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(57) ABSTRACT 

A method for identifying charcoal products includes captur­
ing, by a camera, an image of a sample of charcoal. The 
method also includes analyzing, by a processor in commu­
nication with the camera, the image of the sample to identify 
characteristics of the sample. The method also includes 
comparing, by the processor, the identified characteristics to 
a plurality of signatures to determine a match between the 
identified characteristics and known characteristics associ­
ated with each signature in the plurality of signatures. The 
method further includes generating, by the processor, an 
output based on the comparison. 

8 Claims, 15 Drawing Sheets 
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CHARCOAL IDENTIFICATION SYSTEM 

BACKGROUND 

2 
FIG. 3F depicts a second image of Robinia pseudoacacia 

captured with ultraviolet light illumination in accordance 
with an illustrative embodiment. 

FIG. 4A depicts a system image of wood imaged with the 
illumination array in the wood position in accordance with 
an illustrative embodiment. 

FIG. 4B depicts a system image of charcoal imaged with 
the illumination array in the wood position in accordance 
with an illustrative embodiment. 

FIG. 4C depicts a system image of charcoal imaged with 
the illumination array in the charcoal position in accordance 
with an illustrative embodiment. 

In 2018, global trade in forest products represented a 
value chain of more than 550 billion USD, and was at the 
highest volume since record-keeping began in 1947. This 
value chain includes logs, timbers, dressed lumber, veneers, 
finished products, comminuted wood products, pulp and 
pulp-derived products, wood fuel, and charcoal, among 10 

others. Illegal logging accounts for 15-30% of the global 
timber supply chain, resulting in lost revenue for source 
countries, governmental corruption, and unregulated degra­
dation of forest lands. Of the illegal trade in timber, it is 
estimated that 80% is controlled by transnational criminal 
enterprises. This makes illegal logging the fourth most 
lucrative form of transnational crime after counterfeiting, 
drug trafficking, and human trafficking, and the most prof­
itable form of transnational natural resource crime. 

FIG. SA shows a specimen prediction confusion matrix 

15 using the identification system for wood in accordance with 
an illustrative embodiment. 

FIG. SB shows a specimen prediction confusion matrix 
using the identification system for charcoal in accordance 
with an illustrative embodiment. 

SUMMARY 

An illustrative method for identifying charcoal products 
includes capturing, by a camera, an image of a sample of 
charcoal. The method also includes analyzing, by a proces­

20 FIG. 6A is a table depicting an example wood data set in 
accordance with an illustrative embodiment. 

FIG. 6B is a table depicting an example charcoal data set 
in accordance with an illustrative embodiment. 

FIG. 7 depicts the hyperparameters used for training the 
25 wood and charcoal models in accordance with an illustrative 

sor in communication with the camera, the image of the 
sample to identify characteristics of the sample. The method 
also includes comparing, by the processor, the identified 
characteristics to a plurality of signatures to determine a 
match between the identified characteristics and known 30 

embodiment. 
FIG. 8 depicts additional confusion matrices for the wood 

identification models in accordance with an illustrative 
embodiment. 

FIG. 9 depicts additional confusion matrices for the 
charcoal identification models in accordance with an illus­
trative embodiment. 

characteristics associated with each signature in the plurality 
of signatures. The method further includes generating, by 
the processor, an output based on the comparison. 

Other principal features and advantages of the invention 
will become apparent to those skilled in the art upon review 
of the following drawings, the detailed description, and the 
appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. lOA is a flow diagram depicting operations per­
formed to train a computing system (e.g., neural network) to 

35 identify wood/charcoal in accordance with an illustrative 
embodiment. 

FIG. lOB depicts a divided image in accordance with an 
illustrative embodiment. 

FIG. 11 is a flow diagram depicting operations performed 
40 to identify wood/charcoal using a trained computing system 

Illustrative embodiments of the invention will hereafter be ( e.g., neural network) in accordance with an illustrative 
described with reference to the accompanying drawings, embodiment. 
wherein like numerals denote like elements. FIG. 12 is a block diagram depicting various components 

FIG. lAdepicts macroscopic images of black locust wood of a system for identifying wood/charcoal in accordance 
obtained using the proposed system in accordance with an 45 with an illustrative embodiment. 
illustrative embodiment. 

FIG. lB depicts a macroscopic image of oak charcoal 
obtained using the proposed system in accordance with an 
illustrative embodiment. 

FIG. 2 is a schematic of the machine learning architecture 
implemented for wood and charcoal models in accordance 
with an illustrative embodiment. 

FIG. 3A depicts an image of Marus rubra captured with 
visible light illumination in accordance with an illustrative 
embodiment. 

FIG. 3B depicts an image of Robinia pseudoacacia cap­
tured with visible light illumination in accordance with an 
illustrative embodiment. 

FIG. 3C depicts a first image of Marus rubra captured 
with ultraviolet (UV) light illumination in accordance with 
an illustrative embodiment. 

FIG. 3D depicts a second image of Marus rubra captured 
with ultraviolet light illumination in accordance with an 
illustrative embodiment. 

DETAILED DESCRIPTION 

Forests, which are estimated to contain two thirds of the 
50 biodiversity on earth, face existential threats due to illegal 

logging and land conversion. As a result of the global scale 
of illegal logging and its ties to transnational organized 
crime, industrial compliance with and governmental 
enforcement of laws and regulations governing trade in 

55 wood and wood-derived products have remained an inter­
national priority. This is evidenced by the Convention on the 
International Trade in Endangered Species, the Lacey Act, 
the European Union Timber Regulation, Australia's Illegal 
Logging Protection Act (2012), the Illegal Logging Protec-

60 tion Regulation (2014), etc. There is also growing interest in 
'greening' the charcoal value chain, which directly impacts 
the energy needs and livelihoods of one-third of the world's 
population. Research and technology development in sup-

FIG. 3E depicts a first image of Robinia pseudoacacia 65 

captured with ultraviolet light illumination in accordance 
with an illustrative embodiment. 

port of law enforcement and industrial compliance have 
emphasized predominantly laboratory-based approaches. 
However, the first (and in some jurisdictions the only) step 
in the enforcement of provisions against illegal logging is 
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identification or screening of products in the field, at ports, 
during border crossings, and at other points of control. 

Unfortunately, traditional efforts to combat illegal logging 
and to support sustainable value chains are hampered by a 
critical lack of affordable and scalable technologies for 
field-level inspection of wood and wood products. The 
current state-of-the-art for routine field screening of wood 
across the world is an entirely human enterprise using naked 
eye and hand lens observation of wood anatomical features. 
Field screening of wood is severely limited by the dearth of 10 

human expertise in forensic wood analysis, and there is even 
less field expertise for various wood products such as 
charcoal. Affordable and scalable technologies that can 
either dramatically extend or obviate the need for human 
expertise clearly have value in solving the global field- 15 

screening limitation. Additionally, effective evidence-based 
policy development for compliance or enforcement will 
require context-dependent modifications to the adopted 
technology. 

Described herein is a complete, self-contained, multi- 20 

illumination, field-deployable system for field imaging and 
identification of forest products at the macroscopic scale. 
The proposed system integrates an imaging system built 
with off-the-shelf components, flexible illumination options 
with visible and UV light sources, software for camera 25 

control, and deep learning models for identification. As 
discussed in more detail below, the capabilities of the 
proposed system are demonstrated with example applica­
tions for automatic wood and charcoal identification using 
visible light and human-mediated wood identification based 30 

on ultra-violet illumination. The proposed system has appli­
cations in field imaging, metrology, and material character­
ization of substrates. 

The proposed system is the first complete, open-source, 
do-it-yourself platform for imaging, identification, and 35 

metrology of materials exhibiting useful macroscopic vari­
ability, such as wood and charcoal. FIG. lA depicts macro­
scopic images of black locust wood obtained using the 
proposed system in accordance with an illustrative embodi­
ment. As shown, the leftmost macroscopic image in FIG. lA 40 

was captured using visible light and the macroscopic image 
on the right was captured using ultraviolet (UV) light. FIG. 

4 
(mm) over a 2,048x2,048 pixel image. Alternatively, a 
different fixed tissue area and/or number of pixels may be 
used. As discussed in more detail below, the 2,048x2,048 
pixel image may be subdivided into a plurality of image 
patches, and the system may individually assess one or more 
of the image patches during training and/or use. For 
example, during training, multiple images per class are used. 
In the field, various processing options include assessment 
of multiple image patches (or segments) from an image, 
assessment of multiple images from a specimen, assessment 
of both multiple image patches from an image and multiple 
images from a specimen, etc. 

A number of wood and charcoal samples were prepared 
and analyzed to train the system for future recognition. 
Specifically, to test the proposed system, 470 wood speci­
mens from 31 species were selected for imaging based on 
the wood anatomy, surface fluorescence, and geographic 
origin. The transverse surfaces of the selected specimens 
were dry sanded to 1,500 grit then imaged using visible light 
with an illumination array of the system in the wood 
position, resulting in a dataset comprised of 3,126 non-
overlapping images. Radial and/or tangential surfaces of the 
sample may also be used alone or in combination with the 
transverse surface. In many contexts wood identification at 
the species level is not possible and/or not required. This was 
leveraged to group the selected species into 12 classes for 
identification at a practical taxonomic granularity and to 
address the data scarcity problem prevalent in machine 
learning based wood identification. 

Commercial lump charcoal specimens were used as ref­
erence material to collect the charcoal image data set. The 
charcoal specimens from six genera were identified/verified 
by using traditional methods. The selected six genera rep­
resented 74% of the European FSC-certified lump charcoal 
submitted. With the system's illumination array in the char­
coal position, 1,312 non-overlapping images of the trans-
verse surfaces polished to 1,000 grit of 150 charcoal speci­
mens were obtained using visible light illumination. Radial 
and/or tangential surfaces of the sample may also be used 
alone or in combination with the transverse surface. The 
image dimensions and optical resolution were the same as 
those for the wood image data set. 

Separate models for wood and charcoal identification 
were trained using a two-stage transfer learning strategy and 

1B depicts a macroscopic image of oak charcoal obtained 
using the proposed system, using visible light, in accordance 
with an illustrative embodiment. 

In an illustrative embodiment, the proposed system pro­
vides controlled visible light and UV illumination capability, 
continuously-adjustable illumination positioning, and soft­
ware to control the device, capture images, and deploy 
trained classification models for field screening. Compared 
to laboratory-based methods, the proposed system exists at 
an affordable and scalable price point such that it can be 
deployed in the developing world, in research institutions 
with modest budgets, and even in classrooms. 

45 an ImageNet pre-trained backbone with custom classifier 
heads. In a first stage, the backbone was used as a feature 
extractor (i.e., weights frozen) and the weights of the custom 
head were learned, while the weights of the entire network 
were fine-tuned during a second stage. Both stages 

The proposed system includes an imaging system to 
capture images and a computing system to process the 
images and run algorithms to make identifications based on 
the captured images. In one embodiment, the proposed 
system has two distinct positions for its illumination array ( a 
wood position and a charcoal position) and a range of 
intermediate positions. When in the wood position, the 
illumination array is as close to the specimen as possible 
(e.g., -3 mm), and when in the charcoal position, it is as 
distant from the specimen as possible ( e.g., -49 mm). In this 
way, the system maximizes the visibility of anatomical 
features for each material. In an illustrative embodiment, the 
system images a fixed tissue area of 6.35x6.35 millimeters 

50 employed an Adam optimizer with simultaneous cosine 
annealing of the learning rate and momentum. Random 
image patches of size (in pixels) 2,048x768 were down 
sampled to 512x 192 and input to the models in mini batches 
of size 16 with a data augmentation strategy that included 

55 horizontal/vertical flips, small rotations, and cutout. The 
model performance for specimen classification was evalu­
ated using five-fold cross validation with the predicted class 
for a test set specimen being the majority of the class 
predictions for the images of the specimen. It is noted that 

60 any given specimen contributed images only to a single fold. 
FIG. 2 is a schematic of the machine learning architecture 

implemented for wood and charcoal models in accordance 
with an illustrative embodiment. As shown, images of 
wood/charcoal are fed into a convolutional neural network 

65 (CNN). The CNN includes a ResNet34 backbone and a 
custom head. The CNN is a particular type of machine 
learning model, and in alternative embodiments a different 
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array in the charcoal position in accordance with an illus­
trative embodiment. As shown, fine anatomical details such 
as banded apotracheal parenchyma in the latewood are 
visible in FIGS. 4A and 4C, but not in FIG. 4B. These 
images thus demonstrate the effectiveness of using the 
different positions of the illumination array for wood and 
charcoal. 

model may be used. In alternative embodiments, a different 
type of backbone, CNN, or machine learning approach may 
be used. Processing is performed in the custom head shown 
in FIG. 2, in which Pa refers to global average pooling, Pm 
is global max pooling, C is concatenation, B is Batchnorm, 
DP is dropout (parameter p), Lr is rectified linear activation 
(ReLU), and Ls is linear Softmax activation. Alternatively, a 
different custom head may be used, and other parameters can 
be varied according to the machine learning architecture 
used. 

The trained system was shown to work well for both wood 
and charcoal identification. Marus rubra and Robinia 
pseudoacacia are two species of wood that are readily 
confusable at the macroscopic scale using only visible light 
and traditional wood anatomy. However, these 2 species 
have markedly different surface fluorescence properties. The 
images in FIGS. 3A, 3C, and 3D are all of the same Marus 
rubra sample, and the images in FIGS. 3B, 3E, and 3F are 

FIG. SA shows a specimen prediction confusion matrix 
using the identification system for wood under visible light 

10 with the lighting array in the wood position in accordance 
with an illustrative embodiment. The confusion matrix for 
wood is based on a trained version of the system in which 
12 wood classes are used. In alternative implementations, 
additional, fewer, or different wood classes may be used to 

15 train the system. The specimen classification accuracy for 
wood was 97. 7%. Most of the incorrect predictions for wood 
can be overcome by the use of UV illumination to determine 
the presence ( or absence) of fluorescence. A user or the 
computing system can use the presence/absence of fluores-all of the same Robinia pseudoacacia sample. Specifically, 

FIG. 3A depicts an image of Marus rubra captured with 
visible light illumination in accordance with an illustrative 
embodiment. FIG. 3B depicts an image of Robinia pseudo­
acacia captured with visible light illumination in accordance 
with an illustrative embodiment. FIG. 3C depicts a first 
image of Marus rubra captured with ultraviolet (UV) light 
illumination in accordance with an illustrative embodiment. 
FIG. 3D depicts a second image of Marus rubra captured 
with ultraviolet light illumination in accordance with an 
illustrative embodiment. FIG. 3E depicts a first image of 
Robinia pseudoacacia captured with ultraviolet light illu- 30 

mination in accordance with an illustrative embodiment. 
FIG. 3F depicts a second image of Robinia pseudoacacia 
captured with ultraviolet light illumination in accordance 
with an illustrative embodiment. The various images were 
obtained using different camera gain and exposure times, as 35 

follows: FIG. 3C (0 decibel (dB) gain and 133 millisecond 
(ms) exposure), FIG. 3D (24 dB gain and 133 ms exposure), 
FIG. 3E (0 dB gain and 13 ms exposure), and FIG. 3F (24 

20 cence to distinguish between similar wood classes under 
visible light. For example, Albizzia and Inga are two wood 
classes that appear similar in visible light, however, Albizzia 
is fluorescent and Inga is not. UV imaging and the resulting 
fluorescence can similarly be used to distinguish between 

25 Robinia and Marus, between Hymenaea and Detarium, 
between classes Ulmus rubra and Ulmus americana, etc. 

FIG. SB shows a specimen prediction confusion matrix 
using the identification system for charcoal in accordance 
with an illustrative embodiment. This confusion matrix is 
with respect to a proof-of-concept 6-class charcoal identi­
fication model using visible light illumination and the illu­
mination array in the charcoal position. In alternative imple-
mentations, additional, fewer, or different charcoal classes 
may be used to train the system. The overall accuracy of the 
model is 98.7%, with misclassifications limited to confusion 
between classes Acer and Betula, which are known to be 
macroscopically similar on their transverse surface. 

As discussed, the proposed system utilized machine learn­
ing to develop image classification (identification) models dB gain and 29 ms exposure). In alternative embodiments, 

different gains and/or exposure times may be used. 
As shown in FIG. 3, the visible light images of the two 

woods clearly depict the underlying anatomical structure. 
Marus rubra does not exhibit surface fluorescence, so when 
imaged with UV illumination, the images show no (FIG. 3C) 

40 based on macroscopic image data sets for both wood and 
charcoal. Specifically, a convolution neural network (CNN) 
architecture was used for the wood and charcoal identifica­
tion models. One difference between the two models is the 

or comparatively little (FIG. 3D) anatomical detail. Robinia 45 

pseudoacacia, by contrast, exhibits bright yellow-green sur­
face fluorescence thus the images taken with UV illumina­
tion clearly show the anatomy (FIGS. 3E and 3F). This 
demonstrates the capability of the system to image wood 
using visible light and to record surface fluorescence in 50 

wood substrates for identification and screening. 
The trained system was also used to identify charcoal 

specimens. As discussed, the adjustable illumination array 
position of the system enables high-quality imaging of both 
wood and charcoal substrates. The position of the illumina- 55 

tion array for the charcoal position was determined to 
provide the best visualization of wood anatomical details 
necessary for robust charcoal identification. It was deter­
mined through experimentation that the fine wood anatomi-
cal detail of the charcoal is better revealed when the illu- 60 

length of the final prediction vector. In some embodiments, 
for wood identification, the prediction of the CNN is a vector 
of length 12, while it is a vector of length 6 for charcoal 
identification. In alternative embodiments, different vector 
lengths may be used as the vector lengths are a function of 
the number of classes used in the models. 

FIGS. 6-9 provide additional details regarding the data 
sets and training of the neural network. As discussed in more 
detail below, the neural network or other machine learning 
model captures the wood anatomical characteristics of the 
specimen surface image with a numerical signature. FIG. 6A 
is a table depicting an example wood data set in accordance 
with an illustrative embodiment. As shown, 3126 images 
were collected from 470 wood specimens. The 31 species 
were divided into 12 classes, and classes that exhibit surface 
fluorescence are highlighted. FIG. 6B is a table depicting an 
example charcoal data set in accordance with an illustrative 
embodiment. As shown, there were 6 classes of charcoal in 
the dataset, with 1312 images collected from 150 charcoal 
specimens. In alternative embodiments, different numbers 
and/or types of wood/charcoal can be incorporated into the 

mination array is more distant from the specimen. FIG. 4A 
depicts system images of wood imaged with the illumination 
array in the wood position in accordance with an illustrative 
embodiment. FIG. 4B depicts system images of charcoal 
imaged with the illumination array in the wood position in 
accordance with an illustrative embodiment. FIG. 4C depicts 
system images of charcoal imaged with the illumination 

65 datasets to improve overall system identification and/or 
identify different species or genera of wood or charcoal. For 
example, or images per class can improve overall system 
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identification (i.e., more data per class, for the same set of 
classes, can be better). The model can also be designed to 
handle additional classes. 

The models for wood and charcoal identification were 
trained using a two stage transfer learning methodology. In 
the first stage, the weights of the pre-trained backbone were 
frozen and the (randomly initialized) weights of the custom 
head were learned. The weights in the entire network were 
fine tuned in the second stage. Random image patches of 
size 2048x768 pixels were resized to 512xl92 pixels and 
input to the CNN in mini-batches of size 16. An Adam 
optimizer was used for both the stages with simultaneous 
annealing of the learning rate and momentum in two phases. 
In the first phase the learning rate was increased from amin 

to amax while the momentum was decreased from ~max and 
~min while in the second phase the learning rate was 
decreased and the momentum was increased between the 
same limits as in phase one. Cosine annealing was used for 
both phases. The value am= was estimated using a learning 
rate estimation methodology. In alternative implementations 
the system may be trained using random initializations, 
using self-supervised training, using multi-task training or 
with unsupervised training followed by supervised fine­
tuning. FIG. 7 depicts the hyperparameters used for training 
the wood and charcoal models in accordance with an illus­
trative embodiment. 

The wood and charcoal data sets were split into 5 folds 
with class level stratification. The splits were performed in 
such a way that each specimen contributed images to exactly 
one of the folds. This constraint allowed the models to be 
trained and tested on mutually exclusive specimens. In the 
case of wood identification, this ensures model training and 
testing was done with specimens from different trees. The 
charcoal specimens were obtained from specimens submit­
ted for forensic verification of commercially available char­
coal in Europe. In this case, it was known that the specimens 
were from geographically distributed locations and multiple 
vendors, but tracing each charcoal specimen to the source 
tree was not possible in this example data set. In another 
embodiment, the dataset used for training can involve using 
images of wood that are modified to match/mimic the digital 
image statistics and appearance of charcoal digital images. 

Class predictions for the test fold images were obtained 
using the trained models. The class prediction for a speci­
men in the test fold was obtained as the majority label of the 
predictions on its images. Weights of the custom CNN head 
were randomly initialized (He normal initialization) from 5 
different seeds and for each seed five fold cross validation 
was carried out using the splits and training procedure 
described herein. From confusion matrix Csf. for seed s and 
fold f, an accumulated confusion matrix Cs for each seed s 
was obtained as: 

5 

C, = I C,,1, s E (1, 2, 3, 4, 5). 
J~l 

8 
embodiments, different confusion matrices would be gener­
ated for wood and/or charcoal identification models. 

FIG. lOA is a flow diagram depicting operations per­
formed to train a computing system (e.g., neural network) to 

5 identify wood/charcoal in accordance with an illustrative 
embodiment. In alternative embodiments, fewer, additional, 
and/or different operations may be performed. Additionally, 
the use of a flow diagram is not meant to be limiting with 
respect to the order or number of operations performed. In 

IO an operation 1000, one or more samples of wood or charcoal 
from a known set of wood species is prepared. Preparation 
of the sample can include cutting the wood/charcoal to 
expose a transverse surface of the sample(s) and dry sanding 
the sample(s) to 1,500 grit. In alternative embodiment, a 

15 different grit level may be used, such as 1000 grit, 1200 grit, 
1800 grit, etc. Preparing the sample(s) can also include 
cleaning the sample(s) with forced air and/or a cloth to 
remove any sawdust and debris from the transverse surface 
of the wood. In some embodiments, a radial plane and/or a 

20 tangential plane of the wood can be imaged alone or in 
addition to the imaging of the transverse surface. In another 
alternative embodiment, fewer or additional operations may 
be performed to prepare the sample(s). 

In an operation 1005, images of the prepared samples are 
25 captured using a camera. In an illustrative embodiment, the 

camera can be a smartphone camera that is used in conjunc­
tion with a magnification and illumination element (e.g., a 
lens plus lighting array) to increase the magnification of the 
obtained images. As discussed, the camera and magnifica-

30 tion element can be at a first position (relative to the sample) 
to image charcoal samples and at a second position (relative 
to the sample) to image wood samples. The camera can also 
be used in conjunction with illumination such as visible light 
and/or ultraviolet light, depending on the type of sample 

35 begin imaged. For example, when imaging wood, the illu­
mination array of the camera is as close to the specimen as 
possible, and when imaging charcoal, the illumination array 
is positioned as distant from the specimen as possible, or 
otherwise configured to maximize the clarity of the ana-

40 tomical features of the charcoal. Also, the illumination array 
can include at least visible light and UV light transmitted by 
one or more light sources such as light-emitting diodes, 
incandescent bulbs, UV lamps, fluorescent bulbs, etc. In 
some embodiments, the user can select between the visible 

45 and UV light source based on whether the sample exhibits 
surface fluorescence in response to the UV light. If the user 
does not know whether the sample exhibits surface fluores­
cence, both visible light and UV light imaging may be 
performed to determine which type of imaging results in the 

50 best images to use (i.e., the images that depict the most 
defining characteristics of the sample). 

In an illustrative embodiment, the captured images are 
from samples whose identification (e.g., species) is known. 
As such, the images can be labeled with the appropriate 

55 (known) species before being provided to the neural net­
work. In an operation 1010, the labeled images are provided 
to the neural network. While a neural network is described, 
it is to be understood that any type of network or computing 

FIG. 8 depicts additional confusion matrices for the wood 60 

identification models in accordance with an illustrative 

system known in the art may be trained to implement the 
operations described herein. 

In one embodiment, prior to providing the images to the 
neural network, the system may divide the image into a 
plurality of image patches, and one or more of the image 
patches may be provided to the neural network. For an 

embodiment. FIG. 9 depicts additional confusion matrices 
for the charcoal identification models in accordance with an 
illustrative embodiment. In FIGS. 8 and 9, cell shading is 
coded by accuracy percentages, and annotations are 
included for cells with non-zero specimen counts. These 
confusion matrices are meant as examples. In alternative 

65 example embodiment, the captured image may be 2048x 
2048 pixels. Such an image can be subdivided by the system 
into 3 image patches, each having -683x2048 pixels ( or 
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alternatively 768x2048 pixels). In an illustrative embodi­
ment, the image can be divided along an orientation that 
maximizes the number of tree growth rings present in the 
image patch. FIG. 10B depicts a divided image in accor­
dance with an illustrative embodiment. As shown, a 2048x 
2048 pixel image is divided into a first image patch 1002, a 
second image patch 1003, and a third image patch 1004, 
each of which is approximately 683x2048 pixels in size. The 
image patches are delineated by vertical dashed lines in the 
figure. In alternative embodiments, a different starting image 10 

size or image patch size may be used ( e.g., 4 image patches 
of 512x2048 pixels, etc.). As also shown, the image is 
divided (vertically in this example) such that each patch 
includes a maximum number of tree growth rings 1006. In 15 
an embodiment in which the orientation of the image is 
rotated by 90 degrees (relative to the image in FIG. 10B), the 
image division may be performed horizontally to maximize 
the number of tree growth rings in each image patch. The 
user or the system can determine the orientation at which to 20 

divide the image based on image analysis that identifies the 
growth rings in the sample. 

Referring again to FIG. lOA, in an operation 1015, the 
neural network extracts features from the labeled images per 
class. This can be done through the application of rules to the 25 

labeled images, where the rules are in the form of math­
ematical computations. Specifically, standard optimization 
methods are used to learn the parameters of the neural 
network, which are used to develop a signature for a given 
image. The rules can be mathematical computations defined 30 

by the CNN architecture (Pa, dropout, etc.). Inside these 
functions are parameters that are set (i.e., learned) algorith­
mically using the training data to get the best identification 
performance for the woods included in the model. Any of the 
rules or categorizations described herein may be used, 35 

including hand-engineered features such as GLCM, Gabor 
filters, SIFT, etc, and/or automatically learned features. In an 
operation 1020, the system evaluates the discriminative 
power of the extracted features. In an operation 1025, the 
system established learned weights are stored and used to 40 

compute a signature for any input image. The signature 
encodes the discriminative anatomical features of the image 
or image patches. The signature can be specific to a species 
of wood generally and/or to a species of wood that originates 
from a specific region. These signatures of the known 45 

species of wood result in a trained the neural network ( or 
other system). The trained neural network allows for 
unknown wood/charcoal samples to be recognized (with 
respect to species and/or location of origin) based at least in 
part on the similarities of the unknown sample to the 50 

characteristics in each signature learned by the system. As 
known in the art, the training is an iterative process that can 
take numerous iterations to complete. 

FIG. 11 is a flow diagram depicting operations performed 
to identify wood/charcoal using a trained computing system 55 

(e.g., neural network) in accordance with an illustrative 
embodiment. In alternative embodiments, fewer, additional, 
and/or different operations may be performed. Additionally, 
the use of a flow diagram is not meant to be limiting with 
respect to the order of operations performed. In an operation 60 

1100, a sample (wood or charcoal) is prepared to be tested. 
As discussed, preparation of the sample can include cutting 
the wood/charcoal to expose a transverse surface of the 
sample and dry sanding the sample(s) to 1,500 grit or a 
different grit level. Preparing the sample can also include 65 

cleaning the sample with forced air and/or a cloth to remove 
any sawdust and debris from the transverse surface of the 

10 
wood. In an alternative embodiment, fewer or additional 
operations may be performed to prepare the sample(s). 

In an operation 1105, a macroscopic image of the sample 
to be tested is captured using a camera. Any type of camera 
may be used, such as a cell phone camera, etc. In an 
illustrative embodiment, a user of the camera selects an 
appropriate location for the lighting array relative to the 
sample (i.e., distance from the sample) depending on 
whether the sample is wood or charcoal. As discussed, when 
imaging wood, the illumination array of the camera is as 
close to the specimen as possible, and when imaging char­
coal, the illumination array is as distant from the specimen 
as possible. In an illustrative embodiment, the illumination 
array can include at least visible light and UV light. In some 
embodiments, the user can select between the visible and 
UV light source based on whether the sample exhibits 
surface fluorescence in response to the UV light. If the user 
does not know whether the sample exhibits surface fluores­
cence, both visible light and UV light imaging may be 
performed to determine which type of imaging results in the 
best images to use (i.e., the images that depict the most 
defining characteristics of the sample). 

In an operation 1110, the captured image is divided into 
a plurality of image patches. The image division can be 
performed as discussed with reference to FIG. 10B. Alter­
natively, a different division procedure may be used. In 
another alternative embodiment, the captured image may not 
be divided, and can instead by analyzed in its entirety by the 
neural network or other machine learning algorithm or 
system. In an operation 1115, the plurality of image patches 
are provided to the trained neural network. In an alternative 
embodiment, only a single image patch may be provided to 
the neural network or other machine learning algorithm or 
system. 

In an operation 1120, the neural network of the system 
generates a signature for each image patch. In an illustrative 
embodiment, the system generates the signatures using the 
same rules (i.e., mathematical computations) that were used 
to classify images during training of the neural network. 
Alternatively, a different set of computations may be used. 
As discussed, in another alternative embodiment, only one 
( or a subset) of the image patches is used by the system to 
classify the sample. In an operation 1125, signatures from 
the plurality of images, or a plurality of image patches or a 
plurality of images and image patches are combined to 
produce a prediction vector for the sample. 

In an operation 1130, an output from the trained neural 
network is generated and the prediction results are presented 
to the user. The output can be the prediction confidence of 
the neural network for each of the classes in the model. The 
system can pick the class that has the maximum confidence, 
which is the top prediction of the model. Alternatively, the 
system may identify the two classes with top 2 confidence 
predictions, which is the top two most likely classes the 
neural network thinks the image belongs to. Alternatively, a 
different number of most likely classes can be returned, such 
as 3, 4, etc. In an illustrative embodiment in which a 
plurality of image patches (or images) are classified, the 
output can be based on a combination of the classification of 
each image or image patch. For example, first and third 
image patches of an image may be identified as likely being 
oak wood or charcoal, and a second image patch of the 
image may be identified by the neural network as likely 
being ash wood or charcoal. Because a majority of the image 
patches were identified as likely being oak, the output from 
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the neural network can indicate that the sample is likely oak. 
This analysis can also occur across multiple different images 
from the same specimen. 

In another embodiment, the output from the neural net­
work can be presented to the user ( e.g., on a display of a 
computing device) as a plurality of predictions, with each 
prediction in the plurality of predictions having an associ­
ated confidence level. The confidence level can be in terms 
of a percentage likelihood that the sample is a given type of 
wood. As an example, the output may indicate that the 10 

system believes with 92% confidence that an analyzed 
sample is oak, a 6% confidence that the analyzed sample is 
poplar, and a 2% confidence that the analyzed sample is 
birch. Alternatively, a different type of confidence level may 15 
be used, such as an ordered list in which the order alone 
indicates the likelihood that sample is a given wood type 
(i.e., the first entry on the list has the highest likelihood of 
being correct, the second entry on the list has the second 
highest likelihood of being correct, etc.). In another embodi- 20 

ment, the output can include only the wood class that the 
system has identified with the highest likelihood (or confi­
dence) of being correct. Continuing the example above, in 
such an embodiment, the output from the system may 
indicate that the sample is likely oak because the system 25 

identified the sample as oak with the highest (92%) confi­
dence. 

FIG. 12 is a block diagram depicting various components 
of a system for identifying wood/charcoal in accordance 
with an illustrative embodiment. FIG. 12 depicts a user 30 

computing device 1200 in communication with a network 
1235 and a remote neural network 1240. The remote neural 
network 1240 can be implemented on any type of computing 
device, and can include a processor, memory, transceiver, 
user interface, etc. As discussed, the remote neural network 35 

1240 is a trained network used by the system to classify an 
image of wood/charcoal that was captured by the user 
computing device 1200. In an alternative embodiment, the 
neural network 1240 may be local and incorporated into the 
user computing device 1200. The user computing device 40 

1200 includes a processor 1205, an operating system 1210, 
a memory 1215, an input/output (I/O) system 1220, a 
network interface 1225, a camera 1226, a magnification 
element and lighting array 1227, and a wood/charcoal iden­
tification application 1230. In alternative embodiments, the 45 

user computing device 1200 may include fewer, additional, 
and/or different components. 

The components of the user computing device 1200 
communicate with one another via one or more buses or any 
other interconnect system. The user computing device 1200 50 

can be any type of computing device, such as a smartphone, 
tablet, laptop computer, gaming device, music player, etc. In 
an alternative embodiment, instead of a smartphone or 
similar device, the user computing device 1200 can be a 
dedicated device specific to the identification application 55 

1230. 
The processor 1205 can be in electrical communication 

with and used to control any of the system components 
described herein. The processor 1205 can be any type of 
computer processor known in the art, and can include a 60 

plurality of processors and/or a plurality of processing cores. 
The processor 1205 can include a controller, a microcon­
troller, an audio processor, a graphics processing unit, a 
hardware accelerator, a digital signal processor, etc. Addi­
tionally, the processor 1205 may be implemented as a 65 

complex instruction set computer processor, a reduced 
instruction set computer processor, an x86 instruction set 

12 
computer processor, etc. The processor 1205 is used to run 
the operating system 1210, which can be any type of 
operating system. 

The operating system 1210 is stored in the memory 1215, 
which is also used to store programs, user data, network and 
communications data, peripheral component data, the iden­
tification application 1230, and other operating instructions. 
The memory 1215 can be one or more memory systems that 
include various types of computer memory such as flash 
memory, random access memory (RAM), a universal serial 
bus (USB) drive, an optical disk drive, a tape drive, an 
internal storage device, a non-volatile storage device, a hard 
disk drive (HDD), a volatile storage device, etc. In some 
embodiments, at least a portion of the memory 1215 can be 
in the cloud to provide cloud storage for the system. Simi­
larly, in some embodiments, any of the computing compo­
nents described herein ( e.g., the processor 1205, etc.) can be 
implemented in the cloud such that the system can be run 
and controlled through cloud computing. 

The I/O system 1220 is the framework which enables 
users and peripheral devices to interact with the user com­
puting device 1200. The I/O system 1220 can include one or 
more displays (e.g., light-emitting diode display, liquid 
crystal display, touch screen display, etc.) that allow the user 
to view images and results, a speaker, a microphone, etc. that 
allow the user to interact with and control the user comput­
ing device 1200. The I/O system 1220 also includes circuitry 
and a bus structure to interface with peripheral computing 
devices such as power sources, USB devices, data acquisi­
tion cards, peripheral component interconnect express 
(PCie) devices, serial advanced technology attachment 
(SATA) devices, high definition multimedia interface 
(HDMI) devices, proprietary connection devices, etc. 

The network interface 1225 includes transceiver circuitry 
( e.g., a transmitter and a receiver) that allows the computing 
device to transmit and receive data to/from other devices 
such as the remote neural network 1240, other remote 
computing systems, servers, websites, etc. The data trans­
mitted to the remote neural network 1240 can include image 
data and/or metadata (for use as auxiliary information for 
identification, for use in a blockchain ecosystem, for use in 
other data tracking systems, etc.), training data and instruc­
tions, updates, etc. The data received from the remote neural 
network 1240 can include indication of one or more outputs 
( or results) that identify a type of wood/charcoal correspond­
ing to an analyzed image, confidence percentage(s ), etc. The 
network interface 1225 enables communication through the 
network 1235, which can be one or more communication 
networks. The network 1235 can include a cable network, a 
fiber network, a cellular network, a wi-fi network, a landline 
telephone network, a microwave network, a satellite net­
work, etc. The network interface 1225 also includes circuitry 
to allow device-to-device communication such as Blu­
etooth® communication. As discussed, in an alternative 
embodiment, the system including the neural network 1240 
may be entirely incorporated into the user computing device 
1200 such that the user computing device 1200 does not 
communicate with the neural network 1240 through the 
network 1235. 

The camera 1226 is used in conjunction with the display 
of the user computing device 1200 and the magnification 
element and lighting array 1227 to provide the user with a 
view of a sample and to capture one or more images of the 
sample. The lighting array can include at least a visible light 
transmitter in an illustrative embodiment. Any type of cam­
era capturing visible light signals may be used. The mag­
nification element can be a lens, magnifying glass, or other 
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component that is used to magnify the sample such that a 
macroscopic image can be obtained. In an alternative 
embodiment, the magnification element and lighting array 
1227 may be incorporated as an integral component of the 
camera 1226. 

The wood/charcoal identification application 1230 can 
include software and algorithms in the form of computer­
readable instructions which, upon execution by the proces-

14 
and of description. It is not intended to be exhaustive or to 
limit the invention to the precise form disclosed, and modi­
fications and variations are possible in light of the above 
teachings or may be acquired from practice of the invention. 
The embodiments were chosen and described in order to 
explain the principles of the invention and as practical 
applications of the invention to enable one skilled in the art 
to utilize the invention in various embodiments and with 

sor 1205, performs any of the various operations described 
herein such as training the neural network 1240, determining 
which illumination source of the camera 1226 to use for 
capturing an image, determining an appropriate position for 

various modifications as suited to the particular use contem-
10 plated. It is intended that the scope of the invention be 

defined by the claims appended hereto and their equivalents. 

What is claimed is: 

1. A method for identifying charcoal products, the method 
15 comprising: 

the camera and its illumination system (e.g., light-emitting 
diodes, UV lamp, etc.) relative to the sample, dividing a 
captured image into a plurality of image patches, commu­
nicating with the neural network 1240, displaying results/ 
outputs from the neural network 1240, etc. In one embodi­
ment, the neural network 1240 can be incorporated into the 
identification application 1230 such that the identification 
application 1230 also performs any of the operations of the 20 

neural network 1240 described herein. The identification 
application 1230 can utilize the processor 1205 and/or the 
memory 1215 as discussed above. In an alternative imple­
mentation, the identification application 1230 can be remote 
or independent from the user computing device 1200, but in 25 

communication therewith. 
The above-discussed prototype and testing indicate that 

the wood/charcoal identification model performance vastly 
exceeds the performance of trained field personnel, and 
indeed approaches or exceeds expected field performance of 30 

forensic wood anatomy experts. Based on the analysis, the 
effective accuracy of a human-hybrid version of the system 
incorporating UV illumination for wood (as compared to a 
system that uses visible light only) increases from 97.7% to 
99.1 %. Field accuracy at this level distinctly exceeds even 35 

the best-performing experts in the United States when 
performance was evaluated at the genus level. 

The proposed system is the first of its kind to inspect or 
identify charcoal, despite the fact that globally the charcoal 
sector generates income for more than 40 million people and 40 

caters to the energy needs of more than one-third of the 
world's population. In the absence of an existing field 
identification program for charcoal, one cannot directly 
compare the proposed system accuracy to field inspectors. 
However, by providing a highly accurate (98.7%), field- 45 

deployable, system for six classes oflump charcoal that only 
confuses anatomically similar charcoals, the system delivers 
the ability to inspect and verify materials that previously 
could only be assessed reliably in the laboratory or by a 
limited group of expert wood anatomists. Ongoing work is 50 

addressing the breadth of charcoal taxa currently identifiable 
with the proposed system, which is expected to more 
adequately sample the charcoals that represent the remaining 
26% of the FSC-certified lump charcoal in the EU market. 

The word "illustrative" is used herein to mean serving as 55 

an example, instance, or illustration. Any aspect or design 
described herein as "illustrative" is not necessarily to be 
construed as preferred or advantageous over other aspects or 
designs. Further, for the purposes of this disclosure and 
unless otherwise specified, "a" or "an" means "one or 60 

more." 
The foregoing description of illustrative embodiments of 

the invention has been presented for purposes of illustration 

capturing, by a camera, an image of a sample of charcoal; 

dividing, by a processor in communication with the 
camera, the image into a plurality of image patches, 
wherein the dividing comprises dividing the image at 
an orientation that results in a maximum number of 
growth rings in each image patch in the plurality of 
image patches; 

analyzing, by the processor, one or more image patches in 
the plurality of image patches of the sample to identify 
characteristics of the sample; 

comparing, by the processor, the identified characteristics 
to a plurality of signatures to determine a match 
between the identified characteristics and known char­
acteristics associated with each signature in the plural­
ity of signatures; and 

generating, by the processor, an output based on the 
comparison. 

2. The method of claim 1, further comprising illuminating 
the sample of charcoal with one or more light sources. 

3. The method of claim 1, wherein the processor analyzes 
a single image patch from the plurality of image patches to 
identify the characteristics of the sample. 

4. The method of claim 1, wherein the output comprises 
a ranked list of wood species or classes of the sample, and 
wherein a first entry on the ranked list has a confidence level 
which is greater than or equal to confidence levels of other 
entries on the ranked list. 

5. The method of claim 1, wherein the output comprises 
a ranked list of locations of origin of the sample, and 
wherein a first entry on the ranked list has a confidence level 
which is greater than confidence levels of other entries on 
the ranked list. 

6. The method of claim 1, wherein the output comprises 
a ranked list of wood species or locations of origin, and 
wherein the output includes a confidence level of each entry 
on the ranked list. 

7. The method of claim 1, wherein analyzing the image 
comprises applying a plurality of rules to the image of the 
sample. 

8. The method of claim 7, wherein the plurality of rules 
are also used to identify characteristics of training images 
that are used to train the system through generation of the 
plurality of signatures. 

* * * * * 


