
1111111111111111 IIIIII IIIII 11111 1111111111 1111111111 1111111111 lllll 111111111111111 11111111
US 20070101054Al

c19) United States
c12) Patent Application Publication

Sivathanu et al.
c10) Pub. No.: US 2007/0101054 Al
(43) Pub. Date: May 3, 2007

(54) COMPUTER STORAGE DEVICE
PROVIDING IMPLICIT DETECTION OF
BLOCK LIVENESS

(76) Inventors: Muthian Sivathanu, Madison, WI
(US); Andrea C. Arpaci-Dusseau,
Madison, WI (US); Remzi H.
Arpaci-Dusseau, Madison, WI (US)

Correspondence Address:
BOYLE FREDRICKSON NEWHOLM STEIN
& GRATZ, S.C.
250 E. WISCONSIN AVENUE
SUITE 1030
MILWAUKEE, WI 53202 (US)

(21) Appl. No.:

(22) Filed:

11/535,757

Sep. 27, 2006

0 IS

FILE SYSTEM

r-----------·

20"
,--------

Related U.S. Application Data

(60) Provisional application No. 60/721,260, filed on Sep.
28, 2005.

Publication Classification

(51) Int. Cl.
G06F 12100 (2006.01)

(52) U.S. Cl. .. 711/112

(57) ABSTRACT

A disk drive or similar storage medium uses a semantic
understanding of its associated file system to monitor file
metadata and derive block liveness normally only known by
the file system. Knowledge of block liveness can be used to
improve the disk performance and to create a disk that
provides for secure deletion without explicit instructions
from the file system.

,-10

' t----.1----------.

18

I
I

: 30
: MEDIA ACCESS
: CIRCUIT
I
I

36
ACCESS

MONITOR
CIRCUIT

32

---------- -----~

READ
CIRCUIT

0

WRITE
CIRCUIT

12

: t:t±j_r:.s-1--1--c;-----34
I
I
I

I --------------

16

Patent Application Publication May 3, 2007 Sheet 1 of 3 US 2007/0101054 Al

0 IS

FILE SYSTEM

r-----------·

30

18

MEDIA ACCESS
CIRCUIT

READ
CIRCUIT

WRITE
CIRCUIT

12

36
ACCESS

MONITOR
CIRCUIT

FIG. 1

32

I l-+-+-+--t-1-...--- 34 I
I
I
I

I --------------

16

I I I I I I I
I
I

I
I

32
82

~106

FIG. 4

Patent Application Publication May 3, 2007 Sheet 2 of 3 US 2007/0101054 Al

I

I

-------v-
t

20" 20' V

3
\
6

LIVENESS
45 !-.+---'--+---~ INFERENCE _40

r......____...__, ,___C_I R_C_U_ITr---_ __,

I g I 34
ABCDEFGL-/

54

56

L L L C C D L
52

FIG. 2

42-i'---. ____________
1

A B C D E F G L-J
If\ I ✓ ✓
: 1 A B C : - - - - - - - - - - - - - - - - - - - 44

,..........--.-............ ----.----.--. I

: 2 D E ~ A B C D E F G~
I

: 3F LLLLLDL:
I I

•---------------- \---------------I
J

15

50
DATA WRITE

74

NORMAL SUSPICIOUS
WRITE WRITE

58 BLOCK
DEATH

_ ___.___ 7 6 60 _ _.__ ______

WRITE SHRED SHRED

.-----'--------, 7 8
WRITE

_ ___._____, 80
CLEAR

SUSPICION

FIG. 3

GENERATION 64
DEATH

SAVE
DATA

66

r-----'--------. 6 8
SHRED

-------- 7 0 3 6
REWRITE

DATA

,-----, 72
SET

SUSPICION

Patent Application Publication May 3, 2007 Sheet 3 of 3
US 2007/0101054 Al

US 2007/0101054 Al

COMPUTER STORAGE DEVICE PROVIDING
IMPLICIT DETECTION OF BLOCK LIVENESS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to Provisional
Application Ser. No. 60/721,260 filed on Sep. 28, 2005
entitled "Computer Storage Device Providing Implicit
Detection of Block Liveness" and which is incorporated
herein.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with United States gov­
ermnent support awarded by the following agencies: NSF
0098274. The United States has certain rights in this inven­
tion.

BACKGROUND OF THE INVENTION

[0003] The present invention relates to computer storage
devices such as, but not limited to, magnetic disk drives, and
in particular to a computer storage device that implicitly
determines whether blocks of the storage device are alive.

[0004] Computer storage devices, such as disk drives,
store the data of logical data files in one or more blocks
defined on a storage medium. The mapping of the data of the
logical data files to the blocks is normally done by a "file
system" being a program running as part of the computer
operating system. The interface between the file system and
the computer storage device is normally "narrow" providing
only simple block-level read instructions and block-level
write instructions, each indicating a block number and
whether data is to be read from the block or written to the
block.

[0005] When a logical data file is deleted, the blocks that
were used by the data file are left unchanged on the storage
medium and overwritten on an individual basis only when a
given block is later required to store the data of a different
data file. This approach avoids unnecessary activity by the
storage device (in erasing blocks on the storage medium),
but is a problem when computers are used in sensitive or
classified environments, for example, by the govermnent or
businesses handling confidential information such as con­
sumer credit or healthcare information. The data of deleted
data files can be recovered from the storage medium simply
by reading those blocks that have not yet been overwritten
by later stored data files.

[0006] A "secure" deleting of data files, that is, a deletion
that eliminates both the logical data file and that erases the
data of the data file stored on the storage medium, can be
implemented by modifying the file system to erase blocks
(by overwriting the blocks with an obscuring pattern) when­
ever the logical data file associated with the blocks is
deleted. Currently, the common file systems used by the vast
majority of computers (e.g., the file systems associated with
the Windows and Linux operating systems) do not provide
this feature. Third-party tools exist today that claim to
perform secure deletion by adding extensions to the file
system, but such tools are fundamentally unreliable for the
reasons below:

[0007] True secure delete for magnetic disks requires
"off-track writes", that is, a writing of data on either side of

1
May 3, 2007

track boundaries-something that requires control of disk
hardware not normally available to the file system through
its narrow interface with the disk. True secured deletion may
also require multiple overwrites of the blocks with different
patterns of data. If such multiple overwrites of a block are
implemented by the file system, the storage device may
buffer these repeated instructions in non-volatile RAM and
collapse them to a single write defeating the intended
purpose. Finally, some storage devices flexibly remap the
blocks designated by the file system to different physical
blocks on the storage medium ("block migration"). An
overwrite of a free block by the file system may be redi­
rected to a different block leaving stray copies of deleted
data.

[0008] Conceivably, current standard file systems could be
rewritten to allow secure deletion and the interfaces of
storage devices could be redesigned so that the file system
could perform the necessary low-level control of the storage
device. Such a coordinated, parallel modification of software
and hardware, in order to accommodate an initially small
group of users requiring secure deletion, is unlikely.

BRIEF SUMMARY OF THE INVENTION

[0009] The present inventors have recognized that a cur­
rently limited number of different types of file systems
makes it possible that a storage device could be invested
with knowledge of specific file system semantics. This
knowledge would allow the storage device to read and
interpret file system "metadata" stored on the storage device
indicating whether data of a particular block has been
deleted.

[0010] Once the storage device can determine the "live­
ness" of a block (that is, whether it has data associated with
a current data file), the storage device may independently
implement a secure deletion routine provide off-track writ­
ing and multiple overwrites ("shredding") that require low­
level hardware control. This implementation by the storage
device does not require a change to the disk interface and
requires no or little change to the file system.

[0011] The information about block liveness may further
allow the storage device to implement a wide variety of disk
optimization techniques including, but not limited to, more
efficient writing and reading of block data and off-line
optimization of the storage device.

[0012] Specifically then, the present invention provides a
computer storage device for use with a file system managing
logical data files. The computer storage device includes a
storage medium having a plurality of blocks storing data and
metadata, where the metadata maps data of the logical data
files to blocks. The computer storage device also includes an
interface accepting block read and block write instructions
from the file system. A controller identifies metadata stored
on the storage medium and from that metadata, determines
whether blocks are live. The controller then uses this live­
ness information to improve the performance or security of
the storage device.

[0013] Thus it is one aspect of at least one embodiment of
the invention to allow the storage device to evaluate liveness
of block data implicitly, without the need to modify the
interface used on such devices or to make significant modi­
fications to the file system.

US 2007/0101054 Al

[0014] The controller, in determining whether blocks are
live, may supplement the metadata with data inferred from
write instructions to particular blocks. For example, the
controller may determine that a block is live when is there
is a write of data to the block even after receipt of metadata
indicating that the block is dead.

[0015] Thus it is another aspect of at least one embodi­
ment of the invention to eliminate the possibility of acci­
dentally erasing blocks based on stale metadata.

[0016] The controller may shred a block to erase previous
data of the block when the controller determines that the
block has become dead.

[0017] Thus it is an aspect of at least one embodiment of
the invention to provide a secure delete disk that may
interface with standard computer systems and that requires
little or no modification to the file systems.

[0018] The controller may determine that a logical file
associated with a block has changed and may save the data
of the given block, then shred the block and rewrite the save
data to the given block.

[0019] Thus it is another aspect of at least one embodi­
ment of the invention to allow for the shredding of all blocks
associated with a file even when the blocks are reallocated
before refreshing of the metadata.

[0020] The controller, after rewriting the saved data, may
perform a second shredding of the given block before a
subsequent writing of data to the given block.

[0021] It is thus another aspect of at least one embodiment
of the invention to provide a system that can accommodate
an arbitrary number of reallocations of the block between
refreshing of the metadata while ensuring secure destruction
of the initial deleted data.

[0022] It is thus another aspect of at least one embodiment
of the invention to limit rewriting of the data when there is
certainty that the data has been previously shredded.

[0023] The controller may remap a writing of data asso­
ciated with an instruction from a block designated by the
instruction to a different block determined by the controller
to be live and having lower latency. The block with lower
latency may, for example, be a block that is closer to the disk
read head than the block designated by the instruction, or
closer to a block previously allocated to the file so as to
prevent fragmentation.

[0024] Thus it is another aspect of at least one embodi­
ment of the invention to use the liveness information obtain­
able by the storage device for other low level optimization
of the storage device.

[0025] The controller may avoid caching blocks that are
not live as determined by the controller.

[0026] It is thus another aspect of at least one embodiment
of the invention to allow for faster caching of data by
eliminating dead blocks from the transmission of the data.

[0027] The computer storage device may be a RAID
system having multiple independent disk drives.

[0028] Thus it is an aspect of at least one embodiment of
the invention to work with both single and multiple disk
drives.

2
May 3, 2007

[0029] When the storage medium is a RAID system, the
controller may reorganize data among the multiple indepen­
dent disk drives based on the determination by the controller
as to which blocks of the multiple independent disk drives
are live.

[0030] Thus it is an aspect of at least one embodiment of
the invention to allow sophisticated restructuring of RAID
drives, for example, from RAID- I to RAID-5 as the RAID
space is used.

[0031] The interface may further accept "free" instruc­
tions and the media access circuit may respond to the free
instructions to shred a block designated in the free instruc­
tions.

[0032] Thus it is another aspect of at least one embodi­
ment of the invention to provide a storage medium that
facilitates migration to an explicit model of communicating
liveness information.

[0033] The computer system may include a monitor for
monitoring changes of the liveness of data indicating a
security problem.

[0034] It is thus another aspect of at least one embodiment
of the invention to use the information obtained by the
present invention to provide additional levels of computer
security.

[0035] The computer system may include a plurality of file
system semantic templates describing the storage of meta­
data by different file systems, and the controller may identify
metadata stored on the storage medium based on a selected
file system semantic template.

[0036] Thus it is an aspect of at least one embodiment of
the invention to provide a storage unit that may be flexibly
used on a variety of common file system types.

[0037] These particular aspects and advantages may apply
to only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038] FIG. 1 is a block diagram of the present invention
showing a controller implementing a media access circuit
interposed between a disk interface communicating with a
file system and the READ and WRITE circuit communicat­
ing with the storage medium, the media access circuit
working with a access monitor circuit also implemented by
the controller to modify reading and writing of the storage
medium based on a deduction of the liveness of the blocks
of the storage media by the controller;

[0039] FIG. 2 is detailed fragmentary view of the media
access circuit and the access monitor circuit of FIG. 1
showing a buffer of the media access circuit for delay in
executing block shredding instructions and showing data
structures (including metadata) used by the access monitor
circuit to infer liveness of the blocks;

[0040] FIG. 3 is a flow chart showing the steps imple­
mented by the access monitor circuit of FIG. 2 and the media
access circuit upon different inferences from the metadata;

[0041] FIG. 4 is a fragmentary view of the controller of
FIG. 1 showing the use of multiple file system semantics
templates to allow the storage device to work with different

US 2007/0101054 Al

file systems and the addition of a security monitor for use in
providing additional computer security;

[0042] FIG. 5 is figure similar to that of FIG. 1 showing
use of the invention on a RAID system; and

[0043] FIG. 6 is a schematic representation of a portion of
the media of FIG. 1 showing the writing of a logical file to
remapped blocks on the disk according to one optimization
made possible by the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0044] Referring now to FIG. 1, a storage device 10
suitable for use with the present invention provides a storage
medium 12 organized to hold data in a series of blocks 14.
Storage medium 12 may be a magnetic disk or other storage
medium allowing storage of data organized into blocks
including, but not limited to, magnetic tape and optical disk
drives and the like.

[0045] A WRITE circuit 16 may write data to the blocks
14 and a READ circuit 18 may read data from the blocks.
Generally, the READ circuit 18 and WRITE circuit 16
operate by reading the position of the storage medium 12,
for example, rotation of the disk, and moving a read/write
head (not shown) over the surface of the storage medium 12
to align with the particular block 14 from which data is being
read or to which data is being written.

[0046] The WRITE circuit 16 and READ circuit 18 are
controlled by instructions 20 received at interface 22. The
interface 22 is generally a narrow, block-based interface
receiving principally either read instructions providing a
block number and an instruction to read the data from that
block or write instructions providing data and a block
number to which that data should be written.

[0047] The instructions 20 are received from a file system
24 being part of an operating system program 26 of a
computer 28. Generally, the file system 24 organizes data in
logical data files that may be accessed through the operating
system program 26 and maps the data of the logical data files
to particular blocks 14 on the storage medium 12. When a
file is saved, the file system 24 provides instructions 20 to
write the file data to particular blocks 14. Conversely, when
a file is read, the file system 24 issues instructions 20
requesting the reading of particular blocks 14. The data of
the read block is assembled by the file system 24 to produce
the logical data file. Normally the file system 24 includes
some buffering so that when a logical data file is changed,
the blocks 14 are not immediately updated.

[0048] Information about how the data of the logical data
files are mapped to blocks 14 is stored as metadata managed
by the file system 24. The file system 24 periodically writes
the metadata 15 to the storage medium 12, in this example
as block M, along with the data of the logical data file stored
in one or more of blocks A through F. In this figure and in
the following examples, the number of blocks are limited for
clarity. The metadata 15 provides information about the
mapping oflogical data files to particular blocks 14 but may
also include other information, for example, about which
blocks 14 are live, dates of modification of the block, and the
like.

[0049] The metadata 15 will normally varying in format
and location with different file systems 24. However, most

3
May 3, 2007

file systems 24, in their metadata, have logical "free list"
structures indicating which blocks 14 are being used and
logical "index structures" mapping each logical file to
groups of blocks (e.g. inodes). Further, the inventors have
recognized that a limited number of different file systems are
in fact in common use, particularly in many applications
where the present invention will be most useful. These file
systems include ext2 and ext3 used by the Linux operating
system, and the VF AT file system also used by Linux and
analogous to the file system used in Windows operating
system computers. This limited universe of common file
systems 24 makes it possible for the storage device 10 to
identify the particular file system 24 and be responsive to its
particular semantics, and thereby to read the metadata 15
stored on its storage medium 12 to determine block liveness
information as will be described.

[0050] Referring still to FIG. 1 in the present invention,
the above-described elements of FIG. 1, which are generally
understood to those of ordinary skill in the art, are supple­
mented by a liveness-aware controller 29 providing a media
access circuit 30 and an access monitor circuit 32 interposed
between the disk interface 22 and the WRITE circuit 16 and
READ circuit 18.

[0051] The media access circuit 30 and access monitor
circuit 32 may be implemented in the controller normally
used in the storage device 10 by providing additional
programming or additional circuitry. While the media access
circuit 30 and access monitor circuit 32 are shown as
independent elements in order to clarify their functions, they
may be implemented with shared circuitry and/or program­
ming.

[0052] The media access circuit 30 modifies the response
of the WRITE circuit 16 and READ circuit 18 to read and
write instructions 20 per access modification commands 36
from an access monitor circuit 32. The access monitor
circuit 32 monitors write instructions 20' and read instruc­
tions 20" to capture and interpret metadata 15 and to
generate through a set of maintained data structures, alive­
ness table 34 providing information about the liveness of
particular blocks 14 on the storage medium 12.

[0053] Referring now to FIGS. 1 and 2, specifically, the
access monitor circuit 32 provides a liveness inference
circuit 40 invested with knowledge of the particular file
system 24 to monitor write instructions 20' and capture and
store the metadata 15 within the access monitor circuit 32.
As mentioned, the metadata 15 includes an index table 42
(or the equivalent information) relating logical data files, in
this example identified simply by integers 1,2 and 3, to
particular blocks 14 holding the data of those files identified
in this example by the letters A-F. Thus, in this example, the
data of logical data file 1 is held in blocks A, B and C, the
data of logical file 2 in blocks D and E, and the data of
logical data file 3 in block G.

[0054] The metadata 15 also includes a free list 44 (or the
equivalent information) showing which blocks 14 have been
allocated to files and thus are live, indicated in this example
by the letter L, or dead (not allocated to a file), indicated in
this example by the letter D for each of the blocks A-G.

[0055] The liveness inference circuit 40 identifies the
metadata of index table 42 and free list 44 using the same
rules that would be used by the file system 24 and, when the

US 2007/0101054 Al

metadata 15 is updated by the file system, the liveness
inference circuit 40 updates the index table 42 and free list
44. In the simplest embodiment, the liveness inference
circuit 40 is specific to a particular file system 24 and the
storage device 10 is provided for use only with that file
systems 24. As will be described below, however, the storage
device 10 may be able to work with multiple file systems 24
using file systems semantic templates.

[0056] The liveness inference circuit 40 uses free list 44
and index table 42 to create a liveness table 34 that provides
more current, and additional information over index table 42
or free list 44. The liveness table 34 marks each block either
live (indicated here by a letter L), or dead (indicated with a
letter D), or changed (indicated by a letter C).

[0057] Initially, the liveness table 34 is matched to the free
list 44 as first downloaded by the file system 24 to the
storage device 10. The liveness inference circuit 40 then
updates the liveness table 34 whenever a block is written to
the storage medium 12 that would indicate that a block
marked as dead in free list 44 was in fact live under the
assumption that the free list 44 had not yet been updated on
the storage device 10.

[0058] The liveness inference circuit 40 further monitors
index table 42 in between updates by the file system to
identify blocks 14 that have changes in their affiliation to a
logical data file. All blocks 14 associated with a new logical
data file since the last update of the index table 42 are
marked changed. The change of affiliation of a block 14 to
a logical data file may also be captured for changes in
version numbers of an index table entry, where for example,
the same index table entry is reused for a different logical
data file, or a logical data file is partially deleted or "trun­
cated" Thus the liveness table 34 provides an indication of
whether a block is live, changed, or dead.

[0059] The liveness inference circuit 40 further creates
and manages a suspicious block table 52 providing an
identification of particular blocks 14 as will be described
below.

[0060] Referring now to FIGS. 2 and 3 based on the
liveness table, the liveness inference circuit 40 issues access
modification commands 36 to a read/write modification
circuit 45 that controls the passage of read instructions 20"
and write instructions 20' to the WRITE circuits 16 and
READ circuit 18. In one embodiment, the access modifica­
tion commands 36 may be used to implement a secure delete
feature in the storage device 10 in which blocks 14, that are
no longer used, are securely deleted so as to be unrecover­
able at a later date.

[0061] As shown in FIG. 3 in this application, the liveness
inference circuit, upon receiving a write instruction 20' as
indicated by process block 50, may issue one of four access
modification commands 36 to the read/write modification
circuit 45 based on the information in the liveness table 34
and the suspicious block table 52 as will be described below.

[0062] The simplest access modification command 36
indicated by process block 54 is a normal write command
which causes the read/write modification circuit 45 simply
to perform the write as instructed by the file system 24. The
normal write command occurs when the liveness inference
circuit 40 determines by the liveness table 34 that the block
14 to be written is a dead block, or if the block 14 is a live

4
May 3, 2007

block that is not marked suspicious (as detailed below). In
this case, the read/write modification circuit 45 causes the
WRITE circuit 16 to write the data per the write instruction
20' as indicated by process block 56.

[0063] The read/write modification circuit 45, receiving
the write instruction 20', simply writes the data to the block
14 (by issuing a command to the WRITE circuit 16), and the
liveness inference circuit 40 updates the free list 44, indi­
cating that the block 14 is now live.

[0064] A second access modification command 36 is a
block death command indicated by process block 58. This
access modification command 36 is issued when the liveness
inference circuit 40 receives metadata 15 of index table 42
or free list 44 indicating that a block has just died since the
last metadata 15. In this case, the read/write modification
circuit 45 instructs the WRITE circuit 16 to shred the block,
indicated by process block 60, by multiple overwrites of
both the track at the block location and the gutter areas, such
as may only be performed by local control of the disk
mechanism.

[0065] When the read/write modification circuit 45
receives a shred instruction, it queues the shred instruction
in a buffer 62 and establishes a low priority thread to
perform the shred only if no read or write instructions
arrived within a predetermined period of time. This delayed
shredding allows sequential ordering of the writes and
eliminates the number of shreds if the same block is shred­
ded multiple times. This ability to delay overwrites is
enabled by a conservative shredding policy that will now be
described.

[0066] A third access modification command 36, as indi­
cated by process block 64, is issued if the liveness inference
circuit 40 detects a "generational" death indicated by a
change in a block 14 reflected in a new entry into liveness
table 34. In this case, the read/write modification circuit 45
instructs the READ circuit 18 to read the data which is saved
by the read/write modification circuit in the buffer 62. The
read/write modification circuit 45 then instructs the WRITE
circuit 16 to shred the block per process block 68, and then
to rewrite the saved data to the block per process block 70.
If the shredding involves off-track writing, the WRITE
circuit 16 may be modified to permit this operation.

[0067] The generational death access modification com­
mand 36 ensures that if a change in a logical data file
resulted in a change of data of the block, then the previous
data is fully erased. However, because of asynchrony in the
writing of data and metadata, it is possible that the new data
of the implicated block 14 has not yet been written to the
storage device 10 by the file system 24 even though the
change has been detected from an updating of the index table
42. For that reason, the liveness inference circuit 40 at this
time sets a bit in a suspicious block table 52 per process
block 72, (indicated in the figure by a check mark). This bit
indicates that there is some uncertainty as to whether the
final data has arrived in the block and thus as to whether the
shredding of the previous data was successful.

[0068] A fourth access modification command 36, as
indicated by process block 74, is issued upon any write of a
block 14 where the block is indicated to be live and the bit
is set in suspicious block table 52. In this case, the liveness
inference circuit 40 issues a shred instruction to the WRITE

US 2007/0101054 Al

circuit 16 per process block 76 and, then writes the new data
per process block 78, and then clears the bit in suspicious
block table 52 per process block 80. If the bit is not set in
suspicious block table 52, the write proceeds per the normal
write access modification command 36 of process block 54
described above.

[0069] These access modification commands 36 ensure
secure deletion of data without explicit delete instructions
from the file system 24, but require that the file system obey
either of the properties of "block exclusivity" or "data/
metadata coupling". Block exclusivity requires that for
every block 14, there is at most one allocated copy of the
data of the block in the file system 24, and that the file
system 24 employ adequate locking to prevent any update to
the copy of this data in the file system 24 while the data is
being written to the storage device 10. This property holds
for some file systems such as ext2 and VFAT; however, ext3
does not conform to this property. On the other hand, ext3
provides for data/metadata coupling which requires that
metadata and the block updates reflected in that metadata be
sent as a single transaction that is not committed until it is
complete, thereby eliminating disconnect between the meta­
data and the actual block data

[0070] Minor changes may be required in some file sys­
tems 24 in order to provide optimal use of this technique.
However, these changes are extremely limited in scope. For
ext2, deletions can be undetectable in cases where a file has
been truncated in which case the version number of the
metadata is not incremented. This can be remedied by
simply changing the version number to increment in these
situations. The second problem with ext2 results from the
use of indirect blocks to hold additional metadata linked to
the primary metadata. This ambiguity with respect to the
indirect blocks may be remedied by ensuring a writing of
metadata before the file system allocates an indirect block
and immediately after the file system frees an indirect block.
These changes require approximately twelve lines of code
change in ext2.

[0071] A similar problem arises with VFAT which pro­
vides no version information. This can be remedied by
adding a generation number to the VFAT entries which
requires approximately 29 lines of code change.

[0072] The ext3 file system 24 will work without modi­
fication in its data journaling mode. For the ordered and
writeback modes understood to those in the art, ext3 may be
made to log a list of blocks that were allocated in a
transaction to enable accurate tracking of deletes. This
change requires approximately 95 lines of code.

[0073] Referring now to FIG. 4 in a practical implemen­
tation, the access monitor circuit 32 may have access to a
variety of file system semantic templates 82, for example,
providing for the semantic protocols of common file systems
such as ext2, ext3 and VFAT, and may select among these
semantic templates 82 for the purpose of determining the
location and contents of the metadata of index table 42 and
free list 44 shown in FIG. 4. The selection process may, for
example, be during the normal commissioning of the storage
device 10 in which the file structure is determined, for
example, using a program for commissioning executing on
the computer 28.

[0074] Referring now to FIG. 5, the present invention may
be readily adapted as will be understood to those of ordinary
skill in the art from the above description to a redundant
array of independent disks RAID 84 having multiple inde-

5
May 3, 2007

pendent WRITE circuits 16A-16C and READ circuits 18A-
18C, each associated with different storage mediums 12A-
12C. In this case, the free list 44 contained in the access
monitor circuit 32 may be made available to the media
access circuit 30 for optimization purposes, for example, the
implementation of a dynamic adaptive RAID scheme such
as the Hewlett-Packard auto-RAID system which utilizes
free space to store data in RAID- I layout and migrates the
data to RAID-5 when it runs out of space. Knowledge of
block death can make such schemes more effective.

[0075] The free list 44 may also be used to optimize the
disks, either for a RAID system or a standard system, to
place the blocks in an optimal location with respect to
rotation of the media by co-locating live blocks together to
minimize read head seeks. Correspondingly, dead blocks
may be used to hold rotational replicas of the data for
minimizing seek times.

[0076] Referring now to FIG. 6, knowledge of the liveness
of blocks 14 can be used in an eager writing system in which
the read/write modification circuit 45 remaps blocks 15 of
the write and read instructions 20 to free blocks closer to the
disk read/write head to minimize write times. For example,
a write instruction 20 may request the writing of data to
blocks Q, R, T and V at the time where a read/write head 90
is located near block A on storage medium 12. As is
understood in the art, the access monitor circuit 32 may
make use of a remapping table 92, mapping the blocks 15 of
the instruction 20 (i.e., Q, R, T and V), to new blocks (i.e.,
A, B, E and F) based on knowledge that blocks C and Dare
live per the liveness table 34. In this case, the data of
instruction 20 may be written to blocks A, B, E and F,
skipping blocks C and D.

[0077] A similar approach, informed by knowledge of
block liveness, can allow only live blocks to be read out, for
example, in an intelligent pre-fetching of data from the disk
to a computer cache or in backing up data.

[0078] Referring again to FIG. 4, the importation ofmeta­
data to the device level allows an additional level of security
to be implemented in which a security monitor 100 monitors
reads and writes such as deletes or truncates of log files to
detect patterns which require liveness information.

[0079] The instructions implemented in each of the pro­
cess blocks of FIG. 3 may be allocated flexibly between the
access monitor circuit 32 and the media access circuit 30.
Generally each of the liveness inference circuit 40, the
media access circuit 30, and the read/write modification
circuit 45 may be implemented as discrete circuitry or as
firmware or as combinations of circuitry and firmware as
will be understood to those of ordinary skill in the art.

[0080] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con­
tained herein, but include modified forms of those embodi­
ments including portions of the embodiments and combina­
tions of elements of different embodiments as come within
the scope of the following claims.

We claim:
1. A computer storage device for use with a file system

managing logical data files of data, the computer storage
device comprising:

a storage medium having a plurality of blocks storing data
and metadata, the metadata mapping data of logical
data files to blocks;

US 2007/0101054 Al

an interface accepting instructions from the file system to
read data from blocks and write data to blocks;

a controller implementing:

(a) an access monitor circuit communicating with the
interface to identify metadata stored on the storage
medium and to determine from the metadata whether
blocks have died; and

(b) a media access circuit changing writing of data to a
given block or reading of data from a given block
based on whether the block has died as determined
by the controller.

2. The computer storage device of claim 1 wherein the
access monitor circuit, in determining whether blocks have
died, identifies blocks that have a change in the files with
which they are associated.

3. The computer storage device of claim 1 wherein the
media access circuit shreds a block to erase previous data of
the block when the access monitor circuit determines that
the block has died.

4. The computer storage device of claim 3 wherein the
access monitor circuit may further determine that a logical
file associated with a block has changed and wherein the
media access circuit saves data of the given block, then
shreds the given block, and then rewrites the saved data to
the given block, when the access monitor circuit determines
that a logical file associated with the given block has
changed.

5. The computer storage device of claim 4 wherein the
media access circuit, after the rewriting of the saved data,
performs a second shredding of the given block before a
subsequent writing of data to the given block.

6. A computer storage device for use with a file system
managing logical data files of data, the computer storage
device comprising:

a storage medium having a plurality of blocks storing data
and metadata, the metadata mapping data of logical
data files to blocks;

an interface accepting instructions from the file system to
read data from blocks and write data to blocks;

a controller implementing:

(a) an access monitor circuit communicating with the
interface to identify metadata stored on the storage
medium and to determine from the metadata and
from subsequent access to data blocks other than the
metadata, whether blocks are live or dead; and

(b) a media access circuit changing writing of data to a
given block or reading of data from a given block
based on whether the block has died as determined
by the controller.

7. The computer storage device of claim 6 wherein the
media access circuit shreds a block to erase previous data of
the block when the access monitor circuit determines that
the block has changed from live to dead.

8. The computer storage device of claim 6 wherein the
media access circuit remaps a writing of data associated with
an instruction from a block designated by the instruction to
a different block determined by the access monitor circuit to
be live and having lower latency.

6
May 3, 2007

9. The computer storage device of claim 8 wherein the
different block is a dead block closer to a disk read head than
the block designated by the instruction.

10. The computer storage device of claim 8 wherein the
different block is a dead block closer to at least one other
block having data of a logical file associated with the
instruction than the block designated by the instruction.

11. The computer storage device of claim 6 wherein the
media access circuit, during prefetching of blocks, reads
only live blocks as determined by the access monitor circuit.

12. The computer storage device of claim 6 wherein the
metadata is a file index relating blocks to logical data files
and a bitmap indicating a status of each block as allocated
to a logical file or not allocated to a logical file.

13. The computer storage device of claim 6 wherein the
storage medium is a magnetic disk.

14. The computer storage device of claim 6 wherein the
storage medium is a RAID system having multiple indepen­
dent disk drives.

15. The computer storage device of claim 14 wherein the
media access circuit reorganizes data among the multiple
independent disk drives based on a determination by the
access monitor circuit as to which blocks of the multiple
independent disk drives are live.

16. The computer storage device of claim 6 wherein the
interface further accepts free instructions and wherein the
media access circuit responds to the free instructions to
shred a block designated in the free instruction.

17. The computer storage device of claim 6 further
including a monitor for monitoring changes of the whether
data is alive to detect a security problem.

18. The computer storage device of claim 6 further
including:

a plurality of file system semantics templates describing
the storage of metadata by different file systems; and

wherein the access monitor circuit identifies metadata
stored on the storage medium based on a selected file
system semantics template.

19. A access monitor circuit for a computer storage device
for use with a file system managing logical data files of data,
the computer storage device including a storage medium
having a plurality of blocks storing data and metadata, the
metadata mapping data of logical data files to blocks and an
interface accepting instructions from the file system to read
data from blocks and write data to blocks,

the access monitor circuit comprising:

a access monitor circuit communicating with the inter­
face to identify metadata stored on the storage
medium and to determine from the metadata whether
blocks are live or dead or changed; and

media access circuit changing writing of data to a given
block or reading of data from a given block based on
whether the block is live as determined by the access
monitor circuit.

20. A method of operating a computer storage device for
use with a file system managing logical data files of data, the
computer storage device including a storage medium having
a plurality blocks storing data and metadata, the metadata
mapping data of logical data files to blocks and an interface

US 2007/0101054 Al

accepting instructions from the file system to read data from
blocks and write data to blocks, the method comprising the
steps of:

(a) identifying with the computer storage device, meta­
data stored on the storage medium;

(b) determine from the metadata whether blocks have
died; and

(c) changing writing of data to a given block or reading of
data from a given block based on whether the block is
live as determined at step (b).

21. A access monitor circuit for a computer storage device
for use with a file system managing logical data files of data,
the computer storage device including a storage medium
having a plurality of blocks storing data and metadata, the
metadata mapping data of logical data files to blocks and an
interface accepting instructions from the file system to read
data from blocks and write data to blocks,

the access monitor circuit comprising:

a access monitor circuit communicating with the interface
to identify metadata stored on the storage medium and
to determine from the metadata whether blocks are live;
and

media access circuit changing remapping a writing of data
associated with an instruction from a block designated
by the instruction to a different block determined by the
access monitor circuit to be live and having lower
latency.

7
May 3, 2007

22. The computer storage device of claim 21 wherein the
different block is a dead block closer to a disk read head than
the block designated by the instruction.

23. The computer storage device of claim 21 wherein the
different block is a dead block closer to at least one other
block having data of a logical file associated with the
instruction than the block designated by the instruction.

24. A computer storage device for use with a file system
managing logical data files of data, the computer storage
device comprising:

a storage medium having a plurality of blocks storing data
and metadata, the metadata mapping data of logical
data files to blocks;

an interface accepting instructions from the file system to
read data from blocks and write data to blocks;

a plurality of file system semantics templates describing
the storage of metadata by different file systems;

a controller implementing:

a) an access monitor circuit communicating with the
interface to identify metadata stored on the storage
medium based on a selected file system semantics
template and to determine from the metadata
whether blocks have died; and

(b) a media access circuit changing writing of data to a
given block or reading of data from a given block
based on whether the block has died as determined
by the controller.

* * * * *

