes", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A., et al., Editors, R \& W Publications Limited, (2003), 16-19.
Landolt, G., et al., "Growth Characteristics of Influenza A Viruses in Primary Canine Respiratory Cells", Proceedings of the 85th Anmual Meeting of the Research Workers in Animal Diseases (CRWAD), (Abstract No. P92), (2004), p. 104.
Lawson, N. D., "Recombinant Vesicular Stomatitis Viruses From DNA", Proc. Natl. Acad. Sci. USA, 92(10), (1995), 4477-4481.
Li, S., et al., "Electroporation of Influenza Virus Ribonucleoprotein Complexes for Rescue of the Nucleoprotein and Matrix Genes", Virus Research, 37(2), (1995), 153-161.
Luytjes, W., "Amplification, Expression, and Packaging of a Foreign Gene by Influenza Virus", Cell, 59(6), (1989), 1107-1113.
MaCallister, DVM, C., et al., "OSU-Equine Vaccination Programs", Oklahoma Cooperative Extension Fact Sheet No. F-9119, (prior to Jan. 11, 2005), 4 pgs .
Mena, I., "Rescue of a Synthetic Choramphenicol Acetyltransferase RNA into influenza Virus-Like Particles obtained from recombinant plasmids", Journal of Virology, 70(8), (1996), 5016-5024.
Mumford, J. A., "OIE Standards", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Monograph Series No. 7), Mumford, J. A., Editors, et al., R \& W Publications Limited, (2003), 46-53.
Munoz, F. M., et al., "Current Research on Influenza and Other Respiratory Viruses: II International Symposium", Antiviral Research, 46(2), (May 2000), 91-124.
Nagai, Y., "Paramyxovirus Replication and Pathogenesis. Reverse Genetics Transforms Understanding", Reviews in Medical Virology, 9(2), (1999), 83-99.

Neumann, G., et al., "A Decade After the Generation of a NegativeSense RNA Virus From Cloned cDNA - What Have We Learned?", Journal of General Virology, 83(11), (Nov. 2002), 2635-2662.
Neumann, G., et al., "Generation of influenza A viruses entirely cloned cDNAs", Proc. Natl. Acad. Sci. USA., 96(16), (1999), 93459350.

Neumann, G., et al., "Nuclear Import and Export of Influenza Virus Nucleoprotein", Journal of Virology, 71(12), (1997), 9690-9700.
Neumann, G., et al., "Reverse genetics of influenza virus.", Virology, 287(2), (Sep. 1, 2001), 243-50.
Neumann, G., et al., "RNA Polymerase I-Mediated Expression of Influenza Viral RNA Molecules", Virology, 202(1), (1994), 477-479. Niwa, H., et al., "Efficient Selection for High-Expression Transfectants With a Novel Eukaryotic Factor", Gene, 108(2), (1991), 193-199.

Olsen, C. W., et al., "Immunogenicity and Efficacy of BaculovirusExpressed and DNA-based Equine Influenza Virus Hemagglutinin Vaccines in Mice", Vaccine, 15(10), (1997), 1149-1156.
Park, A. W., et al., "The Effects of Strain Heterology on the Epidemiology of Equine Influenza in a Vaccinated Population", Proc. R. Soc. Lond. B., 271, (2004), 1547-1555.
Parks, C. L., et al., "Enhanced Measles Virus cDNA Rescue and Gene Expression After Heat Shock", Journal of Virology, 73(5), (May 1999), 3560-3566.

Peek, S. F., et al., "Acute Respiratory Distress Syndrome and Fatal Interstitial Pneumonia Associated with Equine Influenza in a Neonatal Foal", Journal of Veterinary Internal Medicine, vol. 18(1), (Jan. 2004), 132-134.

Pekosz, A., "Commentary-Reverse Genetics of Negative-Strand
RNA Viruses: Closing the Circle", Proc. Natl. Acad. Sci. USA, 96, (1999), 8804-8806.

Perez, D. R., et al., "The Matrix 1 Protein of Influenza A Virus Inhibits the Transcriptase Activity of a Model Influenza Reporter Genome in Vivo", Virology, 249(1), (1998), 52-61.
Pleschka, S., et al., "A Plasmid-Based Reverse Genetics System for Influenza A Virus", Journal of Virology, 70(6), (1996), 4188-4192.
Powell, D. W., "Overview of Equine Influenza From the American Perspective", Proceedings of the Fourth International Meeting of OIE and WHO Experts on Control of Equine Influenza, (Havemeyer Foundation Mongraph Series No. 7), Mumford, J. A., et al., Editors, R \& W Publications Limited, (2003), 2-5.
Radecke, F., et al., "Rescue of Measles Viruses From Cloned DNA", The EMBO Journal, 14(23), (1995), 5773-5784.
Roberts, A., et al., "Recovery of Negative-Strand RNA Virus from Plasmid DNAs: A Positive Approach Revitalizes a Negative Field", Virology, 247(1), (1998), 1-6.
Rose, J. K., "Positive Strands to the Rescue Again: A Segmented Negative-Strand RNA Virus Derived From Cloned cDNAs", Proc. Natl. Acad. Sci. USA, 93(26), (Dec. 24, 1996), 14998-15000.
Schnell, M. J., "Infectious Rabies Viruses From Cloned cDNA", The EMBO Journal, 13(18), (1994), 4195-4203.
Suzuki, Y., et al., "Origin and Evolution of Influenza Virus Hemagglutinin Genes", Mol. Biol. Evol., 19(4), (2002), 501-509.
Townsend, H. G., et al., "Comparative Efficacy of Commercial Vaccines in Five Horses: Serologic Responses and Protection After Influenza Challenge", Proceedings, 49th Annual Conference of the American Association of Equine Practitioners, (2003), 3 pgs.
Wilson, W. D., "Equine Influenza", Vet. Clin. North Am. Equine Pract., 9(2), (Abstract Only), (1993), 257-282.
"Canadian Application Serial No. 2,535,127, Office Action mailed Nov. 8, 2013", 5 pgs.
"Korean Application Serial No. 10-2013-128074, Notice of Preliminary Rejection mailed Dec. 10, 2013", 3 pgs.

* cited by examiner

HAamino

Abstract

MKTTIILILLTHWAYSQNPISGNNTATLCLGHHAVANGTLVKTISDDQIEYTNATE LVQSISMGKICNNSYRILDGRNCTLIDAMLGDPHCDAFQYENWDLFIERSSAFSN CYPYDIPDYASLRSIVASSGTLEFTAEGFTWTGVTQNGRSGACKRGSADSFFSRL NWLTKSGSSYPTLNVTMPNNKNFDKLYIWGIHHPSSNQEQTKLYIQESGRVTVST KRSQQTIIPNIGSRPWVRGQSGRISIYWTIVKPGDILMINSNGNLVAPRGYFKLKT GKSSVMRSDVPIDICVSECITPNGSISNDKPFQNVNKVTYGKCPKYIRQNTLKLAT GMRNVPEKQIRGIFGALAGFIENGWEGMVDGWYGFRYQNSEGTGQAADLKSTQ AAIDQINGKLNR VIERTNEKFHQIEKEFSEVERRIQDLEKYVEDTKIDLWSYNAEL LVALENQHTIDLTDAEMNKLFEKTRRQLRENAEDMGGGCFKIYHKCDNACIGSI RNGTYDHYIYRDEALNNRFQIKGVELKSGYKDWILWISFAISCFLICVVLLGFIM WACQKGNIRCNICI

SEQ ID NO:1
FIG. $1 A$

NAamino
MNPNQKIIAIGFASL GILIINVILHVVSIIVTVL VLNNNRTDLNCKGTITREYNETVR VEKITQWYNTSTIKYIERPSNEYYMNNTEPLCEAQGFAPFSKDNGIRIGSRGHVFV IREPFVSCSPSECRTFFLTQGSLLADKHSNGTVKDRSPYRTLMSVKIGQSPNVYQA RFESVAWSATACHDGKKWMTVGVTGPDNQAIAVVNYGGVPVDIINSWAGDILR TQESSCTCIKGDCYWVMTDGPANRQAKYRIFKAKDGRVIGQTDISFNGGHIEECS CYPNEGKVECICRDNWTGTNRPILVISSDLSYTVGYLCAGIPTDTPRGEDSQFTGS CTSPLGNKGYGVKGFGFRQGTDVWAGRTISRTSRSGFEIIKIRNGWTQNSKDQIR RQVIIDDPNWSGYSGSFTLPVELTKKGCLVPCFWVEMIRGKPEETTIWTSSSSIVM CGVDIIKIASWSWIIDGALPPDDIDKM

SEQ ID NO: 2
FIG. $1 B$

Abstract

PBlamino MDVNPILLFLLKVPAQNAISITFPYIGDPPYSHGIGIGYYMDIVNRTHQYSEKGK WTTNTEIGAPQLNPIDGPLPEDNEPSGYAQTDCVLEAMAFLEESHPGIFENSCLET MEVIQQTRVDKLTQGRQTYDWTLNRNQPAATALANTIEVFRSNGLTSNESGRLM DFLKDVMESMNKEEMEITTHFQRKRRVRDNMTKRMVTQRTIGKKKQRL NRKS YLIRTLTLNTMTKDAERGKLKRRAIATPGMQIRGFVYFVETLARRICEKLEQSGL PVGGNEKKAKLANVVRKMMTNSQDTELSFTITGDNTKWNENQNPRIFLAMITYI TRNOPEWFRN VLSLAPIMFSNKMARLGKGYMFESKSMKLRTQIPAGMLASIDLK YFNDPTKKKIEKIRPLLVDGTASLSPGMMMGMFNMLSTVLGVSLLNLGQRKYTK TTYWWDGLQSSDDFALIVNAPNHEGIQAGVDRFYRTCKLVGINMSKKKSYINRT GTFEFTSFFYRYGFVANFSMELPSFGVSGINESADMSIGVTVIKNNMINNDLGPAT AQMALQLFIKDYRYTYRCHRGDTQIQTRRSFELKKLWEQTRSKTGLLVSDGGPN LYNIRNLHIPEVCLKWELMDEDYKGRLCNPLNPFVSHKEIESVNSAVVMPAHGP AKSMEYDAVATTHSWIPKRNRSILNTSQRGLLEDEQMYQKCCNLFEKFFPSSSYR RPVGISSMVEAMVSRARIDARIDFESGRIKKDEFAEIMKICSTIEELRRQK

SEQ ID NO:3

FIG. $1 C$

PB2amino
MERIKELRDLMLQSRTREILTKTTVDHMAIIKKYTSGRQEKNPALRMKWMMAM KYPITADKRTMEMIPERNEQGQTLWSKTNDAGSDRVMVSPLAVTWWNRNGPTT STIHYPKVYKTYFEK VERLKHGTFGPVHFR VQVKIRRRVDVNPGHADLSAKEAQ DVIMEVVFPNEVGARILTSESQLTITKEKKEELQDCKIAPLMVAYMLERELVRKT RFLPVAGGTSSVYIEVLHLTQGTCWEQMYTPGGEVRNDDIDQSLIIAARNIVRRA TVSADPLASLLEMCHSTQIGGIRMVDILKQNPTEEQAVDICKAAMGLRISSSFSFG GFTFKRTSGSSVKREEEMLTGNLQTLKIRVHEGYEEFTMVGRRATAILRKATRRL IQLIVSGRDEQSIAEAIIVAMVFSQEDCMIKAVRGDLNFVNRANQRLNPMHQLLR HFQKDAKVLFQNWGIEPIDNVMGMIGILPDMTPSTEMSLRGVRVSKMGVDEYSS TERVVVSIDRFLRVRDQRGNILLSPEEVSETQGTEKLTIIYSSSMMWEINGPESVL VNTYQWIR NWEIVKIQWSQDPTML YNKIEFEPFQSL VPRATRSQYSGFVRTLFQ QMRDVLGTFDTAQIIKLLPFAAAPPEQSRMQFSSLTVNVRGSGMRILVRGNSPVF NYNKATKRLTVLGKDAGALTEDPDEGTAGVESAVLRGFLILGKENKRYGPAL\$I NELSKLAKGEKANVLIGQGDVVLVMKRKRDSSILTDSQTATKRIRMAIN

PAamino
MEDFVRQCFNPMIVELAEKAMKEYGEDPKIETNKFAAICTHLEVCFMYSDFHFIN ELSESVVIESGDPNALLKHRFEIIEGRDRTMAWTVVNSICNTTRAEKPKFLPDLYD YKENRFVEIGVTRREVHIYYLEKANKIKSEKTHIHIFSFTGEEMATKADYTLDEES RARIKTRLFTIRQEMASRGLWDSFRQSERGEETIEERFEITGTMRKLANYSLPPNF SSLENFRVYVDGFEPNGCIESKLSQMSKEVNARIEPFSKTTPRPLKMPGGPPCHQR SKFLLMDALKLSIEDPSHEGEGIPLYDAIKCMKTFFGWKEPSIVKPHEKGINPNYL QTWKQVLAELQDLENEEKDPKTKNMKKTSQLKWALSENMAPEKVDFEDCKDIS DLKQYDSDEPETRSLASWIQSEFNKACELTDSSWIELDEIGEDVAPIEYIASMRRN YFTAEVSHCRATEYIMKGVYINTALLNASCAAMDEFQLIPMISKCRTKEGRRKTN LYGFTVKGRSHLRNDTDVVNFVSMEFSLTDPRFEPHK WEKYCVLETGDMLLRTA VGQVSRPMFLYVRTNGTSKIKMKWGMEMRRCLLQSLQQIESMIEAESSVKEKD MTKEFFENK SETWPIGESPKGVEEGSIGKVCRTLLAKSVFNSL YASPQLEGFSAES RKLLLIVQALRDNLEPGTFDIGGLYESIEECLINDPWVLLNASWFNSFLTHALK

SEQ ID NO: 5
FIG. $1 E$

NPamino
MASQGTKRSYEQMETDGERQNATEIRASVGRMVGGIGRFYVQMCTELKLNDHE GRLIQNSITIERMVLSAFDERRNKYLEEHPSAGKDPKKTGGPIYRRKDGKWMREL ILHDKEEIMRIWRQANNGEDATAGLTHMMIWHSNLNDTTYQRTRALVRTGMDP RMCSLMQGSTLPRRSGAAGAAVKGVGTMVMELIRMIKRGINDRNFWRGENGR RTRIAYERMCNILKGKFQTAAQRAMMDQVREGRNPGNAEIEDLIFLARSALILRG SVAHKSCLPACVYGLAVTSGYDFEKEGYSLVGIDPFKLLQNSQIFSLIRPKENPAH KSQLVWMACHSAAFEDLRVLNFIRGTKVIPRGQLTTRGVQIASNENMETIDSSTL ELRSKYWAIRTRSGGNTSQQRASAGQISVQPTISVQRNLPFERATIMAAFTGNTE GRTSDMRTEIRMMENAKSEDVSFQGRGVFELSDEKATNPIVPSFDMSNEGSYFF GDNAEEFDS

SEQ ID NO: 6
FIG. $1 F$

MSLLTEVETYVLSIVPSGPLKAEIAQRLEDVFAGKNTDLEALMEWLKTRPILSPLT KGILGFVFTLTVPSERGLQRRRFVQNALSGNGDPNNMDRAVKLYRKLKREITFH GAKEVALSYSTGALASCMGLIYNRMGTVTTEVAFGLVCATCEQIADSQHRSHRQ MVTTTNPLIRHENRMVLASTTAKAMEQMAGSSEQAAEAMEVASRARQMVQAM RTIGTHPSSSAGLKDDLLENLQAYQKRMGVQMQRFK

SEQ ID NO:7

FIG. $1 G$

Abstract

NSlamino MDSNTVSSFQVDCFLWHVRKRFADQELGDAPFLDRLRRDQKSLRGRGSTLGLDI ETATHAGKQIVEQILEKESDEALKMTIASVPTSRYLTDMTLDEMSRDWFMLMPK QKVTGSLCIRMDQAIMDKNIILKANFSVIFERLETLILLRAFTEEGAVVGEISPLPSL PGHTNEDVKNAIGVLIGGLKWNDNTVRISETLQRFAWRSSHENGRPSFPSKQKR KMERTIKPKI

SEQ ID NO: 8
FIG. $1 H$

HA

TCATGAAGACAACCATTATTTTGATACTACTGACCCATTGGGCTTACAGTCAA AACCCAATCAGTGGCAACAACACAGCCACATTGTGTCTGGGACACCATGCAG TAGCAAATGGAACATTGGTAAAAACAATAAGTGATGATCAAATTGAGGTGAC AAATGCTACAGAATTAGTTCAAAGCATTTCAATGGGGAAAATATGCAACAAC TCATATAGAATTCTAGATGGAAGAAATTGCACATTAATAGATGCAATGCTAG GAGACCCCCACTGTGACGCCTTTCAGTATGAGAATTGGGACCTCTTTATAGAA AGAAGCAGCGCTTTCAGCAATTGCTACCCATATGACATCCCTGACTATGCATC GCTCCGATCCATTGTAGCATCCTCAGGAACATTGGAATTCACAGCAGAGGGA TTCACATGGACAGGTGTCACTCAAAACGGAAGAAGTGGAGCCTGCAAAAGG GGATCAGCCGATAGTTTCTTTAGCCGACTGAATTGGCTAACAAAATCTGGAA GCTCTTACCCCACATTGAATGTGACAATGCCTAACAATAAAAATTTCGACAA GCLALACATCTGGGGGAI"CAICACCCGAGCICAAAICAACAGCAGACAAAA TTGTACATCCAAGAATCAGGACGAGTAACAGTCTCAACAAAAAGAAGTCAAC AAACAATAATCCCTAACATCGGATCTAGACCGTGGGTCAGAGGTCAATCAGG TAGGATAAGCATATACTGGACCATTGTAAAACCTGGAGATATCCTAATGATA AACAGTAATGGCAACTTAGTTGCACCGCGGGGATATTTTAAATTGAAAACAG GGAAAAGCTCTGTAATGAGATCAGATGTACCCATAGACATTTGTGTGTCTGA ATGTATTACACCAAATGGAAGCATCTCCAACGACAAGCCATTCCAAAATGTG AACAAAGTTACATATGGAAAATGCCCCAAGTATATCAGGCAAAACACTTTAA AGCTGGCCACTGGGATGAGGAATGTACCAGAAAAGCAAATCAGAGGAATCT TTGGAGCAATAGCGGGATTCATCGAAAACGGCTGGGAAGGAATGGTTGATGG GIGGIATGGGITCCGATATCAAAACTCTGAAGGAACAGGGCAAGOLGCAGAI CTAAAGAGCACTCAAGCAGCCATCGACCAGATTAATGGAAAGTTAAACAGA GTGATTGAAAGAACCAATGAGAAATTCCATCAAATAGAGAAGGAATTCTCAG AAGTAGAAAGAAGAATTCAGGACTTGGAGAAATATGTAGAAGACACCAAAA TAGACCTATGGTCCTACAATGCAGAATTGCTGGTGGCTCTAGAAAATCAACA TACAATTGACTTAACAGATGCAGAAATGAATAAATTATTTGAGAAGACTAGA CGCCAGTTAAGAGAAAACGCAGAAGACATGGGAGGTGGATGTTTCAAGATTT ACCACAAATGTGATAATGCATGCATTGGATCAATAAGAAATGGGACATATGA CCATTACATATACAGAGATGAAGCATTAAACAACCGATTTCAGATCAAAGGT GTAGAGTTGAAATCAGGCTACAAAGATTGGATACTGTGGATTTCATTCGCCA TATCATGCTTCTTAATTTGCGTTGTTCTATTGGGTTTCATTATGTGGGCTTGCC AAAAAGGCAACATCAGATGCAACATTTGCATTTGAG

ATGAATCCAAATCAAAAGATAATAGCAATTGGATTTGCATCATTGGGGATAT TAATCATTAATGTCATTCTCCATGTAGTCAGCATTATAGTAACAGTACTGGTC CTCAATAACAATAGAACAGATCTGAACTGCAAAGGGACGATCATAAGAGAG TACAATGAAACAGTAAGAGTAGAAAAAATTACTCAATGGTATAATACCAGTA СААТТААGTACATAGAGAGACСTTCAAATGAATACTACATCAACAACACTGA ACCACTTTGTGAGGCCCAAGGCTTTGCACCATTTTCCAAAGATAATGGAATAC GAATTGGGTCGAGAGGCCATGTTTTTGTGATAAGAGAACCTTTTGTATCATGT TCGCCCTCAGAATGTAGAACCTTTTTCCTCACACAGGGCTCATTACTCAATGA CAAACATTCTAACGGCACAGTAAAGGACCGAAGTCCGTATAGGACTTTGATG AGTGTCAAAATAGGGCAATCACCTAATGTATATCAAGCTAGGTTTGAATCGG TGGCATGGTCAGCAACAGCATGCCATGATGGAAAAAAATGGATGACAGTTGG AGTCACAGGGCCCGACAATCAAGCAATTGCAGTAGTGAACTATGGAGGTGTT CCGGTTGATATTATTAATTCATGGGCAGGGGATATTTTAAGAACCCAAGAAT CATCATGCACCTGCATTAAAGGAGACTGTTATTGGGTAATGACTGATGGACC GGCAAATAGGCAAGCTAAATATAGGAJALTCAAAGCAAAAGAIGGAAGAGL AATTGGACAGACTGATATAAGTTTCAATGGGGGACACATAGAGGAGTGTTCT TGTTACCCCAATGAAGGGAAGGTGGAATGCATATGCAGGGACAATTGGACTG GAACAAATAGACCAATTCTGGTAATATCTTCTGATCTATCGTACACAGTTGGA TATTTGTGTGCTGGCATTCCCACTGACACTCCTAGGGGAGAGGATAGTCAATT CACAGGCTCATGTACAAGTCCTTTGGGAAATAAAGGATACGGTGTAAAAGGT TTCGGGTTTCGACAAGGAACTGACGTATGGGCCGGAAGGACAATTAGTAGGA CTTCAAGATCAGGATTCGAAATAATAAAAATCAGGAATGGTTGGACACAGAA CAGTAAAGACCAAATCAGGAGGCAAGTGATTATCGATGACCCAAATTGGTCA GGATATAGCGGTTCTTTCACATTGCCGGTTGAACTAACAAAAAAGGGATGTT TGGTCCCCTGTTTCTGGGTTGAAATGATTAGAGGTAAACCTGAAGAAACAAC AATATGGACCTCTAGCAGCTCCATTGTGATGTGTGGAGTAGATCATAAAATT GCCAGTTGGTCATGGCACGATGGAGCTATTCTTCCCTTTGACATCGATAAGAT GTAA

SEQ ID NO: 10
FIG. 1J

Abstract

PB1 ATGGATGTCAATCCGACTCTACTTTTCTTAAAGGTGCCAGCGCAAAATGCTAT AAGCACAACATTTCCTTATACTGGAGATCCTCCCTACAGTCATGGAACAGGG ACAGGATACACCATGGATACTGTCAACAGAACACACCAATATTCAGAAAAAG GGAAATGGACAACAAACACTGAGATTGGAGCACCACAACTTAATCCAATCGA TGGACCACTTCCTGAAGACAATGAACCAAGTGGGTACGCCCAAACAGATTGT GTATTGGAAGCAATGGCTTTCCTTGAAGAATCCCATCCCGGAATCTTTGAAAA TTCGTGTCTTGAAACGATGGAGGTGATTCAGCAGACAAGAGTGGACAAACTA ACACAAGGCCGACAAACTTATGATTGGACCTTGAATAGGAATCAACCTGCCG CAACAGCACTTGCTAATACGATTGAAGTATTCAGATCAAATGGTCTGACTTCC AatGAatCGGGGAGATTGATGGACTTCCTCAAAGATGTCATGGAGTCCATGA ACAAGGAAGAAATGGAAATAACAACACACTTCCAACGGAAGAGAAGAGTAA GAGACAACATGACAAAGAGAATGGTAACACAGAGAACCATAGGGAAGAAAA AACAACGATTAAACAGAAAGAGCTATCTAATCAGAACATTAACCCTAAACAC AATGACCAAGGACGCTGAGAGAGGGAAATTGAAACGACGAGCAATCGCTAC CCCAGGGATGCAGATAAGAGGGTTTGTATATTTTGTTGAAACACTAGCCCGA AGAATATGTGAAAAGCTTGAACAATCAGGATTGCCAGTTGGCGGTAATGAGA AAAAGGCCAAACTGGCTAATGTCGTCAGAAAAATGATGACTAATTCCCAAGA CACTGAACTCTCCTTCACCATCACTGGGGACAATACCAAATGGAATGAAAAT CAGAACCCACGCATATTCCTGGCAATGATCACATACATAACTAGAAACCAGC CAGAATGGTTCAGAAATGTTCTAAGCATTGCACCGATTATGTTCTCAAATAAA ATGGCAAGACTGGGGAAAGGATATATGTTTGAAAGCAAAAGTATGAAATTG AGAACTCAAATACCAGCAGGAATGCTTGCAAGCATTGACCTGAAATATTTCA ATGATCCAACAAAAAAGAAAATTGAAAAGATACGACCACTTCTGGTTGACGG GACTGCTTCACTGAGTCCTGGCATGATGATGGGAATGTTCAACATGTTGAGC ACTGTGCTAGGTGTATCCATATTAAACCTGGGCCAGAGGAAATACACAAAGA CCACATACTGGTGGGATGGTCTGCAATCATCCGATGACTTTGCTTTGATAGTG AATGCGCCTAATCATGAAGGAATACAAGCTGGAGTAGACAGATTCTATAGGA CTTGCAAACTGGTCGGGATCAACATGAGCAAAAAGAAGTCCTACATAAATAG AACTGGAACATTCGAATTCACAAGCTTTTTCTACCGGTATGGTTTTGTAGCCA ATTTCAGCATGGAACTACCCAGTTTTGGGGTTTCCGGAATAAATGAATCTGCA GACATGAGCATTGGAGTGACAGTCATCAAAAACAACATGATAAATAATGATC TCGGTCCTGCCACGGCACAAATGGCACTCCAACTCTTCATTAAGGATTATCGG TACACATACCGGTGCCATAGAGGTGATACCCAGATACAAACCAGAAGATCTT TTGAGTTGAAGAAACTGTGGGAACAGACTCGATCAAAGACTGGTCTACTGGT ATCAGATGGGGGTCCAAACCTATATAACATCAGAAACCTACACATCCCGGAA GTCTGTTTAAAATGGGAGCTAATGGATGAAGATTATAAGGGGAGGCTATGCA ATCCATTGAATCCTTTCGTTAGTCACAAAGAAATTGAATCAGTCAACAGTGCA gTAGTAATGCCTGCGCATGGCCCTGCCAAAAGCATGGAGTATGATGCTGTTG CAACAACACATTCTTGGATCCCCAAGAGGAACCGGTCCATATTGAACACAAG CCAAAGGGGAATACTCGAAGATGAGCAGATGTATCAGAAATGCTGCAACCTG TTTGAAAAATTCTTCCCCAGCAGCTCATACAGAAGACCAGTCGGGATTTCTAG TATGGTTGAGGCCATGGTGTCCAGGGCCCGCATTGATGCACGAATTGACTTC GAATCTGGACGGATAAAGAAGGATGAGTTCGCTGAGATCATGAAGATCTGTT CCACCATTGAAGAGCTCAGACGGCAAAAATAGTGA

SEQ ID NO:11
FIG. $1 K$

Abstract

PB2 ATGGAGAGAATAAAAGAACTGAGAGATCTGATGTTACAATCCCGCACCCGCG AGATACTAACAAAAACTACTGTGGACCACATGGCCATAATCAAGAAATACAC ATCAGGAAGACAAGAGAAGAACCCTGCACTTAGGATGAAATGGATGATGGC AATGAAATACCCAATTACAGCAGATAAGAGGATAATGGAGATGATTCCTGAG AGAAATGAACAGGGACAAACCCTTTGGAGCAAAACGAACGATGCTGGCTCA GACCGCGTAATGGTATCACCTCTGGCAGTGACATGGTGGAATAGGAATGGAC CAACAACAAGCACAATTCATTATCCAAAAGTCTACAAAACTTATTTTGAAAA GGTTGAAAGATTGAAACACGGAACCTTTGGCCCCGTTCATTTTAGGAATCAA GTCAAGATAAGACGAAGAGTTGATGTAAACCCTGGTCACGCGGACCTCAGTG CCAAAGAAGCACAAGATGTGATCATGGAAGTTGTTTTCCCAAATGAAGTGGG AGCCAGAATTCTAACATCGGAATCACAACTAACAATAACCAAAGAGAAAAA GGAAGAACTTCAGGACTGCAAAATTGCTCCCTTGATGGTAGCATACATGCTA GAAAGAGAGTTGGTCCGAAAAACAAGGTTCCTCCCAGTAGCAGGCGGAACA AGCAGTGTATACATTGAAGTGTTGCATCTGACTCAGGGAACATGCTGGGAGC AAATGTACACCCCAGGAGGAGAAGTTAGAAACGATGATATTGATCAAAGTTT AATTATTGCAGCCCGGAACATAGTGAGAAGAGCAACAGTATCAGCAGATCCA CTAGCATCCCTACTGGAAATGTGCCACAGTACACAGATTGGTGGAATAAGGA IGGTAGACATCCTTAAGCAGAATCCAACAGAGGAACAAGCTGTGGATATATG CAAAGCAGCAATGGGATTGAGAATTAGCTCATCATTCAGCTTTGGTGGATTC ACCTTCAAGAGAACAAGTGGATCATCAGTCAAGAGAGAAGAAGAAATGCTT ACGGGCAACCTTCAAACATTGAAAATAAGAGTGCATGAGGGCTATGAAGAAT TCACAATGGTCGGAAGAAGAGCAACAGCCATTCTCAGAAAGGCAACCAGAA GATTGATTCAATTGATAGTAAGTGGGAGAGATGAACAGTCAATTGCTGAAGC AATAATTGTAGCCATGGTGTTTTCGCAAGAAGATTGCATGATAAAAGCAGTT CGAGGCGATTTGAACTTTGTTAATAGAGCAAATCAGCGCTTGAACCCCATGC ATCAACTCTTGAGGCATTTCCAAAAGGATGCAAAAGTGCTTTTCCAAAATTG GGGGATTGAACCCATCGACAATGTAATGGGAATGATTGGAATATTGCCTGAC ATGACCCCAAGCACCGAGATGTCATTGAGAGGAGTGAGAGTCAGCAAAATG GGAGTGGATGAGTACTCCAGCACTGAGAGAGTGGTGGTGAGCATTGACCGTT TTTTAAGAGTTCGGGATCAAAGGGGAAACATACTACTGTCCCCTGAAGAAGT CAGTGAAACACAAGGAACGGAAAAGCTGACAATAATTTATTCGTCATCAATG ATGTGGGAGATTAATGGTCCCGAATCAGTGTIGGTCAATACTTATCAATGGAT CATCAGGAACTGGGAAATTGTAAAAATTCAGTGGTCACAGGACCCCACAATG TTATACAATAGATAGANTTTGAGCCATTCCAATCCCTGGTCCCTAGGGCTAC CAGAAGCCAATACAGCGGTTTCGTAAGAACCCTGTTTCAGCAAATGCGAGAT GTACTTGGAACATTTGATACTGCTCAAATAATAAAACTCCTCCCTTTTGCCGC TGCTCCTCCGGAACAGAGTAGGATGCAGTTCTCTTCTTTGACTGTTAATGTAA GAGGTTCGGGAATGAGGATACTTGTAAGAGGCAATTCCCCAGTGTTCAACTA CAATAAAGCCACTAAAAGGCTCACAGTCCTCGGAAAGGATGCAGGTGCGCTT ACTGAGGACCCAGATGAAGGTACGGCTGGAGTAGAATCTGCTGTTCTAAGAG GGTTTCTCATTTTAGGTAAAGAAAATAAGAGATATGGCCCAGCACTAAGCAT CAATGAACTAAGCAAACTTGCAAAAGGGGAGAAAGCCAATGTACTAATTGG GCAAGGGGACGTAGTGTTGGTAATGAAACGGAAACGTGACTCTAGCATACTT ACTGACAGCCAGACAGCGACCAAAAGGATTCGGATGGCCATCAATTAGT

SEQ ID NO: 12

PA

Abstract

ATGGAAGACTTTGTGCGACAATGCTTCAATCCAATGATCGTCGAGCTTGCGG AAAAGGCAATGAAAGAATATGGAGAGGACCCGAAAATCGAAACAAACAAAT TTGCAGCAATATGCACTCACTTGGAAGTCTGCTTCATGTACTCGGATTTCCAC TTTATTAATGAACTGAGTGAGTCAGTGGTCATAGAGTCTGGTGACCCAAATG CTCTTTTGAAACACAGATTTGAAATCATTGAGGGGAGAGATCGAACAATGGC ATGGACAGTAGLAAACAGCATCTGCAACACCACAAOAGCTGAAAAACCTAA ATTTCTTCCAGATTTATACGACTATAAGGAGAACAGATTTGTTGAAATTGGTG TGACAAGGAGAGAAGTTCACATATACTACCTGGAGAAGGCCAACAAAATAA AGTCTGAGAAAACACATATCCACATTTTCTCATTTACAGGAGAGGAAATGGC TACAAAAGCGGACTATACTCTTGATGAAGAGAGTAGAGCCAGGATCAAGACC AGACTATTCACTATAAGACAAGAAATGGCCAGTAGAGGCCTCTGGGATTCCT TTCGTCAGTCCGAGAGAGGCGAAGAGACAATTGAAGAAAGATTTGAAATCAC AGGGACGATGCGCAAGCTTGCCAATTACAGTCTCCCACCGAACTTCTCCAGC CTTGAAAATTTTAGAGTCTATGTGGATGGATTCGAACCGAACGGCTGCATTG AGAGTAAGCTTTCTCAAATGTCCAAAGAAGTAAATGCCAGAATCGAACCATT TTCAAAGACAACACCCCGACCACTCAAAATGCCAGGTGGTCCACCCTGCCAT CAGCGATCTAAATTCCTGCTAATGGATGCTCTGAAACTGAGCATTGAGGACC CAAGTCACGAGGGAGAGGGAATACCACTATATGATGCCATCAAATGCATGAA AACTTTCTTTGGATGGAAAGAGCCCAGTATTGTTAAACCACATGAAAAGGGT ATAAACCCGAACTATCTCCAAACTTGGAAGCAAGTATTAGCAGAATTACAAG ACCTTGAGAACGAAGAAAAGGACCCCAAGACCAAGAATATGAAAAAAACAA GCCAATTGAAATGGGCACTTAGTGAAAATATGGCACCAGAGAAAGTGGATTT TGAGGATTGTAAAGACATCAGTGATTTAAAACAGTATGACAGTGATGAGCCA GAAACAAGGTCTCTTGCAAGTTGGATTCAAAGTGAGTTCAACAAAGCTTGTG AACTGACAGATTCAAGCTGGATAGAGCTCGATGAAATTGGGGAGGATGTTGC CCCAATAGAATACATTGCGAGCATGAGGAGAAATTATTTTACTGCTGAGGTT TCCCATTGTAGAGCAACAGAATATATAATGAAGGGAGTGTACATCAACACTG CTCTACTCAATGCATCCTGTGCTGCGATGGATGAATTCCAATTAATTCCGATG ATAAGTAAATGCAGGACCAAAGAAGGGAGAAGGAAGACAAATTTATATGGA TTCATAGTAAAGGGAAGGTCCCATTTAAGAAATGATACTGACGTGGTGAACT TTGTAAGTATGGAATTTTCTCTCACTGATCCAAGATTTGAGCCACACAAATGG GAAAAATACTGCGTTCTAGAAATTGGAGACATGCTTCTAAGAACTGCTGTAG GTCAAGTGTCAAGACCCATGTTTTTGTATGTAAGGACAAATGGAACCTCTAA AATTAAAATGAAATGGGGAATGGAAATGAGGCGCTGCCTCCTTCAGTCTCTG CAACAGATTGAAAGCATGATCGAAGCTGAGTCCTCAGTCAAAGAAAAGGAC ATGACCAAAGAATTTTTTGAGAACAAATCAGAGACATGGCCTATAGGAGAGT CCCCCAAAGGAGTGGAAGAGGGCTCAATCGGGAAGGTTTGCAGGACCTTATT AGCAAAATCTGTGTTTAACAGTTTGTATGCATCTCCACAACTGGAAGGGTTTT CAGCTGAATCTAGGAAATTACTTCTCATTGTTCAGGCTCTTAGGGATAACCTG GAACCTGGAACCTTTGATATTGGGGGGTTATATGAATCAATTGAGGAGTGCC TGATTAATGATCCCTGGGTTTTGCTTAATGCATCTTGGTTCAACTCCTTCCTTA CACATGCACTGAAGTAGTTGTGGCAATGCTACTATTTGCTATCCATACTGTCC AAAAAAGTACCTTGTTTCTACT

SEQ ID NO: 13

NP

ATGGCGTCTCAAGGCACCAAACGATCCTATGAACAGATGGAAACTGATGGGG AACGCCAGAATGCAACTGAAATCAGAGCATCTGTCGGAAGOATGOTGOGAG GAATCGGCCGGTTTTATGTTCAGATGTGTACTGAGCTTAAACTAAACGACCAT GAAGGGCGGCTGATTCAGAACAGCATAACAATAGAAAGGATGGTACTTTCGG CATTCGACGAAAGAAGAAACAAGTATCTCGAGGAGCATCCCAGTGCTGGGA AAGACCCTAAGAAAACAGGAGGCCCGATATACAGAAGGAAAGATGGGAAAT GGATGAGGGAACTCATCCTCCATGATAAAGAAGAAATCATGAGAATCTGGCG TCAGGCCAACAATGGTGAAGACGCTACTGCTGGTCTTACTCATATGATGATCT GGCACTCCAATCTCAATGACACCACATACCAAAGAACAAGGGCTCTTGTTCG GACTGGGATGGATCCCAGAATGTGCTCTCTGATGCAAGGCTCAACCCTCCCA CGGAGATCTGGAGCCGCTGGTGCTGCAGTAAAAGGTGTTGGAACAATGGTAA TGGAACTCATCAGAATGATCAAACGCGGAATAAATGATCGGAATTTCTGGAG AGGTGAAAATGGTCGAAGAACCAGAATTGCTTATGAAAGAATGTGCAATATC CTCAAAGGGAAATTTCAGACAGCAGCACAACGGGCTATGATGGACCAGGTG AGGGAAGGCCGCAATCCTGGAAACGCTGAGATTGAGGATCTCATTTTCTTGG CACGATCAGCACTTATTTTGAGAGGATCAGTAGCCCATAAATCATGCCTACCT GCCTGTGTTTATGGCCTTGCAGTAACCAGTGGGTATGACTTTGAGAAGGAAG GATACTCTCTGGTTGGAATTGATCCTTTCAAACTACTCCAGAACAGTCAAATT TTCAOTCTAATCACACCAAAAGAAAACCCACCACACAAGAGCCAGTTGGTGT GGATGGCATGCCATTCTGCAGCATTTGAGGACCTGAGAGTTTTAAATTTCATT AGAGGAACCAAAGTAATCCCAAGAGGACAGTTAACAACCAGAGGAGTTCAA ATAGCTTCAAATGAAAACATGGAGACAATAGATTCTAGCACACTTGAACTGA GAAGCAAATATTGGGCAATAAGGACCAGAAGCGGAGGAAACACCAGTCAAC AGAGAGCATCTGCAGGACAGATAAGTGTGCAACCTACTTTCTCAGTACAGAG AAATCTTCCCTTTGAGAGAGCAACCATTATGGCTGCATTCACTGGTAACACTG AAGGGAGGACTTCCGACATGAGAACGGAAATCATAAGGATGATGGAAAATG CCAAATCAGAAGATGTGTCTTTCCAGGGGCGGGGAGTCTTCGAGCTCTCGGA CGAAAAGGCAACGAACCCGATCGTGCCTTCCTTTGACATGAGCAATGAAGGG TCTTATTTCTTCGGAGACAATGCTGAGGAGTTTGACAGTTAAA

SEQ TD NO: 14

M

Abstract

ATGAGTCTTCTAACCGAGGTCGAAACGTACGTTCTCTCTATCGTACCATCAGG CCCCCTCAAAGCCGAGATCGCGCAGAGACTTGAAGATGTCTTTGCAGGGAAG AACACCGATCTTGAGGCACTCATGGAATGGCTAAAGACAAGACCAATCCTGT CACCTCTGACTAAAGGGATTTTAGGATTTGTATTCACGCTCACCGTGCCCAGT GAGCGAGGACTGCAGCGTAGACGCTTTGTCCAAAATGCCCTTAGTGGAAACG GAGATCCAAACAACATGGACAGAGCAGTAAAACTGTACAGGAAGCTTAAAA GAGAAATAACATTCCATGGGGCAAAAGAGGTGGCACTCAGCTATTCCACTGG TGCACTAGCCAGCTGCATGGGACTCATATACAACAGAATGGGAACTGTTACA ACCGAAGTGGCATITGGCCTGGTATGCGCCACATGTGAACAGATTGCTGATT CCCAGCATCGGTCTCACAGGCAGATGGTGACAACAACCAACCCATTAATCAG ACATGAAAACAGAATGGTATTAGCCAGTACCACGGCTAAAGCCATGGAACA GATGGCAGGATCGAGTGAGCAGGCAGCAGAGGCCATGGAGGTTGCTAGTAG GGCTAGGCAGATGGTACAGGCAATGAGAACCATTGGGACCCACCCTAGCTCC agTGCCGGTTTGAAAGATGATCTCCTTGAAAATTTACAGGCCTACCAGAAAC GGATGGGAGTGCAAATGCAGCGATTCAAGTGATCCTCTCGTTATTGCAGCAA GTATCATTGGGATCTTGCACTTGATATTGTGGATTCTTGATCGTCTTTTCTTCA AATTCATTTATCGTCGCCTTAAATACGGGTTGAAAAGAGGGCCTTCTACGGA AGGAGTACCTGAGTCTATGAGGGAAGAATATCGGCAGGAACAGCAGAATGC TGTGGATGTTGACGATGGTCATTTTGTCAACATAGAGCTGGAGTAA

SEQ ID NO: 15
FIG. 10

Abstract

NS ATGGATTCCAACACTGTGTCAAGCTTTCAGGTAGACTGTTTTCTTTGGCATGT CCGCAAACGATTCGCAGACCAAGAACTGGGTGATGCCCCATTCCTTGACCGG CTTCGCCGAGACCAGAAGTCCCTAAGGGGAAGAGGTAGCACTCTTGGTCTGG ACATCGAAACAGCCACTCATGCAGGAAAGCAGATAGTGGAGCAGATTCTGG AAAAGGAATCAGATGAGGCACTTAAAATGACCATTGCCTCTGTTCCTACTTC ACGCTACTTAACTGACATGACTCTTGATGAGATGTCAAGAGACTGGTTCATGC TCATGCCCAAGCAAAAAGTAACAGGCTCCCTATGTATAAGAATGGACCAGGC AATCATGGATAAGAACATCATACTTAAAGCAAACTTTAGTGTGATTTTCGAA AGGCTGGAAACACTAATACTACTTAGAGCCTTCACCGAAGAAGGAGCAGTCG TTGGCGAAATTTCACCATTACCTTCTCTTCCAGGACATACTAATGAGGATGTC AAAAATGCAATTGGGGTCCTCATCGGAGGACTTAAATGGAATGATAATACGG TTAGAATCTCTGAAACTCTACAGAGATTCGCTTGGAGAAGCAGTCATGAGAA TGGGAGACCTTCATTCCCTTCAAAGCAGAAACGAAAAATGGAGAGAACAATT AAGCCAAAAATTTGAAGAAATAAGATGGTTGATTGAAGAAGTGCGACATAG ATTGAAAAATACAGAAAATAGTTTTGAACAAATAACATTTATGCAAGCCTTA CAACTATTGCTTGAAGTAGAACAAGAGATAAGAACTTTCTCGTTTCAGCTTAT TTAA

SEQ ID NO:16

FIG. $1 P$

M2amino
MSLLTEVETPTRNGWECKCSDSSDPLVIAASIIGILHLILWILDRLFFKFIYRRLKY GLKRGPSTEGVPESMREEYRQEQQNAVDVDDGHFVNIELE

SEQ ID NO: 17
FIG. 10

NS2amino
MDSNTVSSFQLMRMSKMQLGSSSEDLNGMIIRLESLKLYRDSLGEAVMRMGDL HSLQSRNEKWREQLSQKFEEIRWLIEEVRHRLKNTENSFEQITFMQALQLLLEVE QEIRTFSFQIT

SEQ ID NO: 18
MKTEITIILLTHWAYSQNPISGNNTATLCLA/Equine/WI/1/03MKTTIILILLTHWAYSQNPISGNNTATLCLA/Equine/New York/99GHHAVANGTLVKTISDDQIEVTNATELVQSA/Equine/WI/1/03GHHAVANGTLVKTISDDQIEVTNATELVQSA/Equine/New York/99
I SMGKICNNSYRILDGRNCTLIDAMEGDPHA/Equine/WI/1/03
ISMGKICNNSYRILDGRNCTLIDAMLGDPHA/Equine/New York/99
CDAFQYENWDLFIERSSAFSNCYYYDIPDYA/Equine/WI/1/03
ASLRSSVASSGGTEFTAEGFTWTGVTQNGRA/Equine/WI/1/03
A SLRSIVASSGTLEFTAEGFTWTGVTQNGRA/Equine/New York/99
SGACKRGSADSFFSRLNWLTKSGSSYPTLNA/Equine/WI/1/03 $S G A C K R G S A D S F F S R L N W L T K S G N S Y P T L N$ A/Equine/New York/g 9
V T M P N N K N F D K L Y I W G I H H P S S N Q E Q T K L Y A/Equine/WI/I/03
VTMENNKNFDKLYIWGIHHPSSNQEQTKLYA/Equine/New York/g9
I Q ES GRVTVSTKRSQQTIIPNIGSRPWVRGA/Equine/WI/1/03$I Q E S G R V T V S T K R S Q Q T I T P N I G S R P W V R G A / E q u i n e / N e w$ York/99
Q SGRISIYWTIVKPGDILMINSNGNLVAPRA/Equine/WI/1/03
Q SGRISIYWTIVKPGDILMINSNGNLVAPR A/Equine/New York/ $\operatorname{Ci} 9$
GYFKLKTGKSSVMRSDVPIDICVSECITPNA/Equine/WI/1/03
GSISNDKPGONVNKVTYGKCPKYIRQNTLKA/Equine/WI/I/03GSISNDKPFQNVNKVTYGKCPKYIRQNTLKA/Equine/New York/99
LATGMRNVPEKQIR A/Equine/WI/1/03
LATGMRNVPEKQIRA/Equine/New York/99

H3 EQUINE INFLUENZA A VIRUS

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation (Prioritized Examination) of U.S. patent application Ser. No. 12/503,712, filed Jul. 15,2009 , which is a divisional of U.S. patent application Ser. No. 11/033,248, filed Jan. 11, 2005, which application is incorporated herein by reference.

STATEMENT OF GOVERNMENT RIGHTS

The invention was made, at least in part, with a grant from the Government of the United States of America (grant 2001-35204-10184 from the United States Department of Agriculture). The Government may have certain rights to the invention.

BACKGROUND

Influenza is a major respiratory disease in some mammals including horses and is responsible for substantial morbidity and economic losses each year. In addition, influenza virus infections can cause severe systemic disease in some avian species, leading to death. The segmented nature of the influenza virus genome allows for reassortment of segments during virus replication in cells infected with two or more influenza viruses. The reassortment of segments, combined with genetic mutation and drift, can give rise to a myriad of divergent strains of influenza virus over time. The new strains exhibit antigenic variation in their hemagglutinin (HA) and/ or neuraminidase (NA) proteins, and in particular the gene coding for the HA protein has a high rate of variability. The predominant current practice for the prevention of flu is vaccination. Most commonly, whole virus vaccines are used. As the influenza HA protein is the major target antigen for the protective immune responses of a host to the virus and is highly variable, the isolation of influenza virus and the identification and characterization of the HA antigen in viruses associated with recent outbreaks is important for vaccine production. Based on prevalence and prediction, a vaccine is designed to stimulate a protective immune response against the predominant and expected influenza virus strains (Park et al., 2004).

There are three general types of influenza viruses, Type A, Type B and Type C, which are defined by the absence of serological crossreactivity between their internal proteins. Influenza Type A viruses are further classified into subtypes based on antigenic and genetic differences of their glycoproteins, the HA and NA proteins. All the known HA and NA subtypes (H 1 to H 15 and N 1 to N 9) have been isolated from aquatic birds, which are though to act as a natural reservoir for influenza. H7N7 and H3N8 Type A viruses are the most common causes of equine influenza, and those subtypes are generally incorporated into equine influenza vaccines.

Thus, there is a continuing need to isolate new influenza virus isolates, e.g., for vaccine production.

SUMMARY OF THE INVENTION

The invention provides isolated H3 equine derived influenza type A virus that was isolated from a foal that succumbed to a fatal pneumonia, which virus has characteristic substitutions at residues 78 and 159 of HA (numbering of positions is that in the mature protein which lacks a 15 amino acid signal peptide), i.e., the residue at position 78 of HA is not valine and
the residue at position 159 is not asparagine. In one embodiment, the isolated H3 influenza A virus of the invention has a conservative substitution at residue 78 , e.g., a valine to an alanine substitution, and a nonconservative substitution at residue 159 , e.g., an asparagine to a serine substitution. In one embodiment, the isolated H 3 influenza A virus of the invention has a residue other than methionine at position 29, e.g., a nonconservative substitution, a residue other than lysine at position 54, e.g., a nonconservative substitution, a residue other than serine at position 83 , e.g., a nonconservative substitution, a residue other than asparagine at position 92 , e.g., a nonconservative substitution, a residue other than leucine at position 222 , e.g., a nonconservative substitution, a residue other than alanine at position 272, e.g., a conservative substitution, and/or a residue other than threonine at position 328, e.g., a conservative substitution. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatichydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine and tryptophan; a group of amino acids having basic side chains is lysine, arginine and histidine; and a group of amino acids having sulfur-containing side chain is cysteine and methionine. In one embodiment, conservative amino acid substitution groups are: threo-nine-valine-leucine-isoleucine-alanine; phenylalanine-tyro sine; lysine-arginine; alanine-valine; glutamic-aspartic; and asparagine-glutamine.

In one embodiment, the influenza virus of the invention includes one or more viral proteins (polypeptides) having substantially the same amino acid sequence as one of SEQ ID NOs:1-8, 17 and/or 18 , so long as the HA has the characteristic substitutions at residues 78 and 159. An amino acid sequence which is substantially the same as a reference sequence has at least 95%, e.g., $96 \%, 97 \%, 98 \%$ or 99%, amino acid sequence identity to that reference sequence, and may include sequences with deletions, e.g., those that result in a deleted viral protein having substantially the same activity or capable of being expressed at substantially the same level as the corresponding full-length, mature viral protein, insertions, e.g., those that result in a modified viral protein having substantially the same activity or capable of being expressed at substantially the same level as the corresponding full-length, mature viral protein, and/or substitutions, e.g., those that result in a viral protein having substantially the same activity or capable of being expressed at substantially the same level as the reference protein. In one embodiment, the one or more residues which are not identical to those in the reference sequence may be conservative or nonconservative substitutions which one or more substitutions do not substantially alter the expressed level or activity of the protein with the substitution(s), and/or the level of virus obtained from a cell infected with a virus having that protein. As used herein, "substantially the same expressed level or activity" includes a detectable protein level that is about $80 \%, 90 \%$ or more, the protein level, or a measurable activity that is about $30 \%, 50 \%$, 90%, e.g., up to 100% or more, the activity, of a full-length mature polypeptide corresponding to one of SEQ ID NOs:18,17 or 18. In one embodiment, the virus comprises a polypeptide with one or more, for instance, $2,5,10,15,20$ or more, amino acid substitutions, e.g., conservative substitutions of up to 5% of the residues of the full-length, mature form of a polypeptide having SEQ ID NOs:1-8, 17 or 18. The isolated virus of the invention may be employed alone or with
one or more other virus isolates, e.g., other influenza virus isolates, in a vaccine, to raise virus-specific antisera, in gene therapy, and/or in diagnostics. Accordingly, the invention provides host cells infected with the virus of the invention, and isolated antibody specific for the virus.

The invention also provides an isolated nucleic acid molecule (polynucleotide) comprising a nucleic acid segment corresponding to at least one of the proteins of the virus of the invention, a portion of the nucleic acid segment for a viral protein having substantially the same level or activity as a corresponding polypeptide encoded by one of SEQ ID NOs: $1-8,17$ or 18 , or the complement of the nucleic acid molecule. In one embodiment, the isolated nucleic acid molecule encodes a polypeptide which has substantially the same amino acid sequence, e.g., has at least 95%, e.g., $96 \%, 97 \%$, 98% or 99%, contiguous amino acid sequence identity to a polypeptide having one of SEQ ID NOs:1-8, 17 or 18 . In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence which is substantially the same as, e.g., has at least 50%, e.g., $60 \%, 70 \%, 80 \%$ or 90% or more, contiguous nucleic acid sequence identity to, one of SEQ ID NOs:9-16, or the complement thereof, and encodes a polypeptide having at least 95%, e.g., $96 \%, 97 \%, 98 \%$ or 99%, contiguous amino acid sequence identity to a polypeptide having one of SEQ ID NOs:1-8, 17 or 18.

The isolated nucleic acid molecule of the invention may be employed in a vector to express influenza proteins, e.g., for recombinant protein vaccine production or to raise antisera, as a nucleic acid vaccine, for use in diagnostics or, for vRNA production, to prepare chimeric genes, e.g., with other viral genes including other influenza virus genes, and/or to prepare recombinant virus, e.g., see Neumann et al. (1999) which is incorporated by reference herein. Thus, the invention also provides isolated viral polypeptides, recombinant virus, and host cells contacted with the nucleic acid molecule(s) and/or recombinant virus of the invention, as well as isolated virusspecific antibodies, for instance, obtained from mammals infected with the virus or immunized with an isolated viral polypeptide or polynucleotide encoding one or more viral polypeptides.

The invention further provides at least one of the following isolated vectors, for instance, one or more isolated influenza virus vectors, or a composition comprising the one or more vectors: a vector comprising a promoter operably linked to an influenza virus PA DNA for a PA having substantially the same amino acid sequence as SEQ ID NO:5 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB1 DNA for a PB1 having substantially the same amino acid sequence as SEQ ID NO:3 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus PB2 DNA for a PB2 having substantially the same amino acid sequence as SEQ ID NO:4 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus HA DNA for a HA having substantially the same amino acid sequence as SEQ ID NO: 1 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NP DNA for a NP having substantially the same amino acid sequence as SEQ ID NO: 6 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus NA DNA for a NA having substantially the same amino acid sequence as SEQ ID NO:2 linked to a transcription termination sequence, a vector comprising a promoter operably linked to an influenza virus M DNA for a M a having substantially the same amino acid sequence as SEQ ID NO:7 (M1) and/or SEQ ID NO:17 (M2),
linked to a transcription termination sequence, and/or a vector comprising a promoter operably linked to an influenza virus NS DNA for a NS having substantially the same amino acid sequence as SEQ ID NO:8 (NS1) and/or SEQ ID NO:18 (NS2), linked to a transcription termination sequence. Optionally, two vectors may be employed in place of the vector comprising a promoter operably linked to an influenza virus M DNA linked to a transcription termination sequence, e.g., a vector comprising a promoter operably linked to an influenza virus M1 DNA linked to a transcription termination sequence and a vector comprising a promoter operably linked to an influenza virus M2 DNA linked to a transcription termination sequence. Optionally, two vectors may be employed in place of the vector comprising a promoter operably linked to an influenza virus NS DNA linked to a transcription termination sequence, e.g., a vector comprising a promoter operably linked to an influenza virus NS1 DNA linked to a transcription termination sequence and a vector comprising a promoter operably linked to an influenza virus NS2 DNA linked to a transcription termination sequence. An influenza virus vector is one which includes at least 5 ' and 3^{\prime} noncoding influenza virus sequences.
Hence, the invention provides vectors, e.g., plasmids, which encode influenza virus proteins, and/or encode influenza vRNA, both native and recombinant vRNA. Thus, a vector of the invention may encode an influenza virus protein (sense) or vRNA (antisense). Any suitable promoter or transcription termination sequence may be employed to express a protein or peptide, e.g., a viral protein or peptide, a protein or peptide of a nonviral pathogen, or a therapeutic protein or peptide. In one embodiment, to express vRNA, the promoter is a RNA polymerase I promoter, a RNA polymerase II promoter, a RNA polymerase III promoter, a T3 promoter or a T7 promoter. Optionally the vector comprises a transcription termination sequence such as a RNA polymerase I transcription termination sequence, a RNA polymerase II transcription termination sequence, a RNA polymerase III transcription termination sequence, or a ribozyme.

A composition of the invention may also comprise a gene or open reading frame of interest, e.g., a foreign gene encoding an immunogenic peptide or protein useful as a vaccine. Thus, another embodiment of the invention comprises a composition of the invention as described above in which one of the influenza virus genes in the vectors is replaced with a foreign gene, or the composition further comprises, in addition to all the influenza virus genes, a vector comprising a promoter linked to 5^{\prime} influenza virus sequences linked to a desired nucleic acid sequence, e.g., acDNA of interest, linked to 3^{\prime} influenza virus sequences linked to a transcription termination sequence, which, when contacted with a host cell permissive for influenza virus replication optionally results in recombinant virus. In one embodiment, the DNA of interest is in an antisense orientation. The DNA of interest, whether in a vector for v RNA or protein production, may encode an immunogenic epitope, such as an epitope useful in a cancer therapy or vaccine, or a peptide or polypeptide useful in gene therapy.

A plurality of the vectors of the invention may be physically linked or each vector may be present on an individual plasmid or other, e.g., linear, nucleic acid delivery vehicle.

The invention also provides a method to prepare influenza virus. The method comprises contacting a cell, e.g., an avian or a mammalian cell, with the isolated virus of the invention or a plurality of the vectors of the invention, e.g., sequentially or simultaneously, for example, employing a composition comprising a plurality of the vectors, in an amount effective to yield infectious influenza virus. The invention also includes isolating virus from a cell infected with the virus or contacted
with the vectors and/or composition. The invention further provides a host cell infected with the virus of the invention or contacted with the composition or vectors of the invention. In one embodiment, a host cell is infected with an attenuated (e.g., cold adapted) donor virus and a virus of the invention to prepare a cold-adapted reassortant virus useful as a coldadapted live virus vaccine.

The invention also provides a method to induce an immune response in a mammal, e.g., to immunize a mammal, against one more pathogens, e.g., against a virus of the invention and optionally a bacteria, a different virus, or a parasite or other antigen. An immunological response to a composition or vaccine is the development in the host organism of a cellular and/or antibody-mediated immune response to a viral polypeptide, e.g., an administered viral preparation, polypeptide or one encoded by an administered nucleic acid molecule, which can prevent or inhibit infection to that virus or a closely (structurally) related virus. Usually, such a response consists of the subject producing antibodies, B cell, helper T cells, suppressor T cells, and/or cytotoxic T cells directed specifically to an antigen or antigens included in the composition or vaccine of interest. The method includes administering to the host organism, e.g., a mammal, an effective amount of the influenza virus of the invention, e.g., an attenuated, live virus, optionally in combination with an adjuvant and/or a carrier, e.g., in an amount effective to prevent or ameliorate infection of an animal such as a mammal by that virus or an antigenically closely related virus. In one embodiment, the virus is administered intramuscularly while in another embodiment, the virus is administered intranasally. In some dosing protocols, all doses may be administered intramuscularly or intranasally, while in others a combination of intramuscular and intranasal administration is employed. The vaccine may further contain other isolates of influenza virus including recombinant influenza virus, other pathogen (s), additional biological agents or microbial components, e.g., to form a multivalent vaccine. In one embodiment, intranasal vaccination with inactivated equine influenza virus and a mucosal adjuvant, e.g., the non-toxic B chain of cholera toxin, may induce virus-specific IgA and neutralizing antibody in the nasopharynx as well as serum IgG.

The equine influenza vaccine may employed with other anti-virals, e.g., amantadine, rimantadine, and/or neuraminidase inhibitors, e.g., may be administered separately in conjunction with those anti-virals, for instance, administered before, during and/or after.

Further provided is a diagnostic method which employs a virus of the invention, an isolated viral protein encoded thereby, or antisera specific for the virus or protein, to detect viral specific antibodies or viral specific proteins.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. Sequences of A/Equine/Wisconsin/1/03. SEQ ID NOs:1-8, 17 and 18 represent the deduced amino acid sequence for $\mathrm{HA}, \mathrm{NA}, \mathrm{PB} 1, \mathrm{~PB} 2, \mathrm{PA}, \mathrm{NP}, \mathrm{M} 1, \mathrm{NS} 1, \mathrm{M} 2$, and NS2, respectively, of A/Equine/Wisconsin/1/03. SEQ ID NOs:9-1 6 represent the mRNA sense nucleotide sequence for HA, NA, PB1, PB2, PA, NP, M (M1 and M2) and NS (NS1 and NS2), respectively, of A/Equine/Wisconsin/1/03.

FIG. 2. Sequence alignment of HA-1 of A/Equine/NewYork/99 (SEQ ID NO:19) andA/Equine/Wisconsin/1/03 (SEQ ID NO:20).

DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein, the term "isolated" refers to in vitro preparation and/or isolation of a nucleic acid molecule, e.g., vector
or plasmid, peptide or polypeptide (protein), or virus of the invention, so that it is not associated with in vivo substances, or is substantially purified from in vitro substances. An isolated virus preparation is generally obtained by in vitro culture and propagation, and is substantially free from other infectious agents.

As used herein, "substantially purified" means the object species is the predominant species, e.g., on a molar basis it is more abundant than any other individual species in a composition, and preferably is at least about 80% of the species present, and optionally 90% or greater, e.g., $95 \%, 98 \%, 99 \%$ or more, of the species present in the composition.

As used herein, "substantially free" means below the level of detection for a particular infectious agent using standard detection methods for that agent.

A "recombinant" virus is one which has been manipulated in vitro, e.g., using recombinant DNA techniques, to introduce changes to the viral genome.

As used herein, the term "recombinant nucleic acid" or "recombinant DNA sequence or segment" refers to a nucleic acid, e.g., to DNA, that has been derived or isolated from a source, that may be subsequently chemically altered in vitro, so that its sequence is not naturally occurring, or corresponds to naturally occurring sequences that are not positioned as they would be positioned in the native genome. An example of DNA "derived" from a source, would be a DNA sequence that is identified as a useful fragment, and which is then chemically synthesized in essentially pure form. An example of such DNA "isolated" from a source would be a useful DNA sequence that is excised or removed from said source by chemical means, e.g., by the use of restriction endonucleases, so that it can be further manipulated, e.g., amplified, for use in the invention, by the methodology of genetic engineering. Influenza Virus Type A Structure and Propagation
Influenza A viruses possess a genome of eight singlestranded negative-sense viral RNAs (vRNAs) that encode at least ten proteins. The influenza virus life cycle begins with binding of the hemagglutinin (HA) to sialic acid-containing receptors on the surface of the host cell, followed by receptormediated endocytosis. The low pH in late endosomes triggers a conformational shift in the HA, thereby exposing the N-terminus of the HA2 subunit (the so-called fusion peptide). The fusion peptide initiates the fusion of the viral and endosomal membrane, and the matrix protein (M1) and RNP complexes are released into the cytoplasm. RNPs consist of the nucleoprotein (NP), which encapsidates vRNA, and the viral polymerase complex, which is formed by the PA, PB1, and PB2 proteins. RNPs are transported into the nucleus, where transcription and replication take place. The RNA polymerase complex catalyzes three different reactions: synthesis of an mRNA with a 5^{\prime} cap and 3^{\prime} polyA structure, of a full-length complementary RNA (cRNA), and of genomic vRNA using the cRNA as a template. Newly synthesized vRNAs, NP, and polymerase proteins are then assembled into RNPs, exported from the nucleus, and transported to the plasma membrane, where budding of progeny virus particles occurs. The neuraminidase (NA) protein plays a crucial role late in infection by removing sialic acid from sialyloligosaccharides, thus releasing newly assembled virions from the cell surface and preventing the self aggregation of virus particles. Although virus assembly involves protein-protein and protein-vRNA interactions, the nature of these interactions is largely unknown.

Any cell, e.g., any avian or mammalian cell, such as a 65 human, canine, bovine, equine, feline, swine, ovine, mink, e.g., MvLu1 cells, or non-human primate cell, including mutant cells, which supports efficient replication of influenza
virus can be employed to isolate and/or propagate influenza viruses. Isolated viruses can be used to prepare a reassortant virus, e.g., an attenuated virus. In one embodiment, host cells for vaccine production are those found in avian eggs. In another embodiment, host cells for vaccine production are continuous mammalian or avian cell lines or cell strains. It is preferred to establish a complete characterization of the cells to be used, so that appropriate tests for purity of the final product can be included. Data that can be used for the characterization of a cell includes (a) information on its origin, derivation, and passage history; (b) information on its growth and morphological characteristics; (c) results of tests of adventitious agents; (d) distinguishing features, such as biochemical, immunological, and cytogenetic patterns which allow the cells to be clearly recognized among other cell lines; and (e) results of tests for tumorigenicity. Preferably, the passage level, or population doubling, of the host cell used is as low as possible.

It is preferred that the virus produced by the host cell is highly purified prior to vaccine or gene therapy formulation. Generally, the purification procedures result in the extensive removal of cellular DNA, other cellular components, and adventitious agents. Procedures that extensively degrade or denature DNA can also be used.

Equine Influenza Virus Detection

Disease causing equine influenza viruses are generally Type A influenza viruses of the H7N7 (equi-1) and H3N8 (equi-2) subtypes. These generally differ from the subtypes that cause infection in man (H1N1, H2N2 and H3N2). Equine influenza is contracted by either inhalation or contact with secretions (e.g., physiological fluid) containing live virus. The virus infects the epithelial cells of the upper and lower airways and can cause deciliation of large areas of the respiratory tract within 4 to 6 days. As a result, the mucociliary clearance mechanism is compromised and tracheal clearance rates may be reduced for up to 32 days following infection. Bronchitis and bronchiolitis develop followed by interstitial pneumonia accompanied by congestion, edema and leukocyte infiltration. In general, H3N8 viruses cause more severe disease than H7N7 viruses; viruses of the H3N8 subtype are more pneumotropic and have also been associated with myocarditis.

Clinical signs in previously influenza-naïve animals are easily recognizable. Influenza is characterized by its sudden onset with an incubation period of 1 to 3 days. The first sign is an elevation of body temperature (up to $41^{\circ} \mathrm{C}$.), which is usually biphasic. This is followed by a deep dry cough that releases large quantities of virus into the atmosphere often accompanied by a serous nasal discharge, which may become mucopurulent due to secondary bacterial infection. The other most commonly observed clinical signs are myalgia, inappetance, and enlarged submandibular lymph nodes. Edema of the legs and scrotum is observed very rarely. The severity of the disease varies with the dose and strain of virus and the immune status of the horse.

Previously healthy, immunocompetent adult horses usually recover from uncomplicated influenza within 10 days, although coughing may persist for longer. If secondary bacterial infection occurs, it can prolong the recovery period. However, relatively high mortality rates have been recorded in foals, animals in poor condition and donkeys. If maternal antibody is absent at the time of exposure, young foals may develop a viral pneumonia leading to death. Deaths among adult animals are usually a consequence of secondary bacterial infection leading to pleuritis, suppurative pneumonia or rarely, purpura haemorrhagica. Sequelae of equine influenza can include chronic pharyngitis, chronic bronchiolitis, myo-
carditis, and alveolar emphysema, which can contribute to heaves, and secondary sinus and guttural pouch infections.

Clinical signs in animals partially immune as a result of vaccination or previous infection are more difficult to recognize as there may be little or no coughing or pyrexia. Whereas spread of infection throughout a group of naïve animals is always rapid, there have been outbreaks in which the infection circulated subclinically in vaccinated horses for 18 days before inducing recognizable clinical signs.

Outbreaks of infectious respiratory disease may be caused by various agents, including equine herpes viruses, rhinoviruses, adenoviruses, and arteritis viruses, Streptococcus equi, or S. zooepidemicus. A presumptive diagnosis of influenza based on clinical signs should be confirmed by virus isolation or detection, or by serological testing. Laboratory confirmation of a clinical diagnosis may be by traditional isolation of virus from nasopharyngeal swabs or serology to demonstrate seroconversion, or by rapid diagnostic tests which detect the presence of viral antigens, viral nucleic acid, or virally infected cells in respiratory secretions. Rapid diagnostic tests, despite their convenience and ease of use, provide little or no information about genetic or antigenic characteristics of the infecting strain of virus and do not allow isolation of the virus.

Nasopharyngeal swabs for virus isolation or detection should be taken as promptly as possible. Results of experimental challenge studies suggest that peak viral titers are obtained during the initial 24 to 48 hours of fever, on the second or third day after infection, and the duration of viral shedding is usually not more than 4 or 5 days. Nasal swab samples are taken by passing a swab as far as possible into the horse's nasopharynx via the ventral meatus to absorb respiratory secretions. Swabs should be transferred immediately to a container with virus transport medium and transported on ice to maintain viability of the virus. Virus is unlikely to survive if dry swabs are taken and there is an increased chance of contamination if bacterial transport medium is used. Nasal swab samples may be inoculated into the allantoic (or amniotic) cavity of 9 - to 11-day-old embryonated hens' eggs. After incubation at $33-35^{\circ} \mathrm{C}$. for 3 days, the allantoic fluid is harvested and tested for haemagglutinating activity. Alternatively, cell culture may be used to isolate viruses. Influenza infection can also be diagnosed by comparison of the results of serological testing of an acute serum sample taken as soon as possible after the onset of clinical signs and a convalescent serum sample taken 2 to 4 weeks later.
The haemagglutination inhibition (HI) test measures the capacity of influenza-specific antibody present in serum samples to inhibit the agglutination of red blood cells by virus. Sera are heat-inactivated and pre-treated to reduce nonspecific reactions and serially diluted prior to incubation with a standard dose of virus in a U-bottomed microtiter plate. A suspension of red blood cells is added and, after a further incubation period, examined for agglutination. A four-fold rise in virus-specific antibodies indicates infection. Whole virus antigen may be used for H7N7 viruses, but Tween 80 -ether disrupted antigen is usually required to enhance the sensitivity of the assay for H3N8 viruses. In repeatedly vaccinated horses, infection may fail to stimulate a 4 -fold increase in HI titer.

The single-radial haemolysis (SRH) test, although less strain-specific, is more reproducible and less error prone than the HI test and, as it is a linear test, is more sensitive, enabling detection of smaller increases in antibody induced by infection in heavily vaccinated horses. The SRH test is based on the ability of influenza-specific antibodies to lyse virus-coated red blood cells in the presence of complement. Test sera are added to wells punched in agarose containing coated red
blood cells and complement and allowed to diffuse through the agarose for 20 hours. The areas of clear zones of haemolysis around the wells are proportional to the level of influenza antibody present in the serum samples.

If horses are vaccinated in the face of infection, it may not be possible, using the HI and SRH assays, to determine whether any increase in antibody levels is due to vaccination or infection.
Influenza Vaccines
A vaccine of the invention includes an isolated influenza virus of the invention, and optionally one or more other isolated viruses including other isolated influenza viruses, West Nile virus, equine herpes virus, equine arteritis virus, equine infectious anemia lentivirus, rabies virus, Eastern and/or Western and/or Venezuelan equine encephalitis virus, one or more immunogenic proteins or glycoproteins of one or more isolated influenza viruses or one or more other pathogens, e.g., an immunogenic protein from one or more bacteria, non-influenza viruses, yeast or fungi, or isolated nucleic acid encoding one or more viral proteins (e.g., DNA vaccines) including one or more immunogenic proteins of the isolated influenza virus of the invention. In one embodiment, the influenza viruses of the invention may be vaccine vectors for influenza virus or other pathogens.

A complete virion vaccine may be concentrated by ultrafiltration and then purified by zonal centrifugation or by chromatography. It is inactivated before or after purification using formalin or beta-propiolactone, for instance.

A subunit vaccine comprises purified glycoproteins. Such a vaccine may be prepared as follows: using viral suspensions fragmented by treatment with detergent, the surface antigens are purified, by ultracentrifugation for example. The subunit vaccines thus contain mainly HA protein, and also NA. The detergent used may be cationic detergent for example, such as hexadecyl trimethyl ammonium bromide (Bachmeyer, 1975), an anionic detergent such as ammonium deoxycholate (Laver \& Webster, 1976); or a nonionic detergent such as that commercialized under the name TRITON X100. The hemagglutinin may also be isolated after treatment of the virions with a protease such as bromelin, then purified by a method such as that described by Grand and Skehel (1972).

A split vaccine comprises virions which have been subjected to treatment with agents that dissolve lipids. A split vaccine can be prepared as follows: an aqueous suspension of the purified virus obtained as above, inactivated or not, is treated, under stirring, by lipid solvents such as ethyl ether or chloroform, associated with detergents. The dissolution of the viral envelope lipids results in fragmentation of the viral particles. The aqueous phase is recuperated containing the split vaccine, constituted mainly of hemagglutinin and neuraminidase with their original lipid environment removed, and the core or its degradation products. Then the residual infectious particles are inactivated if this has not already been done.

Inactivated Vaccines.
Inactivated influenza virus vaccines are provided by inactivating replicated virus using known methods, such as, but not limited to, formalin or β-propiolactone treatment. Inactivated vaccine types that can be used in the invention can include whole-virus (WV) vaccines or subvirion (SV) (split) vaccines. The WV vaccine contains intact, inactivated virus, while the SV vaccine contains purified virus disrupted with detergents that solubilize the lipid-containing viral envelope, followed by chemical inactivation of residual virus.

In addition, vaccines that can be used include those containing the isolated HA and NA surface proteins, which are referred to as surface antigen or subunit vaccines.

Live Attenuated Virus Vaccines.
Live, attenuated influenza virus vaccines can be used for preventing or treating influenza virus infection. Attenuation may be achieved in a single step by transfer of attenuated genes from an attenuated donor virus to a replicated isolate or reassorted virus according to known methods (see, e.g., Murphy, 1993). Since resistance to influenza A virus is mediated primarily by the development of an immune response to the HA and/or NA glycoproteins, the genes coding for these surface antigens must come from the reassorted viruses or clinical isolates. The attenuated genes are derived from the attenuated parent. In this approach, genes that confer attenuation preferably do not code for the HA and NA glycoproteins.

Viruses (donor influenza viruses) are available that are capable of reproducibly attenuating influenza viruses, e.g., a cold adapted (ca) donor virus can be used for attenuated vaccine production. Live, attenuated reassortant virus vaccines can be generated by mating the ca donor virus with a virulent replicated virus. Reassortant progeny are then selected at $25^{\circ} \mathrm{C}$., (restrictive for replication of virulent virus), in the presence of an appropriate antiserum, which inhibits replication of the viruses bearing the surface antigens of the attenuated ca donor virus. Useful reassortants are: (a) infectious, (b) attenuated for seronegative non-adult mammals and immunologically primed adult mammals, (c) immunogenic and (d) genetically stable. The immunogenicity of the ca reassortants parallels their level of replication. Thus, the acquisition of the six transferable genes of the ca donor virus by new wild-type viruses has reproducibly attenuated these viruses for use in vaccinating susceptible mammals both adults and non-adult.

Other attenuating mutations can be introduced into influenza virus genes by site-directed mutagenesis to rescue infectious viruses bearing these mutant genes. Attenuating mutations can be introduced into non-coding regions of the genome, as well as into coding regions. Such attenuating mutations can also be introduced into genes other than the HA or NA, e.g., the PB2 polymerase gene (Subbarao et al., 1993). Thus, new donor viruses can also be generated bearing attenuating mutations introduced by site-directed mutagenesis, and such new donor viruses can be used in the production of live attenuated reassortants vaccine candidates in a manner analogous to that described above for the ca donor virus. Similarly, other known and suitable attenuated donor strains can be reassorted with influenza virus to obtain attenuated vaccines suitable for use in the vaccination of mammals (Enami et al., 1990; Muster et al., 1991; Subbarao et al., 1993).

It is preferred that such attenuated viruses maintain the genes from the virus that encode antigenic determinants substantially similar to those of the original clinical isolates. This is because the purpose of the attenuated vaccine is to provide substantially the same antigenicity as the original clinical isolate of the virus, while at the same time lacking pathogenicity to the degree that the vaccine causes minimal chance of inducing a serious disease condition in the vaccinated mammal.

The virus can thus be attenuated or inactivated, formulated and administered, according to known methods, as a vaccine to induce an immune response in an animal, e.g., a mammal. Methods are well-known in the art for determining whether such attenuated or inactivated vaccines have maintained similar antigenicity to that of the clinical isolate or high growth strain derived therefrom. Such known methods include the use of antisera or antibodies to eliminate viruses expressing antigenic determinants of the donor virus; chemical selection
(e.g., amantadine or rimantidine); HA and NA activity and inhibition; and nucleic acid screening (such as probe hybridization or PCR) to confirm that donor genes encoding the antigenic determinants (e.g., HA or NA genes) are not present in the attenuated viruses. See, e.g., Robertson et al., 1988; Kilbourne, 1969; Aymard-Henry et al., 1985; Robertson et al., 1992.

Pharmaceutical Compositions

Pharmaceutical compositions of the present invention, suitable for inoculation, e.g., nasal, parenteral or oral administration, comprise one or more influenza virus isolates, e.g., one or more attenuated or inactivated influenza viruses, a subunit thereof, isolated protein(s) thereof, and/or isolated nucleic acid encoding one or more proteins thereof, optionally further comprising sterile aqueous or non-aqueous solutions, suspensions, and emulsions. The compositions can further comprise auxiliary agents or excipients, as known in the art. See, e.g., Berkow et al., 1987; Avery's Drug Treatment, 1987; Osol, 1980. The composition of the invention is generally presented in the form of individual doses (unit doses).

Conventional vaccines generally contain about 0.1 to 200 $\mu \mathrm{g}$, e.g., 30 to $100 \mu \mathrm{~g}$, of HA from each of the strains entering into their composition. The vaccine forming the main constituent of the vaccine composition of the invention may comprise a single influenza virus, or a combination of influenza viruses, for example, at least two or three influenza viruses, including one or more reassortant(s).

Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and/or emulsions, which may contain auxiliary agents or excipients known in the art. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring, or perfuming agents. See, e.g., Berkow et al., 1992; Avery's, 1987; and Osol, 1980.

When a composition of the present invention is used for administration to an individual, it can further comprise salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. For vaccines, adjuvants, substances which can augment a specific immune response, can be used. Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the organism being immunized. Examples of materials suitable for use in vaccine compositions are provided in Osol (1980).

Heterogeneity in a vaccine may be provided by mixing replicated influenza viruses for at least two influenza virus strains, such as 2-20 strains or any range or value therein. Influenza A virus strains having a modern antigenic composition are preferred. Vaccines can be provided for variations in a single strain of an influenza virus, using techniques known in the art.

A pharmaceutical composition according to the present invention may further or additionally comprise at least one chemotherapeutic compound, for example, for gene therapy, immunosuppressants, anti-inflammatory agents or immune enhancers, and for vaccines, chemotherapeutics including, but not limited to, gamma globulin, amantadine, guanidine,
hydroxybenzimidazole, interferon- α, interferon- β, inter-feron- γ, tumor necrosis factor-alpha, thio semicarbarzones, methisazone, rifampin, ribavirin, a pyrimidine analog, a purine analog, foscarnet, phosphonoacetic acid, acyclovir, dideoxynucleosides, a protease inhibitor, or ganciclovir.

The composition can also contain variable but small quantities of endotoxin-free formaldehyde, and preservatives, which have been found safe and not contributing to undesirable effects in the organism to which the composition is administered.
Pharmaceutical Purposes
The administration of the composition (or the antisera that it elicits) may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the compositions of the invention which are vaccines are provided before any symptom or clinical sign of a pathogen infection becomes manifest. The prophylactic administration of the composition serves to prevent or attenuate any subsequent infection. When provided prophylactically, the gene therapy compositions of the invention, are provided before any symptom or clinical sign of a disease becomes manifest. The prophylactic administration of the composition serves to prevent or attenuate one or more symptoms or clinical signs associated with the disease.

When provided therapeutically, an attenuated or inactivated viral vaccine is provided upon the detection of a symptom or clinical sign of actual infection. The therapeutic administration of the compound(s) serves to attenuate any actual infection. See, e.g., Berkow et al., 1992; and Avery, 1987. When provided therapeutically, a gene therapy composition is provided upon the detection of a symptom or clinical sign of the disease. The therapeutic administration of the compound(s) serves to attenuate a symptom or clinical sign of that disease.

Thus, an attenuated or inactivated vaccine composition of the present invention may be provided either before the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection. Similarly, for gene therapy, the composition may be provided before any symptom or clinical sign of a disorder or disease is manifested or after one or more symptoms are detected.

A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient mammal. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. A composition of the present invention is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient, e.g., enhances at least one primary or secondary humoral or cellular immune response against at least one strain of an infectious influenza virus.

The "protection" provided need not be absolute, i.e., the influenza infection need not be totally prevented or eradicated, if there is a statistically significant improvement compared with a control population or set of mammals. Protection may be limited to mitigating the severity or rapidity of onset of symptoms or clinical signs of the influenza virus infection. Pharmaceutical Administration

A composition of the present invention may confer resistance to one or more pathogens, e.g., one or more influenza virus strains, by either passive immunization or active immunization. In active immunization, an inactivated or attenuated live vaccine composition is administered prophylactically to a host (e.g., a mammal), and the host's immune response to the administration protects against infection and/or disease. For passive immunization, the elicited antisera can be recovered and administered to a recipient suspected of having an
infection caused by at least one influenza virus strain. A gene therapy composition of the present invention may yield prophylactic or therapeutic levels of the desired gene product by active immunization.

In one embodiment, the vaccine is provided to a mammalian female (at or prior to pregnancy or parturition), under conditions of time and amount sufficient to cause the production of an immune response which serves to protect both the female and the fetus or newborn (via passive incorporation of the antibodies across the placenta or in the mother's milk).

The present invention thus includes methods for preventing or attenuating a disorder or disease, e.g., an infection by at least one strain of pathogen. As used herein, a vaccine is said to prevent or attenuate a disease if its administration results either in the total or partial attenuation (i.e., suppression) of a clinical sign or condition of the disease, or in the total or partial immunity of the individual to the disease. As used herein, a gene therapy composition is said to prevent or attenuate a disease if its administration results either in the total or partial attenuation (i.e., suppression) of a clinical sign or condition of the disease, or in the total or partial immunity of the individual to the disease.

At least one influenza virus isolate of the present invention, including one which is inactivated or attenuated, one or more isolated viral proteins thereof, one or more isolated nucleic acid molecules encoding one or more viral proteins thereof, or a combination thereof, may be administered by any means that achieve the intended purposes.

For example, administration of such a composition may be by various parenteral routes such as subcutaneous, intravenous, intradermal, intramuscular, intraperitoneal, intranasal, oral or transdermal routes. Parenteral administration can be accomplished by bolus injection or by gradual perfusion over time.

A typical regimen for preventing, suppressing, or treating an influenza virus related pathology, comprises administration of an effective amount of a vaccine composition as described herein, administered as a single treatment, or repeated as enhancing or booster dosages, over a period up to and including between one week and about 24 months, or any range or value therein.

According to the present invention, an "effective amount" of a composition is one that is sufficient to achieve a desired effect. It is understood that the effective dosage may be dependent upon the species, age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect wanted. The ranges of effective doses provided below are not intended to limit the invention and represent dose ranges.

The dosage of a live, attenuated or killed virus vaccine for an animal such as a mammalian adult organism can be from about $10^{2}-10^{15}$, e.g., $10^{3}-10^{12}$, plaque forming units (PFU)/ kg , or any range or value therein. The dose of inactivated vaccine can range from about 0.1 to 1000 , e.g., 30 to $100 \mu \mathrm{~g}$, of HA protein. However, the dosage should be a safe and effective amount as determined by conventional methods, using existing vaccines as a starting point.

The dosage of immunoreactive HA in each dose of replicated virus vaccine can be standardized to contain a suitable amount, e.g., 30 to $100 \mu \mathrm{~g}$ or any range or value therein, or the amount recommended by government agencies or recognized professional organizations. The quantity of NA can also be standardized, however, this glycoprotein may be labile during purification and storage.
Compositions and Dosing for Equine Influenza Vaccines
Equine influenza vaccines generally include representative strains of H7N7 and H3N8 subtypes either as inactivated whole virus or their subunits. They provide protection against influenza by inducing antibody to the surface glycoproteins, in particular to HA, which is essential for viral attachment and entry into cells, and/or potentially important cell-mediated immune responses to other viral proteins. Vaccination is helpful in preventing influenza but the protection is short-lived (3-4 months using conventional inactivated virus vaccines), so the frequency of vaccination varies according to how often the horse will likely come in contact with the virus (see Table 1). The usual procedure for the primary course is vaccination with a single dose followed 3 to 6 weeks later with a second dose. Vaccine manufacturers recommend that booster vaccinations be given at 6 - to 12 -month intervals thereafter. Alternatively, a horse is administered one 1 to 2 ml dose, e.g., via intramuscular (IM) injection, a second 1 to 2 ml dose 3 to 4 weeks later at a different injection site, e.g., via IM injection, and optionally a third 1 to 2 ml dose, e.g., IM or intranasal (IN) administration. Each 1 to 2 ml dose of vaccine may contain approximately 1-500 billion virus particles, and preferably 100 billion particles. Horses in contact with a large number of horses, for example, at a boarding stable, training centers, racetracks, shows, and other such events, are often vaccinated every 2-3 months. A three-dose primary series has been shown to induce a higher and more persistent immunity than the recommended two-dose series regardless of the age.

Using conventional vaccines, it is advisable to vaccinate young horses, particularly racehorses and other competition horses, at 4 to 6 month intervals for several years after their primary course of vaccinations. It has been demonstrated that inclusion of an additional booster vaccination between the second and third vaccination recommended by the vaccine manufacturers is of benefit to young horses. An annual booster will usually suffice for older horses such as show jumpers and brood mares that have been vaccinated regularly since they were foals. Vaccination in the face of an ongoing outbreak is sometimes practiced, but is not likely to be effective without an interval of at least 7 to 10 days before the freshly vaccinated horses are exposed to infection. Equine influenza outbreaks are not seasonal as in man but are frequently associated with sales or race meets where horses from different regions congregate and mix. It may therefore be advantageous to time additional booster vaccinations to be given prior to such events.
Brood mares should be vaccinated in the later stages of pregnancy, but not later than 2 weeks prior to foaling, to ensure a good supply of colostral antibodies for the foal. Foal vaccinations should begin at 3-6 months of age, with a booster at 4-7 months, again at 5-8 months, and repeated every three months if the foal is at high risk of exposure.

TABLE 1

	 Weanlings from Vaccinated Mares	Foal \& Weanlings from nonVaccinated Mares	Yearlings	Performance Horse	Pleasure Horses	Brood- mares
Influenza inactivated injectable	1st Dose: 9 months 2nd Dose: 10 months	1st Dose: 6 months 2nd Dose: 7 months	Every 3-4 months	Every 3-5 months	Annual with Boosters prior to	At least semiannual, with 1

TABLE 1-continued

	 Weanlings from Vaccinated Mares	 Weanlings from non- Vaccinated Mares	Yearlings	Performance Horse	Pleasure Horses	Broodmares
	3rd Dose: 11-12 months Then at 3 month intervals	3rd Dose: 8 months Then at 3 month intervals			likely exposure	Booster 4-6 weeks prepartum
Influenza intranasal coldadapted live virus	1st Dose: 12 months; has been safely administered to foals less than 11 months	1st Dose: 12 months; has been safely administered to foals less than 11 months	Every 4-6 months	Every 4-6 months	Every 4-6 months	Annual before breeding

Influenza vaccines may be combined with tetanus or herpesvirus antigens as well as other pathogens, e.g., equine pathogens. The immune response elicited by tetanus toxoid is much more durable than that induced by influenza antigen. In an intensive influenza vaccination program, vaccines containing influenza only are thus preferred.

Levels of antibody (measured by the SRH assay) required for protection of horses have been identified through vaccination and challenge studies and from field data. Because the vaccine-induced antibody response to HA in horses is remarkably short-lived, adjuvants such as aluminum hydroxide or carbomer are normally included to enhance the amplitude and duration of the immune response to whole virus vaccines. Subunit equine influenza vaccines containing immune stimulating complexes (ISCOMs) are also immunogenic.

Historically, antigenic content in inactivated vaccines has been expressed in terms of chick cell agglutinating (CCA) units of HA and potency in terms of HI antibody responses induced in guinea pigs and horses, neither of which yields reproducible results. The single radial diffusion (SRD) assay is an improved in vitro potency test that measures the concentration of immunologically active HA (expressed in terms of micrograms of HA) and can be used for in-process testing before the addition of adjuvant.

The invention will be further described by the following non-limiting example.

EXAMPLE

An approximately 36 -hour-old Morgan/Friesian colt was referred to the large animal hospital at the University of Wisconsin for an evaluation of altered mentation (mental status), first noticed shortly after birth. Parturition had been unobserved, but the foal had been found separated from the mare by a fence at a few hours of age. The foal was ambulatory and able to nurse when first discovered but showed progressive disorientation, apparent blindness, and aimless wandering during the following 36 -hour period. A SNAP immunoglobulin $\mathrm{G}(\operatorname{IgG})$ assay (Idexx Laboratories, Westbrook, Me.) at 24 hours of age had shown an IgG concentration $>800 \mathrm{mg} / \mathrm{dL}$, and a CBC performed at that time was normal. The foal was treated twice with dimethyl sulfoxide 1 g / kg IV, diluted in 5% dextrose before referral.

At presentation, the colt wandered aimlessly, bumped into objects, and appeared blind with sluggish but intact pupillary light responses. When positioned under the mare, the foal
nursed successfully. Physical examination was unremarkable. A CBC and serum biochemistry were normal, including a serum IgG concentration of $937 \mathrm{mg} / \mathrm{dL}$ measured by radioimmunodiffusion.

Initial treatment for presumptive hypoxemic, ischemic encephalopathy included a 250 mL loading dose of 20% magnesium sulfate for 1 hour, followed by a constant rate infusion at $42 \mathrm{~mL} / \mathrm{h}$ and thiamine hydrochloride $2.2 \mathrm{mg} / \mathrm{kg}$ IV q24 h. Antimicrobial therapy consisted of amikacin $20 \mathrm{mg} / \mathrm{kg}$ IV q24 h and procaine penicillin G $22,000 \mathrm{U} / \mathrm{kg}$ IM q12 h . Omeprazole $1 \mathrm{mg} / \mathrm{kg} \mathrm{PO} \mathrm{q} 24 \mathrm{~h}$ also was administered to the foal to help prevent the development of gastric ulcers.

The foal's mental status remained static during the next 24 hours, and additional treatment with mannitol $1 \mathrm{~g} / \mathrm{kg}$ IV q24 h and dexamethasone sodium phosphate $0.1 \mathrm{mg} / \mathrm{kg}$ IV q 24 h on days 2 and 3 of hospitalization was not associated with improvement. On day 3, the foal underwent general anesthesia for a computerized tomographic scan of the skull and proximal spine, which was normal. A cerebrospinal fluid sample was obtained from the lumbosacral space and was normal on cytologic evaluation and had a normal protein concentration.

On day 4 of hospitalization, the foal developed a rightsided head tilt but otherwise remained static through day 5 of hospitalization. Magnesium sulfate therapy was discontinued on day 5 , but the remainder of the therapeutic regimen was unchanged. On day 6 , the foal had 2 brief, generalized seizures that were controlled with midazolam $0.05 \mathrm{mg} / \mathrm{kg}$ IV. Between seizures, the foal was still bright, afebrile, and nursing.

On day 7 of hospitalization, the foal became febrile (40° C.) and developed a mucopurulent nasal discharge and progressive tachypnea with diffuse adventitious crackles and wheezes on auscultation. Fever, mucopurulent nasal discharge, and coughing had been noted in several other mares and foals in the neonatal care unit during the previous 7 days Antimicrobial therapy was changed to ticarcillin/clavulanic acid $50 \mathrm{mg} / \mathrm{kg}$ IV q 8 h had gentamicin $6.6 \mathrm{mg} / \mathrm{kg}$ IV q24 h, and the foal was treated with polyionic fluids, although it was still nursing. During days $8-10$, the foal's neurologic status continued to improve, with a resolution of the head tilt and a return to normal mentation, but the tachypnea, dyspnea, and adventitious lung sounds worsened. Thoracic radiography at this time showed a severe, diffuse bronchointerstitial pattern. Aminophylline $0.5 \mathrm{mg} / \mathrm{kg}$ IV q12 h by slow infusion and nasal insufflation of oxygen were instituted on days 9 and 10 of hospitalization. Serial arterial blood gas analysis identified
severe hypoxemia $\left(\mathrm{PaO}_{2}, 52 \mathrm{~mm} \mathrm{Hg}\right)$, hypercapnia $\left(\mathrm{PaCO}_{2}\right.$, 68.4 mm Hg), and reduced oxygen saturation (76%) by the end of day 10 . Consequently, the foal was placed on a mechanical ventilator. Ventilatory support and total parenteral nutrition were continued for 48 hours, during which time arterial blood gas values normalized on 100% oxygen. Antimicrobial therapy was continued as before. When challenged on day 13 by the removal of ventilatory support, the foal developed severe dyspnea and cyanosis and was euthanized at the owner's request. An aerobic culture of a transtracheal aspirate obtained on day 13 grew Klebsiella pneumoniae and Escherichia coli resistant to ticarcillin/clavulanic acid and gentamicin.

A complete gross and histopathologic postmortem examination was performed, as well as a real-time quantitative polymerase chain reaction (PCR) evaluation for the presence of equine herpes virus (EHV)-1 and EHV-4 in samples of nasal secretions; serologic tests to determine if there was exposure to equine viral arteritis virus; and a Directigen Flu A assay (Bectin Dickinson and Co., Franklin, N.J.) and virus isolation from samples of nasal secretions to test for the presence of influenza virus. Samples of nasal secretions were collected with Dacron swabs that were subsequently placed in 2 mL of viral transport media containing phosphate-buffered saline, 0.5% bovine serum albumin, and penicillin G, streptomycin, nystatin, and gentamicin. The nasal swab samples were collected on day 8 of hospitalization. Followup evaluations for the influenza virus included immunohistochemistry on snap-frozen and formalin-fixed lung, abdominal viscera, and central nervous system tissues for the presence of influenza nucleoprotein (NP) expression, virus isolation from frozen lung tissue, and viral sequence analyses. Gross post-mortem examination identified severe diffuse interstitial pneumonia and subdural hemorrhage on the caudal ventral surface of the brain around the pituitary gland but no evidence of sepsis or pathology in other organs. Histopathologic examination of the lung identified necrotizing bronchitis and brochiolitis, diffuse squamous metaplasia, and multifocal interstitial pneumonia. A mild mononuclear infiltrate lined the lower airways and, occasionally, areas of alveolar collapse associated with congestion and exudate. Evaluation of the brain tissue revealed a mild dilatation of the ventricular system with diffuse white matter vacuolation, particularly in the cerebellum. Cresyl violet staining for the presence of myelin was performed on multiple sections and showed diminished but present myelin throughout the brain and spinal cord when compared to tissues from an agematched control stained in parallel. Additional histopathologic abnormalities in the central nervous system included an apparent absence of the molecular layer within the cerebellum. Serologic tests for equine viral arteritis and a real-time PCR assay for EHV-1 and EHV-4 DNA were negative.

The presence of influenza virus in nasal secretions initially was confirmed by a positive Directigen assay. Previous studies have documented the sensitivity and specificity of this assay when applied to equine nasal secretion samples (Morely et al., 1995 and Chambers et al., 1994). Samples of the nasal swab transport media also were inoculated into the allantoic cavity of embryonated chicken eggs and onto Madin-Darby canine kidney (MDCK) cells growing in 24-well cell culture plates. Cytopathologic effects consistent with influenza virus growth were observed in the inoculated MDCK cells, and an agent that caused the hemagglutination of chicken red blood cells was isolated from the inoculated eggs (Palmar et al., 1975). The presence of influenza virus in the MDCK cell cultures was confirmed by the immunocytochemical staining (Landolt et al., 2003) of the inoculated
cells with an anti-NP monoclonal antibody (Mab) 68D2 (kindly provided by Dr. Yoshihiro Kawaoka, University of Wisconsin-Madison School of Veterinary Medicine) with positive (swine influenza virus inoculated) and negative (mock inoculated) control cells included on the same plate. The identity of the virus as an H3-subtype equine influenza virus was confirmed by reverse transcription-PCR amplification of the hemagglutinin (HA) gene from the isolate, with primers described in Olsen et al. (1997), followed by cycle sequencing of the full-length protein coding region of the HA gene and pairwise comparisons to viral sequences available in GenBank (DNASTAR software, version 4.0 for Win32, Bestfit, Madison, Wis.). The virus was shown to be derived from the North American lineage of H 3 equine influenza viruses by a phylogenetic analysis that used a maximum parsimony bootstrap analysis (PAUP software, version 4.0b6; David Swofford, Smithsonian Institution, Washington, D.C.) of the HA sequence compared to reference virus strains with a fastheuristic search of 1,000 bootstrap replicates. Similar analyses of portions of the nucleotide sequences of the nonstructural protein gene (544 nucleotides sequenced) and the NP gene (885 nucleotides sequenced) further confirmed the identity of the virus as a North American-lineage equine influenza virus. This virus is now defined as A/Equine/Wisconsin/1/03. FIG. 1 provides sequences for the coding region of each gene of that virus.

The presence of influenza virus also was assessed in the lungs and other tissues of the foal. Specifically, immunohistochemistry with Mab 68D2 showed scattered, widely dispersed areas of influenza virus NP expression (predominantly localized around airways) in the frozen as well as the forma-lin-fixed lung tissue samples. NP expression was not shown in the other viscera or in the central nervous system. In addition, influenza virus was isolated in MDCK cells (and confirmed by immunocytochemistry and HA gene sequencing) from a sample of the frozen lung tissue.
Acute respiratory distress syndrome (ARDS) in neonatal foals has been documented as a consequence of bacterial sepsis (Wilkins, 2003; Hoffman et al., 1993), perinatal EHV-1 (Frymus et al., 1986; Gilkerson et al., 1999) and EHV-4 (Gilkerson et al., 1999), and equine viral arteritis infection (Del Piero et al., 1997). Less severe lower airway disease occasionally is documented with adenovirus and EHV-2 infections, particularly in the immunocompromised patient (Webb et al., 1981; Murray et al., 1996). Bronchointerstitial pneumonia and ARDS are high-mortality respiratory diseases of older foals with several potential causes, including bacterial and viral infections (Lakritz et al., 1993). Whether it occurs in neonates experiencing septic shock or in older foals with diffuse bronchointerstitial pneumonia, ARDS is characterized by acute-onset, rapidly progressive, severe tachypnea. The increased respiratory effort, worsening cyanosis, hypoxemia, and hypercapnia that accompany ARDS frequently are poorly responsive to aggressive therapy (Wilkins, 2003; Lakritz et al., 1993). It is a category of respiratory disease with several potential etiologies and a mortality rate that frequently exceeds 30% despite intensive treatment with antimicrobials, oxygen, anti-inflammatory agents, brochodilators, and thermoregulatory control. Equine influenza is a well-documented cause of upper respiratory disease in horses worldwide (Wilkins, 2003; Van Maanen et al., 2002; Wilson, 1993), but very little information exists in the literature about the manifestations of this disease in neonates. A single report describes bronchointerstitial pneumonia in a 7 -day-old foal from which equine influenza A was isolated (Britton et al., 2002); this foal resembles the foal described herein.

The foal detailed in this study was one of several hospitalized horses that developed fever, mucopurulent nasal discharge, and coughing during a 2 - or 3 -week period. Clinical signs in the other affected horses, including high-risk neonates, generally were confined to the upper respiratory tract, except for mild systemic signs of fever and inappetance. The reason for the severity of the pulmonary failure in this foal is unclear. Treatment did include the potentially immunosuppressive drug dexamethasone and general anesthesia for a diagnostic procedure, both of which may have predisposed the foal to the development of pneumonia. The impact of the foal's neurologic disease on the development and progression of respiratory disease also is unclear. The histologic findings of diffuse vacuolization, decreased myelin throughout the central nervous system, and absent molecular layer within the cerebellum do not fit any specific clinical or histopathologic diagnosis. The foal could have had impaired central control of respiration, because the areas of the brain involved in the control of respiration (the pons and medulla oblongata) showed diffuse vacuolization and diminished myelin staining. Any subsequent impairment of ventilation would likely have been a terminal event given the normalcy of ventilatory function until several days after hospitalization. However, the abnormal mentation from birth, the vacuolization, the decreased myelinization in the central nervous system, and the cerebellar abnormalities are suggestive of a concurrent, congenital neurologic abnormality, which may have compromised the foal's ability to respond to worsening respiratory function. The focal hemorrhage observed on the caudal ventral aspect of the brain was mild and was possibly a consequence of trauma during one of the seizures the foal experienced.

The mare had been vaccinated semiannually against influenza for the past 2 years with a killed product and was given a booster vaccination in late pregnancy. Considering the evidence of adequate passive transfer in this foal, these antibodies apparently did not confer adequate protection for the foal. Furthermore, phylogenetic analysis of the isolate obtained from the foal characterized it as an H3N8 subtype, and the commercial product used to vaccinate the mare in late pregnancy contained an influenza virus strain of the same subtype, suggesting that passive transfer cannot be guaranteed to protect against natural infection under certain circumstances. This lack of vaccine efficacy is consistent with a recent study by Mumford et al. (2003) that describes the failure of commercially available H7N7 and H3N8 equine influenza virus vaccines to protect adults against clinical respiratory disease that results from a natural infection with certain H3N8 virus strains. The transtracheal recovery of 2 bacterial species that were resistant to the antimicrobial regimen in place at the time of death confounds the conclusion that influenza was the sole cause of death. However, postmortem examination identified no gross or histopathologic evidence of sepsis, and synergism occurs between the influenza virus and some bacterial pathogens, combining to cause pneumonia with increased mortality (McCullers et al., 2003; Simonsen, 1999). Furthermore, the isolation of the infectious virus and the immunohistochemical demonstration of viral antigen from the lung tissue obtained postmortem, 6 days after the virus initially was recovered by a nasopharyngeal swab, provide strong evidence of a pathologic contribution from influenza virus in this foal's respiratory failure.

To compare the growth characteristics of avian, equine, human, and porcine lineage viruses in primary canine respiratory epithelial cells and to investigate the species influence on their growth characteristics, cultured cells were infected at an MOI of 3 with viruses including $A / E q u i n e / W i s c o n s i n / 1 / 03$
and incubated for up to 10 hours. The other viruses included six human and swine influenza A virus isolates (A/Phillipines/08/98, A/Panama/2002/99, A/Costa Rica/07/99; A/Swine/NorthCarolina/44173/00, A/Swine/Minnesota/ 593/99, A/Swine/Ontario/00130/97, and two equine influenza viruses (A/Equine/Kentucky/81 and A/Equine/Kentucky/91). At the end of the experiment, the cells were formalin fixed for immunocytochemistry and flow cytometry analyses.

The six human and swine influenza virus isolates mentioned above readily infected substantially all ($80-90 \%$) of the canine respiratory epithelial cells and grew to high titers $\left(10^{5.3}-10^{7} \mathrm{TCID}_{50} / \mathrm{ml}\right)$ in those cells. A/Equine/Kentucky/81 and A/Equine/Kentucky/91 were highly restricted in their infectivity ($<10 \%$ of the cells infected) with little ($10^{1.7}$ $\mathrm{TCID}_{50} / \mathrm{ml}$ for A/Equine/Kentucky/81) or no (for A/Equine/ Kentucky/91) detectable viral growth. In contrast, A/Equine/ Wisconsin/1/03 infected a larger percentage (about 30%) of the primary canine respiratory epithelial cells and grew to substantially higher titers (about $10^{4.8} \mathrm{TCID}_{50} / \mathrm{ml}$) in those cells. The results demonstrated that all influenza A viruses tested were able to infect canine primary respiratory epithelial cells. However, the infectivity and replication characteristics of the viruses were strongly lineage-dependent.

Dubovi et al. (2004) noted recurrent outbreaks of severe respiratory disease characterized by coughing and fever in greyhound dogs at racing kennels in Florida. Most affected dogs recovered, but some succumbed to a fatal hemorrhagic pneumonia. Lung tissues from 5 of the dogs that died from the hemorrhagic pneumonia syndrome were subjected to virus isolation studies in African green monkey kidney epithelial cells (Vero), Madin-Darby canine kidney epithelial cells (MDCK), primary canine kidney epithelial cells, primary canine lung epithelial cells, primary bovine testicular epithelial cells, canine tumor fibroblasts (A-72), and human colorectal adenocarcinoma epithelial cells (HRT-18) (Dubovi et a1., 2004). Cytopathology in the MDCK cells was noted on the first passage of lung homogenate from one of the dogs, and the loss of cytopathology upon subsequent passage to cells cultured without trypsin coupled with the presence of hemagglutinating activity in culture supernatants suggested the presence of an influenza virus (Dubovi et al., 2004). The virus was initially identified as influenza virus by PCR using primers specific for the matrix gene. The canine influenza virus has been designated as the A/Canine/Florida/43/04 strain. Based on virus isolation from the lungs, the presence of viral antigens in lung tissues by immunohistochemistry, and seroconversion data, Dubovi et al. (2004) concluded that the isolated influenza virus was most likely the etiological agent responsible for the fatal hemorrhagic pneumonia in racing greyhounds during the Jacksonville 2004 outbreak, and that this was the first report of an equine influenza virus associated with respiratory disease in dogs (Dubovi et al., 2004). The HA protein of the canine isolate differs from the A/Equine/Wisconsin/1/03 strain by only 6 amino acids.

REFERENCES

Avery's Drug Treatment: Principles and Practice of Clinical Pharmacology and Therapeutics, 3rd edition, ADIS Press, Ltd., Williams and Wilkins, Baltimore, Md. (1987).
Aymard-Henry et al., Virology: A Practical Approach, Oxford IRL Press, Oxford, 119-150 (1985).
Bachmeyer, Intervirology, 5:260 (1975).
Berkow et al., eds., The Merck Manual, 16 thedition, Merck \& Co., Rahway, N.J. (1992).
Britton et al., Can. Vet. J., 43:55 (2002).

Chambers et al., Vet. Rec., 135:275 (1994)
Daly and Mumford, In: Equine Respiratory Diseases Lekeux (ed.) International Veterinary Information Science, Ithaca, N.Y. (2001).

Del Piero et al., Equine Vet. J., 29:178 (1997).
Dubovi et al., Proceedings of the American Association of Veterinary Laboratory Diagnostics, p. 158 (2004).
Enami et al., Proc. Natl. Acad. Sci. U.S.A., 87:3802 (1990).
Frymus et al., Pol. Arch. Med. Wewn, $26: 7$ (1993).
Gilkerson et al., Vet. Microbiol., 68:27 (1999).
Grand and Skehel, Nature, New Biology, 238:145 (1972).
Hoffman et al., Am. J. Vet. Res., 54:1615 (1993).
Kilbourne, Bull. M2 World Health Org., 41: 653 (1969).
Lakritz et al., J. Vet. Intern. Med., 7:277 (1984-1989).
Landolt et al., J. Clin. Microbiol., 41:1936 (2001).
Laver \& Webster, Virology, 69:511 (1976).
Marriott et al., Adv. Virus Res., 53:321 (1999).
McCullers et al., J. Infect. Dis., 187:1000 (2003).
Morley et al., Equine Vet. J., 27:131 (1995).
Mumford et al., Equine Vet. J., 35:72 (2003).
Murphy, Infect. Dis. Clin. Pract., 2: 174 (1993).
Murray et al., Equine Vet. J., 28:432 (1996).
Muster et al., Proc. Natl. Acad. Sci. USA, 88: 5177 (1991).
Neumann et al., Proc. Natl. Acad. Sci. U.S.A, 96:9345 (1999).

Ogra et al., J. Infect. Dis., 134: 499 (1977).
Olsen et al., Vaccine, 15:1149 (1997).
Osol (ed.), Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. 1324-1341 (1980).
Palmar et al., Madison Wis.: University of Wisconsin Department of Health, Education and Welfare Immunology Series (1975).
Park et al., Proc. R. Soc. London B., 271:1547 (2004).
Robertson et al., Biologicals, 20:213 (1992).
Robertson et al., Giornale di Igiene e Medicina Preventiva, 29:4 (1988).
Simonsen, Vaccine, 17:S3 (1999).
Subbarao et al., J. Virol., 67:7223 (1993).
Van Maanen et al., Vet. Q., 24:79 (2002).
Webb et al., Aust. Vet. J., 57:142 (1981).
Wilkins, Vet. Clin. North Am. Equine Pract., 19:19 (2003).
All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 470
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 2

755


```
<210> SEQ ID NO 5
<211> LENGTH: 716
<212> TYPE: PRT
<213> ORGANISM: Influenza A Virus
```


$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 230
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 8

$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 2277
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 11

<210> SEQ ID NO 13	
<211> LENGTH: 2209	
$<212>$ TYPE: DNA	
<213> ORGANISM: Influenza A Virus	
<400> SEQUENCE: 13	
atggaagact ttgtgcgaca atgcttcaat ccaatgatcg tegagcttgc ggaaaaggca	60
atgaaagaat atggagagga cecgaaate gaacaaaca aatttgcagc aatatgcact	120
cacttggaag tctgcttcat gtactcggat ttccacttta ttaatgaact gagtgagtca	180
gtggtcatag agtctggtga cccaaatgct cttttgaaac acagatttga aatcattgag	240
gggagagatc gaacaatgge atggacagta gtaaacagca tetgcaacac cacaagaget	300
gaaaaaccta aatttcttcc agatttatac gactataagg agaacagatt tgttgaaatt	360
ggtgtgacaa ggagagaagt tcacatatac tacctggaga aggccaacaa aataaagtet	420
gagaaaacac atatccacat tttctcattt acaggagagg aaatggctac aaaagcggac	480
tatactcttg atgaagagag tagagccagg atcaagacca gactattcac tataagacaa	540
gaaatggcea gtagaggcet ctgggattce tttcgtcagt cegagagagg cgaagagaca	600
attgaagaaa gatttgaaat cacagggacg atgcgcaagc ttgccaatta cagtctccca	660
ccgaacttct ccagcettga aaattttaga gtctatgtgg atggattcga accgaacggc	720
tgcattgaga gtaagctttc tcaaatgtcc aaagaagtaa atgccagaat cgaaccattt	780
tcaaagacaa caccocgacc actcaaaatg ccaggtggtc caccotgcca tcagcgatct	840
aaattcctgc taatggatgc tctgaaactg agcattgagg acccaagtca cgagggagag	900
ggaataccac tatatgatge catcaaatgc atgaaaactt tetttggatg gaaagagcec	960
agtattgtta aaccacatga aaagggtata aaccogaact atctccaaac ttggaagcaa	1020
gtattagcag aattacaaga cettgagaac gaagaaaagg accecaagac caagaatatg	1080
aaaaaaacaa gccaattgaa atgggcactt agtgaaaata tggcaccaga gaaagtggat	1140
tttgaggatt gtaaagacat cagtgattta aaacagtatg acagtgatga gccagaaaca	1200
aggtctcttg caagttggat tcaaagtgag ttcaacaaag cttgtgaact gacagattca	1260
agctggatag agctcgatga aattggggag gatgttgcce caatagaata cattgcgagc	1320
atgaggagaa attattttac tgctgaggtt tcccattgta gagcaacaga atatataatg	1380
aagggagtgt acatcaacac tgctctactc aatgcatcct gtgctgcgat ggatgaattc	1440
caattaattc cgatgataag taaatgcagg accaaagaag ggagaaggaa gacaaattta	1500
tatggattca tagtaaggg aaggtcccat ttaagaaatg atactgacgt ggtgaacttt	1560
gtaagtatgg aattttctct cactgatcca agatttgagc cacacaaatg ggaaaaatac	1620
tgcgttctag aaattggaga catgcttcta agaactgctg taggtcaagt gtcaagaccc	1680
atgtttttgt atgtaaggac aaatggaacc tctaaatta aatgaaatg gggaatggaa	1740
atgaggcget gcetccttca gtctctgcaa cagattgaaa gcatgatcga agctgagtce	1800
tcagtcaaag aaaaggacat gaccaaagaa ttttttgaga acaaatcaga gacatggcet	1860
ataggagagt cccccaaagg agtggaagag ggctcaatcg ggaaggtttg caggacctta	1920
ttagcaaat ctgtgtttaa cagtttgtat gcatctccac aactggaagg gttttcagct	1980
gaatctagga aattacttct cattgttcag gctcttaggg ataacctgga acctggaacc	2040
tttgatattg gggggttata tgaatcaatt gaggagtgec tgattaatga tecctgggtt	2100
ttgcttaatg catcttggtt caactccte cttacacatg cactgaagta gttgtggcaa	2160

tgetactatt tgctatccat actgtccaaa aagtacctt gtttctact
$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 1498
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 14

$$
<400>\text { SEQUENCE: } 14
$$

atggcgtctc aaggcaccaa acgatcctat gaacagatgg aaactgatgg ggaacgccag 60
aatgcaactg aaatcagagc atctgtcgga aggatggtgg gaggaatcgg ccggttttat 120
gttcagatgt gtactgagct taaactaaac gaccatgaag ggcggctgat tcagaacagc 180
ataacaatag aaaggatggt actttcggca ttcgacgaaa gaagaaacaa gtatctcgag 240
gagcatccca gtgctgggaa agaccctaag aaaacaggag gcccgatata cagaaggaaa 300
gatgggaaat ggatgaggga actcatcctc catgataaag aagaaatcat gagaatctgg 360
cgtcaggcca acaatggtga agacgctact gctggtctta ctcatatgat gatctggcac 420
tccaatctca atgacaccac ataccaaaga acaagggctc ttgttcggac tgggatggat 480
cccagaatgt gctctctgat gcaaggctca accctcccac ggagatctgg agccgctggt 540
gctgcagtaa aaggtgttgg aacaatggta atggaactca tcagaatgat caaacgcgga 600
ataaatgatc ggaatttctg gagaggtgaa aatggtcgaa gaaccagaat tgcttatgaa 660
agaatgtgca atatcctcaa agggaaattt cagacagcag cacaacgggc tatgatggac 720
caggtgaggg aaggccgcaa tcctggaaac gctgagattg aggatctcat tttcttggca 780
cgatcagcac ttattttgag aggatcagta gcccataat catgcctacc tgcetgtgtt 840
tatggcettg cagtaaccag tgggtatgac tttgagaagg aaggatactc tetggttgga 900
attgatcctt tcaaactact ccagaacagt caaattttca gtctaatcag accaaaagaa 960
aacccagcac acaagagcea gttggtgtgg atggcatgcc attctgcagc atttgaggac 1020
ctgagagttt taaatttcat tagaggaacc aaagtaatcc caagaggaca gttaacaacc 1080
agaggagttc aaatagcttc aaatgaaaac atggagacaa tagattctag cacacttgaa 1140
ctgagaagca aatattgggc aataaggacc agaagcggag gaaacaccag tcaacagaga 1200
gcatctgcag gacagataag tgtgcaacct actttctcag tacagagaaa tcttcccttt 1260
gagagagcaa ccattatggc tgcattcact ggtaacactg aagggaggac ttccgacatg 1320
agaacggaaa tcataaggat gatggaaaat gccaaatcag aagatgtgtc tttccagggg 1380
cggggagtct tcgagctctc ggacgaaaag gcaacgaacc cgatcgtgcc ttcctttgac 1440
atgagcaatg aagggtctta tttcttcgga gacaatgctg aggagtttga cagttaaa 1498
$<210\rangle$ SEQ ID NO 15
<211> LENGTH: 982
$<212>$ TYPE: DNA
<213> ORGANISM: Influenza A Virus
<400> SEQUENCE: 15
atgagtcttc taaccgaggt cgaaacgtac gttctctcta tcgtaccatc aggccccctc 60
aaagccgaga tcgcgcagag acttgaagat gtctttgcag ggaagaacac cgatcttgag 120
gcactcatgg aatggctaaa gacaagacca atcetgtcac ctctgactaa agggatttta 180
ggatttgtat tcacgctcac cgtgcecagt gagcgaggac tgcagcgtag acgctttgtc 240
caaatgcce ttagtggaaa cggagatcca aacaacatgg acagagcagt aaaactgtac 300
aggaagctta aaagagaaat aacattccat ggggcaaaag aggtggcact cagctattcc 360

$<210>S E Q$ ID NO 17
<211> LENGTH: 97
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Influenza A Virus
<400> SEQUENCE: 17

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 344
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 19
Met Lys Thr Thr Ile Ile Leu Ile Leu Leu Thr His Trp Ala Tyr Ser
Gln Asn Pro Ile Ser Gly Asn Asn Thr Ala Thr Leu Cys Leu Gly His
His Ala Val Ala Asn Gly Thr Leu Val Lys Thr Ile Ser Asp Asp Gln$35-40 \quad 45$
Ile Glu Val Thr Asn Ala Thr Glu Leu Val Gln Ser Ile ser Met Gly

Lys Ile Cys Asn Asn Ser Tyr Arg Ile Leu Asp Gly Arg Asn Cys Thr
65
70

Leu Ile Asp Ala Met Leu Gly Asp Pro His Cys Asp Ala Phe Gln Tyr
Glu Asn Trp Asp Leu Phe Ile Glu Arg Ser Ser Ala Phe Ser Asn Cys
Tyr Pro Tyr Asp

115
Ser Ser Gly Thr Leu Glu Phe Thr Ala Glu Gly Phe Thr Trp Thr Gly
130135140
Val Thr Gln Asn Gly Arg Ser Gly Ala Cys Lys Arg Gly Ser Ala Asp
145
150

Ser Phe Phe Ser Arg Leu Asn Trp Leu Thr Lys Ser Gly Ser Ser Tyr | 175 |
| ---: | ---: | ---: |
| 165 |

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 344
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Influenza A Virus
$<400>$ SEQUENCE: 20

Met 1	Lys T	Thr	Thr I	$\begin{gathered} \text { Ile } \\ 5 \end{gathered}$	Ile	Leu			$\begin{aligned} & \text { Leu } \\ & 10 \end{aligned}$			Trp		$\begin{aligned} & \text { Tyr } \\ & 15 \end{aligned}$	
Gln	Asn	Pro I	$\begin{aligned} & \text { Ile S } \\ & 20 \end{aligned}$	Ser	Gly	Asn	Asn	$\begin{aligned} & \text { Thr } \\ & 25 \end{aligned}$	Ala	Thr	Leu	Cys	$\begin{aligned} & \text { Leu } \\ & 30 \end{aligned}$	Gly	His
His	Ala	$\begin{aligned} & \text { Val } \\ & 35 \end{aligned}$	Ala A	Asn	Gly	Thr	$\begin{aligned} & \text { Leu } \\ & 40 \end{aligned}$	Val	Lys	Thr	Ile	$\begin{aligned} & \text { Ser } \\ & 45 \end{aligned}$	Asp	Asp	Gln
Ile	$\begin{aligned} & \text { Glu } \\ & 50 \end{aligned}$	Val	Thr A	Asn	Ala	$\begin{aligned} & \text { Thr } \\ & 55 \end{aligned}$	Glu	Leu	Val	Gln	$\begin{aligned} & \text { Ser } \\ & 60 \end{aligned}$	Ile	Ser	Met	Gly
$\begin{aligned} & \text { Lys } \\ & 65 \end{aligned}$	Ile	Cys A	$A \sin A$	Asn	$\begin{aligned} & \text { Ser } \\ & 70 \end{aligned}$	Tyr	Arg	Ile	Leu	$\begin{aligned} & \text { Asp } \\ & 75 \end{aligned}$	Gly	Arg	Asn	Cys	$\begin{aligned} & \text { Thr } \\ & 80 \end{aligned}$
Leu	Ile	Asp	Ala	$\begin{aligned} & \text { Met } \\ & 85 \end{aligned}$	Leu	Gly	Asp	Pro	$\begin{aligned} & \text { His } \\ & 90 \end{aligned}$	Cys	Asp	Val	Phe	$\begin{aligned} & \mathrm{Gln} \\ & 95 \end{aligned}$	Tyr
Glu	Asn		$\begin{aligned} & \text { Asp } L \\ & 100 \end{aligned}$	Leu	Phe	Ile	Glu	Arg 105	Ser	Ser	Ala	Phe	$\begin{aligned} & \text { Ser } \\ & 110 \end{aligned}$	Asn	Cys
TYr	$\text { ro } \mathrm{T}$	$\begin{aligned} & \text { Tyr A } \\ & 115 \end{aligned}$	Asp I	Ile	Pro	Asp	$\begin{aligned} & \text { Tyr }= \\ & 120 \end{aligned}$	Ala	Ser	Leu	Arg	$\begin{aligned} & \text { Ser } \\ & 125 \end{aligned}$	Ile	Val	Ala
Ser	$\begin{aligned} & \text { Ser } \\ & 130 \end{aligned}$	Gly I	Thr L	Leu	Glu	$\begin{aligned} & \text { Phe } \\ & 135 \end{aligned}$	Thr	Ala	Glu	Gly	$\begin{aligned} & \text { Phe } \\ & 140 \end{aligned}$	Thr	Trp	Thr	Gly
$\begin{aligned} & \text { Val } \\ & 145 \end{aligned}$	Thr	Gln	Asn G	Gly	Arg 150	Ser	Gly	Ala	Cys	$\begin{aligned} & \text { Lys } \\ & 155 \end{aligned}$	Arg	Gly	Ser	Ala	$\begin{aligned} & \text { Asp } \\ & 160 \end{aligned}$
Ser	Phe P	Phe S	Ser 1	$\begin{aligned} & \text { Arg } \\ & 165 \end{aligned}$	Leu	Asn	Trp	Leu	$\begin{aligned} & \text { Thr } \\ & 170 \end{aligned}$	Lys	Ser	Gly	Asn	$\begin{aligned} & \text { Ser } \\ & 175 \end{aligned}$	Tyr
Pro	Thr L	Leu	$\begin{aligned} & \text { Asn V } \\ & 180 \end{aligned}$	Val	Thr	Met	Pro	$\begin{aligned} & \text { Asn } \\ & 185 \end{aligned}$	Asn	Lys	Asn	Phe	Asp 190	Lys	Leu
Tyr	Ile	$\begin{aligned} & \text { Trp } \\ & 195 \end{aligned}$	Gly I	Ile		His	$\begin{aligned} & \text { Pro } \\ & 200 \end{aligned}$	Ser	Ser	Asn	Gln	$\begin{aligned} & \text { Glu } \\ & 205 \end{aligned}$	Gln	Thr	Lys

-continued

What is claimed is:

1. An isolated H3 influenza virus comprising a gene segment with sequences for a HA having SEQ ID NO:1 or a HA having at least 96% amino acid sequence identity to SEQ ID $\mathrm{NO}: 1$ which HA has an alanine at position 78 and a serine at position 159.
2. The isolated influenza virus of claim 1 which has an HA with at least 99% amino acid sequence identity to SEQ ID NO:1.
3. A vaccine comprising the virus of claim 1 in an amount effective to induce a prophylactic or therapeutic response against influenza infection.
4. The vaccine of claim 3 further comprising a different isolated influenza virus.
5. The vaccine of claim $\mathbf{3}$ wherein the isolated influenza virus is an attenuated virus.
6. The vaccine of claim $\mathbf{3}$ wherein the influenza virus has been altered by chemical, physical or molecular means.
7. The vaccine of claim $\mathbf{3}$ further comprising an adjuvant.
8. The vaccine of claim $\mathbf{3}$ further comprising a pharmaceutically acceptable carrier.
9. The vaccine of claim $\mathbf{3}$ wherein the carrier is suitable for intranasal or intramuscular administration.
10. The vaccine of claim $\mathbf{1}$ which is in freeze-dried form.
11. An isolated H 3 influenza virus comprising HA1 protein encoded by a gene segment with sequences for a HA having SEQ ID NO: 1 or a HA having at least 98% amino acid sequence identity to SEQ ID NO:1 which HA does not have a valine at position 78 or an asparagine at position 159 .
12. The isolated influenza virus of claim $\mathbf{1 1}$ which comprises at least one of the following gene segments: a gene segment with sequences for a NA having SEQ ID NO:2 or having at least 95% amino acid sequence identity to SEQ ID NO:2, a gene segment with sequences for a PB1 having SEQ ID NO:3 or having at least 95% amino acid sequence identity to SEQ ID NO:3, a gene segment with sequences for a PB2 having SEQ ID NO:4 or having at least 95% amino acid sequence identity to SEQ ID NO:4, a gene segment with
sequences for a PA having SEQ ID NO:5 or having at least 95% amino acid sequence identity to SEQ ID NO:5, a gene segment with sequences for a NP having SEQ ID NO:6 or having at least 95% amino acid sequence identity to SEQ ID NO:6, a gene segment with sequences for a M1 having SEQ ID NO:7 or having at least 95% amino acid sequence identity to SEQ ID NO:7, a gene segment with sequences for a M2 having SEQ ID NO:17 or having at least 95% amino acid sequence identity to SEQ ID NO:17, a gene segment with sequences for a NS1 having SEQ ID NO:8 or having at least 95% amino acid sequence identity to SEQ ID NO:8, or a gene segment with sequences for a NS2 having SEQ ID NO:18 or having at least 95% amino acid sequence identity to SEQ ID NO:18.
13. The isolated influenza virus of claim $\mathbf{1 1}$ which comprises negative-strand nucleic acid corresponding to nucleic acid sequences encoding at least one of SEQ ID NOs:1-8, 17 or 18 .
14. The isolated influenza virus of claim 1 which has HA having SEQ ID NO:1 and NA having SEQ ID NO:2.
15. A vaccine comprising the virus of claim 11 in an amount effective to induce a prophylactic or therapeutic response against influenza infection.
16. The vaccine of claim 15 further comprising a different isolated influenza virus.
17. The vaccine of claim 15 wherein the isolated influenza virus is an attenuated virus.
18. The vaccine of claim 15 wherein the influenza virus has been altered by chemical, physical or molecular means.
19. The vaccine of claim $\mathbf{1 5}$ further comprising an adjuvant.
20. The vaccine of claim $\mathbf{1 5}$ further comprising a pharmaceutically acceptable carrier suitable for intranasal or intramuscular administration.
21. The isolated influenza virus of claim $\mathbf{1 1}$ which is inactivated.
