

S012201077B2

(12) United States Patent

McFarland et al.

(54) MAIZE WOX2A OVER-EXPRESSION INDUCES SOMATIC EMBRYO FORMATION

- (71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (72) Inventors: Frank McFarland, Toledo, OH (US); Heidi Kaeppler, Oregon, WI (US)
- (73) Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION, Madison, WI (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 18/179,817
- (22) Filed: Mar. 7, 2023

(65) Prior Publication Data

US 2023/0276762 A1 Sep. 7, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/317,446, filed on Mar.
 7, 2022.
- (51) Int. Cl. *A01H 5/10* (2018.01) *A01H 6/46* (2018.01)
- (52) U.S. Cl. CPC *A01H 5/10* (2013.01); *A01H 6/4684* (2018.05)
- (58) Field of Classification Search None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,320,961	A *	6/1994	Zhong A01H 4/005
7,057,089	B2 *	6/2006	435/424 Ranch C12N 15/8207
2017/0121722	A1*	5/2017	800/298 Anand C12N 15/821

OTHER PUBLICATIONS

Zhang, Xin, et al. "Genome-wide analysis of WOX gene family in rice, sorghum, maize, *Arabidopsis* and poplar." Journal of integrative plant biology 52.11 (2010): 1016-1026. (Year: 2010).*

Upadhyaya, Narayana M et al. "Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice." TAG. Theoretische und angewandte Genetik vol. 112,7 (2006): 1326-41. doi:10.1007/ s0 (Year: 2006).*

GenBank Accession No. DQ225752 "Immobile Ac/T-DNA vector pNU400, complete sequence", dated Jul. 14, 2006 (Year: 2006).* Schnable, Patrick S., et al. "The B73 maize genome: complexity, diversity, and dynamics." science 326.5956 (2009): 1112-1115. (Year: 2009).*

Sidorov, Vladimir, and David Duncan. "Agrobacterium-mediated maize transformation: immature embryos versus callus." Methods in molecular biology (Clifton, N.J.) vol. 526 (2009): 47-58. doi:10. 1007/978-1-59745-494-0_4 (Year: 2009).*

(10) Patent No.: US 12,201,077 B2 (45) Date of Patent: Jan. 21, 2025

Upadhyaya, Narayana M., et al. "Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice." Theoretical and applied genetics 112 (2006): 1326-1341. (Year: 2006).* GenBank Accession No. DQ225752.1 "Immobile Ac/T-DNA vector pNU400, complete sequence"; dated Jul. 14, 2006 https://www. ncbi.nlm.nih.gov/nuccore/DQ225752.1/ (Year: 2006).*

Armstrong, C. L., Romero-Severson, J., & Hodges, T. K. (1992). Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theoretical and Applied Genetics, 84(5-6), 755-762.

Daum, G., Medzihradszky, A., Suzaki, T., & Lohmann, J. U. (2014). A mechanistic framework for noncell autonomous stem cell induction in *Arabidopsis*. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 14619-14624. Debernardi, J. M., Tricoli, D. M., Ercoli, M. F., Hayta, S., Ronald,

P., Palatnik, J. F., & Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 38(11), 1274-1279.

Green, C. E., & Phillips, R. L. (1975). Plant Regeneration from Tissue Cultures of Maize 1. Crop Science, 15(3), 417-421.

Liu, Bobin et al. "WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation." BMC genomics vol. 15 296. Apr. 21, 2014, doi:10.1186/1471-2164-15-296.

Lowe, K., la Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., & Gordon-Kamm, W. (2018). Rapid genotype "independent" *Zea mays* L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular and Developmental Biology—Plant, 54(3), 240-252.

Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.-J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., . . . Gordon-Kamm, W. (2016). Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation.

The Plant Cell, 28(9), 1998-2015. Palovaara, Joakim, and Inger Hakman. "Conifer WOX-related

homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis." Plant molecular biology vol. 66,5 (2008): 533-49. doi:10.1007/s11103-008-9289-5.

Salvo, S. A. G. D., Hirsch, C. N., Buell, C. R., Kaeppler, S. M., & Kaeppler, H. F. (2014). Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One, 9(10), e111407.

(Continued)

Primary Examiner — Charles Logsdon

Assistant Examiner — Kelsey L McWilliams

(74) Attorney, Agent, or Firm - Quarles & Brady, LLP

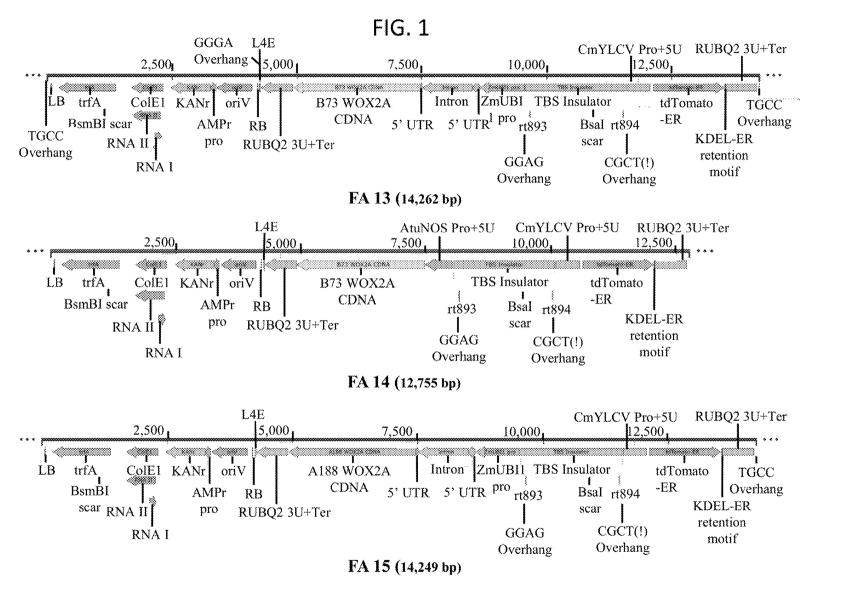
(57) ABSTRACT

Many plants are recalcitrant to available plant transformation methods, which hinders the development of genetically modified plants. To address this problem, the present invention provides constructs comprising a WUSCHEL-like homeobox 2a (WOX2A) gene from maize operably connected to a promoter. Methods of using these constructs to induce somatic embryogenesis in the tissues from a cereal monocot plants and plants produced using these methods are also provided.

17 Claims, 9 Drawing Sheets

Specification includes a Sequence Listing.

(56) References Cited

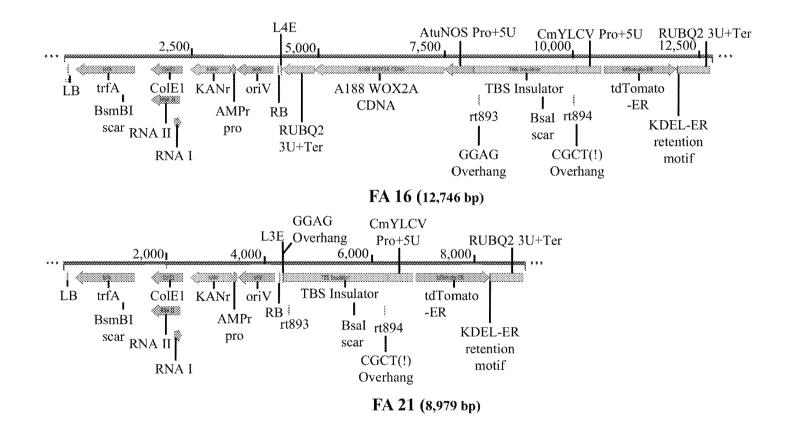

OTHER PUBLICATIONS

Salvo, S., Cook, J., Carlson, A. R., Hirsch, C. N., Kaeppler, S. M., & Kaeppler, H. F. (2018). Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (*Zea mays* L.). Plant Genome, 11(2).

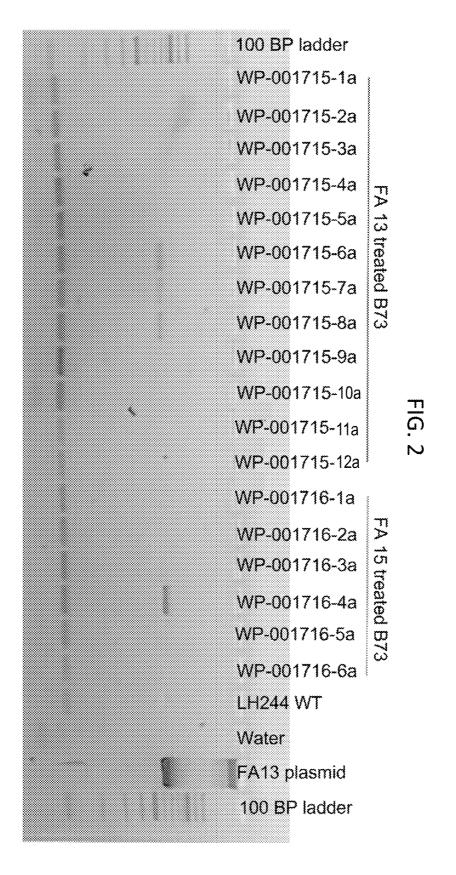
Zhou, Xuemei et al. "Comparative Analysis of WUSCHEL-Related Homeobox Genes Revealed Their Parent-of-Origin and Cell Type-Specific Expression Pattern During Early Embryogenesis in Tobacco." Frontiers in plant science vol. 9 311. Mar. 8, 2018, doi:10.3389/ fpls.2018.00311.

Zhao et al., "Integration of QTL Mapping and Gene Fishing Techniques to Dissect the Multi-Main Stem Trait in Rapeseed (*Brassica napus* L.)" Frontiers in Plant Science, Sep. 2019, vol. 10, article 1152.

* cited by examiner



U.S. Patent


Jan. 21, 2025

Sheet 1 of 9

FIG. 1 (continued)

U.S. Patent

78 LL0'107'71 SN

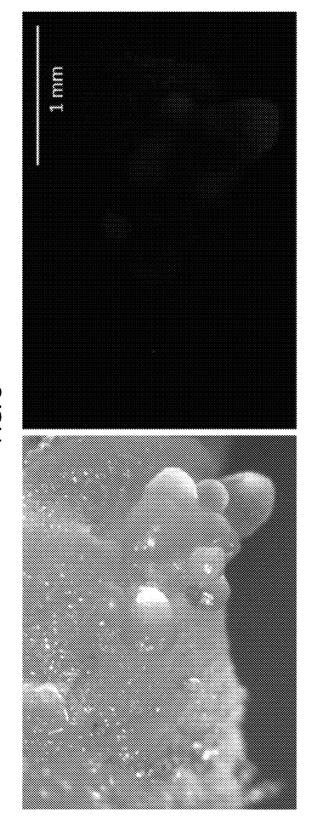
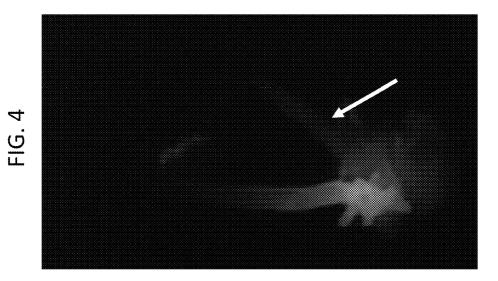
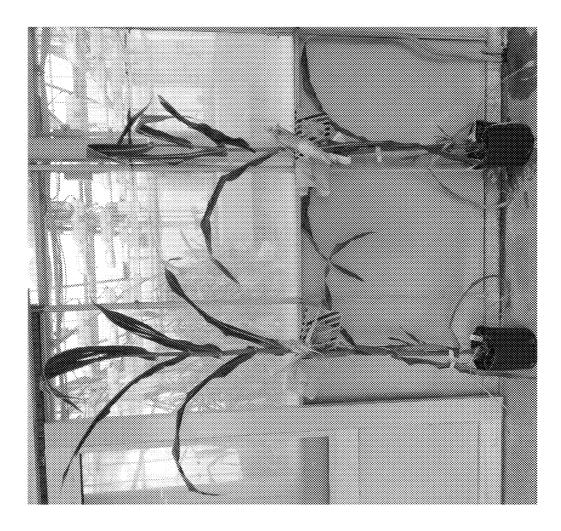
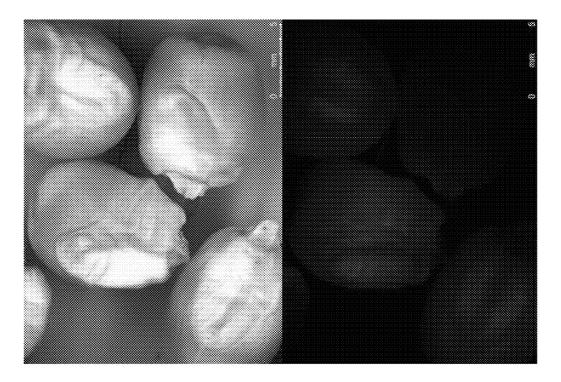
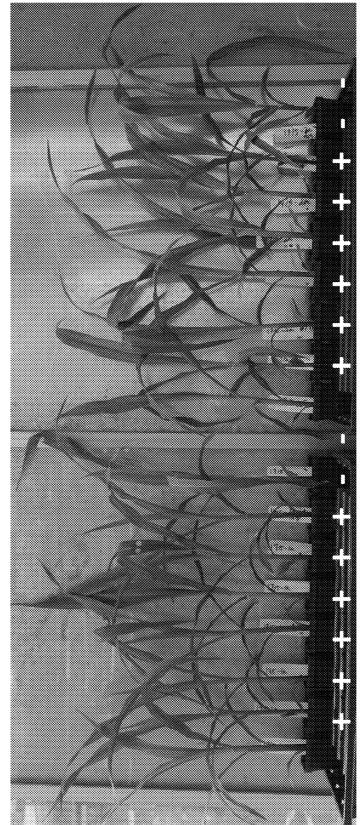
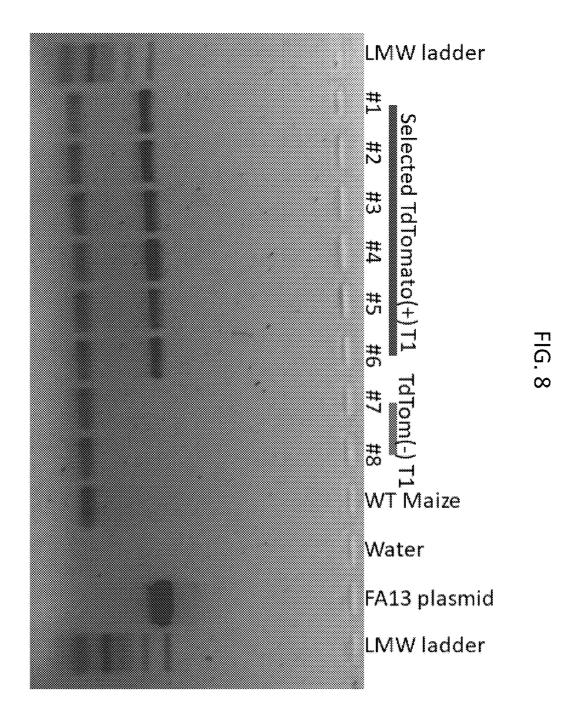






FIG. 3



78 LL0'107'71 SN

MAIZE WOX2A OVER-EXPRESSION INDUCES SOMATIC EMBRYO FORMATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/317,446, filed Mar. 7, 2022, the entire content of which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant number 21-CRHF-0-6055 awarded by the United States Department of Agriculture National Institute of Food and Agriculture. The government has certain rights in the invention.

SEQUENCE LISTING

This application includes a sequence listing in XML format titled "2023-03-07_960296.04372_WIPO_Sequence_listing_XML.xml", which is 21,001 bytes in size 25 and was created on Mar. 7, 2023. The sequence listing is electronically submitted with this application via Patent Center and is incorporated herein by reference in its entirety.

BACKGROUND

Despite progress in crop transformation over the past several decades, efficient production of transgenic plants remains one of the major barriers to crop improvement. Many plant species, or specific genotypes thereof, remain ³⁵ difficult to transform and regenerate. These recalcitrant plants are unable to form tissue capable of regenerating into a fertile plant. This widespread recalcitrance to transformation creates a bottleneck that hinders progress in the development of genetically modified plants. Thus, there remains ⁴⁰ a need in the art for methods that can be used to transform recalcitrant crops.

SUMMARY

In a first aspect, the present invention provides constructs comprising a WUSCHEL-like homeobox 2a (WOX2A) gene operably connected to a heterologous promoter.

In a second aspect, the present invention provides methods of inducing somatic embryogenesis in a plant tissue. The ⁵⁰ methods comprise: (a) introducing a WOX2A-encoding construct or vector described herein into at least one cell of the plant tissue; and (b) incubating the plant tissue to allow a somatic embryo to form.

In a third aspect, the present invention provides plants 55 produced by the methods disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. **1** shows maps of the five constructs (i.e., binary 60 vectors) that were tested in the Examples. The FA 13 and FA 14 constructs contain the maize inbred B73 version of WOX2A with expression driven by either the maize ubiquitin 1 (ZmUBI1) promoter or the *Agrobacterium tumefaciens* NOS promoter, respectively. The FA 15 and FA 16 65 constructs contain the maize inbred A188 version of WOX2A with expression driven by the ZmUBI1 or NOS

promoter, respectively. FA 21, which contains no candidate tissue culture response gene, served as a control construct. FIG. **2** is an electrophoresis gel showing the results of a

PCR analysis of putative transgenic events in B73 treated with the FA 13 construct or FA 15 construct.

FIG. **3** is a photograph of somatic embryos forming directly on the surface of the scutellum of an immature zygotic B73 embryo seven days after inoculation with *Agrobacterium*.

FIG. 4 is a photograph of a TdTomato-positive B73 shoot regenerating one month after inoculation with *Agrobacterium* harboring the FA13 construct. Note that this explant contains a second, TdTomato-negative shoot (indicated by the arrow). This tissue was cultured on non-selective media, so most of the regenerated shoots were putatively nontransgenic.

FIG. 5 is a photograph of a PCR-positive, FA 15-transformed B73 plant (left) and a wild-type B73 plant (right). The FA 15-transformed plant was fertile and produced an ear
that was phenotypically indistinguishable from a wild-type ear.

FIG. **6** is a photograph of T1 seeds from a single putative event segregating for TdTomato, with expression primarily in the embryo.

FIG. 7 is a photograph of the T1 plants sampled for PCR analysis (results shown in FIG. 8). PCR-positive plants are marked with a (+) and PCR-negative plants are marked with a (-).

FIG. 8 is an electrophoresis gel showing the results of a
³⁰ multiplex PCR analysis of T1 seeds from one event. PCR reactions include both the TdTomato primer pair (SEQ ID NO:8 and SEQ ID NO:9) and the ZmADH primer pair (SEQ ID NO:6 and SEQ ID NO:7) used to test for transgene and maize DNA, respectively.

DETAILED DESCRIPTION

The present invention provides constructs comprising a WUSCHEL-like homeobox 2a (WOX2A) gene, methods of using these constructs to induce somatic embryogenesis in a plant tissue, and plants produced using these methods.

After plant cells or tissues are transformed, they must be regenerated into a plant. Somatic embryogenesis is the most efficient way to regenerate transformed plants. However, 45 many important crops are recalcitrant to somatic embryogenesis and other tissue culture and transformation methods, which hinders their use in the development of genetically modified varieties. Ectopic expression of tissue culture response genes is a promising means to overcome this recalcitrance. "Tissue culture response genes" are plant genes that modulate the tissue culture response of targeted explants through either (a) induction of regenerable structures (i.e., somatic embryos and meristems), or (b) modulation of the growth of those structures (i.e., inducing callus to proliferate more quickly). In tissue culture response gene-based transformation systems, a construct that drives the expression of a tissue culture response gene is transformed into target explant tissues such as immature zygotic embryos, meristem tissues, and leaf tissues to induce direct embryogenesis, bypassing the need to use laborious and time-consuming backcrossing methods to achieve transgene introgression.

In species ranging from eudicots and cereals to gymnosperms, ectopic overexpression of tissue culture response genes has been used to improve transformation efficiencies and facilitate transformation of numerous recalcitrant crops. However, many of the tissue culture response genes used in existing methods were not identified in the plant species being targeted and, often, these heterologous genes produce deleterious phenotypes that must be mitigated via tight regulation of transgene expression (e.g., via transient expression, the use of inducible and tissue-specific promoters, or excision of the gene). Further, the existing methods are difficult to replicate.

In the present application, the inventors demonstrate that the maize tissue culture response gene WOX2A can be used to induce somatic embryo formation and plant regeneration in a recalcitrant inbred maize line (i.e., B73). Their methods are distinguished from existing methods in that the tissue culture response gene that is utilized (i.e., WOX2A) was identified in the species being targeted (i.e., maize) rather 15 than in an unrelated species. In existing methods (e.g., methods that utilize the tissue culture response genes WUS-CHEL and BABYBOOM), constitutive expression of the tissue culture response gene(s) prevents the regeneration and production of phenotypically normal plants. In contrast, the 20 inventors have shown that transformed plants that constitutively express WOX2A produce viable pollen and fertile ears and are indistinguishable non-transformed control plants (FIG. 5). Thus, the inventors posit that the use of this native tissue culture response gene may avoid the deleteri- 25 ous effects that have hindered preexisting methods.

Constructs

In a first aspect, the present invention provides constructs 30 comprising a WUSCHEL-like homeobox 2a (WOX2A) gene operably connected to a heterologous promoter.

As used herein, the term "construct" refers to a recombinant polynucleotide, i.e., a polynucleotide that has been formed artificially by combining at least two polynucleotide 35 components from different sources (natural or synthetic). For example, a construct may comprise the coding region of one gene operably connected to a promoter that (1) is associated with another gene found within the same genome, (2) is from the genome of a different species, or (3) is 40 synthetic. Constructs can be generated using conventional recombinant DNA methods.

In some embodiments, the constructs of the present invention are provided in the form of vectors. The term "vector", as used herein, refers to a nucleic acid molecule capable of 45 transporting another nucleic acid to which it is linked. Some vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors that include a bacterial origin of replication and episomal mammalian vectors). Other vectors can be integrated into the 50 genome of a host cell such that they are replicated along with the host genome (e.g., viral vectors and transposons). Vectors may carry heterogeneous genetic elements that are necessary for propagation of the vector or for expression of an encoded gene product. Vectors may also carry a select- 55 able marker gene, i.e., a gene that confers a selective advantage to a host organism, such as resistance to a drug or chemical. Suitable vectors include plasmids (i.e., circular double-stranded DNA molecules), viruses, transposons, and artificial or mini-chromosomes.

In some embodiments, the constructs of the present invention are binary vectors, i.e., vectors comprising T-DNA borders that are used for *Agrobacterium*-mediated transformation. In some embodiments, the constructs are DNA donor oligonucleotides that are integrated into the plant 65 genome via gene editing with a site-directed nuclease (e.g., using the CRISPR-Cas9 system). 4

The constructs of the present invention comprise at least one expression cassette comprising a WOX2A gene operably connected to a heterologous promoter. The term "expression cassette" refers to a polynucleotide comprising a sequence encoding a polypeptide or RNA as well as sequence elements needed to express the encoded polypeptide or RNA (e.g., a promoter). The sequence elements controlling the expression of the gene are commonly referred to as a regulatory unit. Most parts of the regulatory unit are located upstream of coding sequence of the gene and are operably connected thereto. The expression cassette may also contain a downstream 3' untranslated region comprising a polyadenylation site. The regulatory unit may be directly linked to the WOX2A gene to be expressed or separated therefrom by intervening DNA, e.g., by the 5'-untranslated region of the gene.

WUSCHEL-like homeobox 2a (WOX2A) is a homeobox transcription factor that is expressed in the very early zygotic embryo. WOX2A is one of two homeobox transcription factor genes that are found in maize. The WOX2A gene is also referred to as homeobox-transcription factor 94 (HB94), LOC103651027, Zm00001eb148390 in the B73 version 5, Zm00001d042920 in the B73v4 genome, and Zm00056aa020753 in the A188 version 1 genome, but is simply referred to herein as WOX2A. The inventors identified WOX2A as a candidate tissue culture response gene within a quantitative trait locus (QTL) associated with tissue culture response. As is described in the Examples, the inventors generated constructs comprising two different WOX2A genes: (1) the WOX2A gene from the transformation recalcitrant maize line B73 (SEQ ID NO:2), and (2) the WOX2A gene from the regenerable maize line A188 (SEQ ID NO:4). While both of the tested WOX2A genes are from maize, the WOX2A genes included in the constructs of the present invention may be from any plant species. Examples of plant species that express WOX2A homologs include, without limitation, Arabidopsis thaliana (WOX2; AT5G5930), Tricitum aestivum (bread wheat; WOX2A/B/ C), soybean (WOX2), Picea abies (Norway spruce; Plant Mol Biol 66(5):533-49, 2008), Populus tomentosa (poplar; WOX2A/B; BMC Genomics 15:296, 2014), Nicotiana tabacum (tobacco; Front Plant Sci 9:311, 2018), and Brassica napus L. (rapeseed; Front Plant Sci 10:1152, 2019).

However, in preferred embodiments, the WOX2A gene is from maize. In some embodiments, the WOX2A gene is from a line of maize selected from B73 and A188. In some embodiments, the WOX2A gene is the wild-type gene from B73 (SEQ ID NO:1) or from A188 (SEQ ID NO:3). In other embodiments, the WOX2A gene comprises silent point mutations relative to the wild-type sequence to aid in the cloning process (e.g., SEQ ID NO:2 and SEQ ID NO:4). The term "silent point mutation" refers to a nucleotide base substitution that changes a DNA sequence but does not change the amino acid encoded by the DNA sequence. Those of skill in the art understand how to generate silent point mutations during construct development to facilitate cloning (e.g., for codon optimization or incorporation of a restriction enzyme site).

As used herein, the term "promoter" refers to a DNA sequence that regulates the expression of a gene. Typically, a promoter is a regulatory region that is capable of binding RNA polymerase and initiating transcription of a downstream sequence. However, a promoter may be located at the 5' or 3' end, within a coding region, or within an intron of a 65 gene that it regulates. Promoters may be derived in their entirety from a native gene, may be composed of elements derived from multiple regulatory sequences found in nature, or may comprise synthetic DNA segments. The promoters of the present invention are "heterologous," meaning they are not naturally associated with the WOX2A gene. A promoter is "operably connected" to a polynucleotide if the promoter is connected to the polynucleotide such that it may affect 5 transcription of the polynucleotide. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, at different stages of development, or in response to different environmental conditions. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters", whereas promoters that allow for controlled expression of a gene (e.g., under particular conditions or in the presence of a particular molecule) are referred to as "inducible promoters". A "tissue-specific" promoter is a promoter that is active only in certain cell types. Suitable promoters for use with the present invention include constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, 20 tissue-preferred, and tissue-specific promoters.

Exemplary promoters that can be used to drive expression in plant cells include, but are not limited to, the 35S promoter of the cauliflower mosaic virus, ubiquitin, tCUP cryptic constitutive promoter, the Rsyn7 promoter, patho- 25 gen-inducible promoters, the maize In2-2 promoter, the tobacco PR-1a promoter, glucocorticoid-inducible promoters, estrogen-inducible promoters and tetracycline-inducible and tetracycline-repressible promoters. As is described in the Examples, the inventors discovered that WOX2A 30 expression driven by the strong maize ubiquitin 1 promoter (SEQ ID NO:5) was sufficient to induce somatic embryogenesis in the recalcitrant maize line B73, whereas WOX2A expression driven by the relatively weak Agrobacterium tumefaciens NOS promoter was not. Thus, in some embodi- 35 ments, the heterologous promoter is a ubiquitin promoter. In specific embodiments, the heterologous promoter is the maize ubiquitin 1 promoter of SEQ ID NO:5. SEQ ID NO:5 includes the 5'UTR and first intron of the ubiquitin 1 gene, which are both important for producing high levels of 40 expression from this promoter.

In some embodiments, the constructs further comprise a gene encoding a reporter protein. A "reporter protein" is a protein that produces a trait or signal that is easily identified or measured. A reporter protein is often used as an indication 45 of whether a certain gene has been taken up by or expressed in the cell or organism. Exemplary reporter proteins are known in the art and include β-glucuronidase (GUS), R-locus protein, β -lactamase, luciferase, xy1E protein, α -amylase, tyrosinase, green fluorescence protein (GFP), TdTo- 50 mato and a-galactosidase. In the constructs of the present invention, a gene encoding a reporter protein may be included in either the same expression cassette used to express WOX2A or in a separate expression cassette. The WOX2A-encoding constructs that were tested in the 55 Examples further comprise a second expression cassette encoding the fluorescent reporter TdTomato. Thus, in some embodiments, the reporter protein is TdTomato.

Methods

In a second aspect, the present invention provides methods of inducing somatic embryogenesis in a plant tissue. The methods comprise: (a) introducing a WOX2A-encoding construct or vector described herein into at least one cell of 65 the plant tissue; and (b) incubating the plant tissue to allow a somatic embryo to form.

"Somatic embryogenesis" is a process in which a plant somatic cell transdifferentiates into a totipotent embryonic stem cell that gives rise to a somatic embryo under appropriate conditions. In this process, somatic embryos (i.e., embryos derived from a single somatic cell) develop as little globules directly from cells of the target tissues (i.e., via direct somatic embryogenesis) or from a mass of undifferentiated cells, referred to as a callus (i.e., via indirect somatic embryogenesis) (see FIG. **3**).

The term "plant tissue" is used herein to refer to a part of a plant, such as a plant cutting, a plant cell, a plant cell culture, a plant organ, a plant tissue, a plant seed, or a plantlet. A plant cell can be in the form of an isolated single cell or an aggregate of cells (e.g., a friable callus or a cultured cell) or can be part of a higher organized unit. The plant tissue used in the methods of the present invention may be from any plant species. In some embodiments, the plant tissue is from a cereal monocot plant. Suitable cereal monocot plants include, but are not limited to, maize, wheat, rice, barley, oats, rye, and sorghum. However, in preferred embodiments, the plant tissue is from maize.

The plant tissue used in the present methods suitably includes meristematic cells, i.e., cells that are undifferentiated or incompletely differentiated. In some embodiments, the plant tissue is from a meristematic explant. An "explant" is tissue that has been removed from a plant and placed in medium for tissue culture. In some embodiments, the plant tissue is an embryo. As used herein, the term "embryo" refers to part of a seed that consists of precursor tissues that will ultimately form the leaves, stem, root, and one or more cotyledons of the plant. The embryo may be a mature embryo (i.e., an embryo derived from a mature seed) or an immature embryo (i.e., an embryo derived from an immature seed). Immature embryos are nurtured and coaxed into developing into viable plants in a method known as embryo rescue, in which immature embryos are excised from a plant and grown on culture media. For use in their transformation method, the inventors harvested immature B73 maize zygotic embryos at a developmental stage appropriate for transformation of a regenerable genotype (e.g., A188). This developmental stage was identified based on (1) the number of days after pollination, and (2) the length of the major axis of the embryo. Thus, in some embodiments, the immature embryo was pollinated about 8-25 days prior to use in the method, and, in some embodiments, the immature embryo is 1-4.0 mm in length at the time of isolation. Other suitable tissues for use with the present methods include, without limitation, leaf-base tissue, microspores, roots, and leaf whorl.

In some embodiments, the plant tissue is from a plant that is recalcitrant to transformation. As used herein, the term "recalcitrant" or "recalcitrant to transformation" is used to refer to a plant that is unable to form tissue capable of regenerating into a fertile plant through embryogenic tissue 55 culture in the absence of an intervention (e.g., overexpression of WOX2A). Cereals, legumes, and woody plants are commonly considered to be recalcitrant to transformation. In the Examples, the inventors demonstrate that their methods can be used to induce somatic embryo formation and plant 60 regeneration in the recalcitrant maize inbred line B73. Thus, in some embodiments, the plant tissue is from the maize line B73.

In step (a) of the present methods, a WOX2A-encoding construct or vector is introduced into at least one cell of the plant tissue. As used herein, "introducing" describes a process by which exogenous polynucleotides are introduced into a recipient cell. Suitable methods for introducing genes into plant tissues include, without limitation, high velocity microparticle bombardment, microinjection, electroporation, nanoparticles, direct DNA uptake, and bacterially mediated transformation. Bacteria known to mediate plant cell transformation include a number of species of Rhizo- 5 biaceae, including, but not limited to, Agrobacterium sp., Sinorhizobium sp., Mesorhizobium sp., and Bradyrhizobium sp. In preferred embodiments, the construct is introduced via Agrobacterium-mediated transformation. In Agrobacteriummediated transformation, the ability of the plant pathogen 10 Agrobacterium tumefaciens (and related Agrobacterium species) to transfer DNA into plant cells is harnessed for the purposes of genetic engineering. Agrobacterium-mediated transformation of a WOX2A-encoding construct can be accomplished by adding a suspension of Agrobacterium 15 harboring the construct to a container comprising the plant tissue.

In some embodiments, the WOX2A-encoding constructs described herein are transfected into a cell using a carrier. Suitable carriers include, but not limited to, lipid carriers 20 (e.g., Lipofectamine) and polymeric nanocarriers.

In step (b) of the present methods, the transformed plant tissue is incubated to allow a somatic embryo to form. In this step, the plant tissue is placed on a tissue culture medium that supports callus induction (e.g., 605T, MS2D, or N6 25 tissue culture medium).

In some embodiments, the methods further comprise harvesting the plant tissue from a plant prior to step (a). For example, in embodiments in which the plant tissue is an immature maize embryo, the methods may further comprise 30 any subset of the following steps: (i) harvesting an ear from a maize plant, (ii) removing the husks and silks from the ear to expose the bare cob, (iii) surface sterilizing the cob (e.g., using bleach), and (iv) extracting immature embryos from the cob (e.g., by hand or mechanical methods). Further, in 35 some embodiments, the methods further comprise: (i) collecting pollen from a plant, (ii) purifying the pollen (e.g., using a sieve), and/or (iii) pollinating the plant before the plant tissue is harvested from the plant.

In some embodiments, the methods further comprise 40 growing the somatic embryo into a plant following step (b). In these embodiments, the somatic embryos are moved to one or more culture mediums that induce regeneration and rooting, and the resulting plantlets are then moved to soil.

Thus, in a third aspect, the present invention provides 45 plants produced by the methods disclosed herein. As used herein, the term "plant" includes whole plants and any portion of a plant including, without limitation, an embryo, pollen, ovule, flower, glume, panicle, root, root tip, anther, pistil, leaf, stem, seed, pod, flower, callus, clump, cell, 50 protoplast, germplasm, asexual propagule, tissue culture, or any progeny thereof. This term includes chimeric plants comprising a subset of transgenic cells.

The present disclosure is not limited to the specific details of construction, arrangement of components, or method 55 steps set forth herein. The compositions and methods disclosed herein are capable of being made, practiced, used, carried out and/or formed in various ways that will be apparent to one of skill in the art in light of the disclosure that follows. The phraseology and terminology used herein 60 economic importance. However, B73 is recalcitrant to conis for the purpose of description only and should not be regarded as limiting to the scope of the claims. Ordinal indicators, such as first, second, and third, as used in the description and the claims to refer to various structures or method steps, are not meant to be construed to indicate any 65 specific structures or steps, or any particular order or configuration to such structures or steps. All methods described

herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to facilitate the disclosure and does not imply any limitation on the scope of the disclosure unless otherwise claimed. No language in the specification, and no structures shown in the drawings, should be construed as indicating that any non-claimed element is essential to the practice of the disclosed subject matter. The use herein of the terms "including," "comprising," or "having," and variations thereof, is meant to encompass the elements listed thereafter and equivalents thereof, as well as additional elements. Embodiments recited as "including," "comprising," or "having" certain elements are also contemplated as "consisting essentially of" and "consisting of" those certain elements.

Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this disclosure. Use of the word "about" to describe a particular recited amount or range of amounts is meant to indicate that values very near to the recited amount are included in that amount, such as values that could or naturally would be accounted for due to manufacturing tolerances, instrument and human error in forming measurements, and the like. All percentages referring to amounts are by weight unless indicated otherwise.

No admission is made that any reference, including any non-patent or patent document cited in this specification, constitutes prior art. In particular, it will be understood that, unless otherwise stated, reference to any document herein does not constitute an admission that any of these documents forms part of the common general knowledge in the art in the United States or in any other country. Any discussion of the references states what their authors assert, and the applicant reserves the right to challenge the accuracy and pertinence of any of the documents cited herein. All references cited herein are fully incorporated by reference, unless explicitly indicated otherwise. The present disclosure shall control in the event there are any disparities between any definitions and/or description found in the cited references.

The following examples are meant only to be illustrative and are not meant as limitations on the scope of the invention or of the appended claims.

EXAMPLES

Example 1

B73 is a maize inbred line of genomic, agronomic, and ventional tissue culture and transformation methods and does not produce somatic embryos or regenerable embryogenic callus, which hinders its use in the development of genetically modified maize varieties.

In the following example, the inventors describe a novel tissue culture response gene, WOX2A, and its effects on somatic embryo induction and plant regeneration in cultured

maize explant tissues. They demonstrate that immature B73 zygotic embryos that are transformed with a DNA construct encoding WOX2A form explants that produce somatic embryos and embryogenic callus.

Materials and Methods

Plant Materials

Donor plants were grown in greenhouses in classic 1200 size pots in a custom potting mix based on Pro-Line CB 10 Carlin 18-1010. Plants were grown under 600 W highpressure sodium lights with a 16-hour light and 8-hour dark photoperiod. Plants were fertigated regularly with Peters Excel 15-5-15 Cal Mag Special.

Pollen Storage and Dilution

To ensure that successful pollinations would be made in the maize line B73, tassels were separated from the donor plants after anthesis had initiated. The tassels were rinsed and stored in the lab with the cut ends in Flora Life plant growth solution. Pollination bags were used to cover the 20 tassels and to allow for pollen collection. Pollen was typically collected late in the morning, after the lights in the lab had been turned on. The pollen was purified by passing it through a sieve with a gap size of 150 mm to remove clumps of dead pollen, insects, and anthers. Pollen was then added 25 to a centrifuge tube and the yield was estimated. Next, PEEK MP140 powder from PolyClean Technologies was added to the centrifuge tube at a ratio of one part pollen to five parts powder and was gently mixed with the pollen by rotating the tube. After mixing, the tube was closed, and the pollen was 30 stored at 4° C. The pollen was then stable for up to one week, assuming that the initial pollen harvest was of high quality. High-quality pollen has the following characteristics: (1) most of the pollen will pass through the sieve, (2) the pollen yield will be more than $100 \,\mu\text{L}$ per tassel, and (3) the pollen 35 is collected from tassels were not near the end of their lifespan.

Donor Ears

Immature maize embryos that ranged in size from 1.5 mm to 2.5 mm were collected from ears harvested from donor 40 plants grown in a greenhouse. The fresh embryo size was measured on the ears starting 10 days after pollination and continuing up to the harvest date. Ears were used within 4 days of the harvest date, preferably within 24 hours. If necessary, ears could be stored at 4° C. with the husks still 45 attached in in pollination bags that were stapled shut. Ear Sanitization

On the morning of the embryo isolation, ears were harvested fresh or taken from the refrigerator. Each ear was removed from the pollination bag, and the husks and silks 50 were stripped away. The bare cob was then sprayed with 70% ethanol, and any remaining stem at the bottom or the top of the cob was removed. Sterile barbecue skewers were pierced through the basal portion of the cob up towards the apical portion to be used as handles. The ears were then 55 sprayed one additional time with 70% ethanol and were then moved to a "clean room" where they were rinsed briefly under a sterile water tap and then plunged into a 10% Clorox bleach solution. Ears were swirled briefly in the Clorox solution to remove any bubbles. After 15-20 minutes in the 60 Clorox bath, the ears were removed and rinsed for a minimum of 30 seconds under the sterile water tap to remove residual bleach. After the rinse, the ears were plunged into a beaker with fresh, sterile water and left there until the remaining ears were processed. After all the ears were 65 processed through this step, they were transferred to another clean, sterile beaker.

Mechanical Extraction of Immature Embryos

Embryos were extracted by hand or by the high-throughput mechanical isolation method ("SIMPLE"). The time from which the first embryo was released from the kernel to the time at which the embryo was infected with *Agrobacterium* was within 30 minutes, as it is crucial to minimize the time embryos spend sitting in extraction solution. There was no apparent difference in the quality of the embryos that were isolated via mechanical means as compared to the embryos that were extracted by hand. After the isolation process was complete, the extraction solution was removed, and embryos were rinsed twice with cold 700A infection medium. After the second rinse, the solution was removed so that the embryos were not sitting below the surface of liquid medium. At this stage, the *Agrobacterium* samples were prepared for infection.

Agrobacterium-Mediated Transfection

The Agrobacterium strain LBA4404 (THY-) harboring the PHP71539 ternary helper plasmid was utilized. Master plates were streaked with all the constructs at a minimum of one week in advance of the experiments. Master plates were used for up to one month, or until working plates did not grow consistently. The medium used was YP with 50 mg/L of kanamycin, 50 mg/L of gentamicin, and 50 mg/L of thymidine. Master plates were grown at 28° C. in the dark for several days, until colonies were at least one millimeter in diameter. The morning before the transformation, a minimum of two working plates per construct being tested were streaked from single colonies from the master plate. Working plates were grown overnight at 28° C. in the dark. After embryos were isolated and rinsed, Agrobacterium suspensions were made by scraping sterile inoculation loops off the thinnest, freshest growth on the plate. Agrobacterium samples were transferred to a conical tube with 5 mL or less of 700A medium and vortexed briefly to resuspend. The optical density was measured at 550 nm and was adjusted until the final reading was between 0.35 and 0.45, optimally 0.4. If the initial reading was below 0.35, more inoculum was added, and the process was repeated. Agrobacterium suspensions of the proper optical density were added to the tubes of maize embryos, gently mixed for 30 seconds via orbital shaking or inversion, and then left to sit on the bench for 5 minutes. After the infection, embryo explants were transferred to plates comprising 710I cocultivation medium and incubated at 21° C. overnight in the dark. The transfer to 710I was done with the plate at an angle so that the contents of the tube fell near the lower edge of the plate. The excess Agrobacterium suspension was removed, and embryos were placed on a fresh part of the plate in the proper orientation with the embryo axis side down.

Somatic Embryo and Embryogenic Callus Induction

After the cocultivation period was completed, embryos were transferred to 605T resting medium. A maximum of 30 embryos were placed on a single plate of resting medium. Embryos were then incubated in the dark at 26° C. After 7 to 10 days, embryos were transferred, and the coleoptiles were trimmed as needed. In some instances, additional subculturing steps were done on 605T medium to observe the long-term potential for embryogenic callus formation. In other instances, additional subculturing steps were performed to facilitate the maturation and regeneration of somatic embryos into plantlets.

Experimental Design

Initial Construct Screen

Three candidate tissue culture response genes (i.e., WOX2A, GRAS23, and GME) were identified in a quanti-5 tative trait locus (QTL) associated with tissue culture response in maize. Of the genes present in the QTL, GRAS23 and GME were selected based on their high level of expression in a previous RNAseq study (PLoS One 10 9(10):e111407, 2014), and WOX2A was selected because it is expressed in the early embryo and embryogenic callus and its canonical function in Arabidopsis is related to meristem and embryo identity. All three genes were cloned into expression cassettes using a standard Golden Gate cloning 15 protocol. Two versions of the WOX2A gene were employed: (1) the WOX2A gene from the maize inbred line B73 (i.e., the cDNA of Zm00001d042920 from the B73 version 4 reference genome), which is regarded as being incapable of somatic embryogenesis and plant regeneration, and (2) the 20 WOX2A gene from the maize line A188 (i.e., the cDNA of Zm00056aa020753 from the A188 version 1 reference genome), which is regenerable. Two constructs were made for each candidate gene: (1) a construct in which the candidate gene is under the control of the constitutive maize ubiquitin 1 promoter, which drives high levels of expression, and (2) a construct in which the candidate gene is under the control of the constitutive Agrobacterium tumefacien-derived NOS promoter, which drives low levels of expression. All the constructs further included a TdTomato reporter 30 cassette. A control construct comprising only the TdTomato reporter cassette (i.e., FA 21) was also created. Each of the constructs generated for use in this study is outlined in Table 1, below. A subset of these constructs (i.e., the ones encoding WOX2A and the control construct) are depicted schematically in FIG. 1.

TABLE 1

Constructs					
Construct name	Candidate gene	Promoter driving candidate gene expression	40		
FA 13	WOX2A from B73	ubiquitin 1			
FA 14	WOX2A from B73	NOS			
FA 15	WOX2A from A188	ubiquitin 1	45		
FA 16	WOX2A from A188	NOS	1.5		
FA 17	GRAS23	ubiquitin 1			
FA 18	GRAS23	NOS			
FA 19	GME	ubiquitin 1			
FA 20	GME	NOS			
FA 21	None	N/A	50		

For the initial screen of the constructs, immature zygotic embryos were isolated from a minimum of two ears of B73. The immature embryos were transformed with: (1) the constructs encoding the candidate genes described above, 55 and (2) a construct encoding only the marker gene TdTomato. Notably, the constructs that were utilized are binary vectors, i.e., vectors comprising T-DNA borders that is used for Agrobacterium-mediated transformation. A non-Agrobacterium-treated control was also prepared. A minimum of 60 20 embryos were used for each treatment. Treated immature embryo explants were evaluated 4 to 6 days after infection to determine the quality of transient fluorescent protein expression. A simple count was done to determine the percentage of embryos that expressed the fluorescent 65 reporter gene (TdTomato), and the relative brightness of the treated embryos was noted. Eight days after infection, or

after 7 days on resting medium, embryos were screened for the production of somatic embryos and embryogenic callus. Direct Comparison Attempted Regeneration

The constructs that produced somatic embryos in the maize line B73 (i.e., FA 13 and FA 15) were compared directly to determine whether one produced an embryogenic response that was superior the other. Immature embryo explants were treated with FA 13, FA 15, the control construct FA 21, or were not inoculated. A minimum of 50 B73 embryos were isolated via mechanical extraction from two ears harvested 12 days after pollination. Embryos given one of the four different treatments were compared using the same methods that were used in the initial screen.

To determine whether constitutive expression of the novel tissue culture response gene WOX2A caused explants to regenerate plantlets from embryogenic callus, explants were transferred from 605T callus induction medium to maturation medium after two weeks. Subsequently, if regenerable, green tissue was observed on the maturation medium, then the regenerating somatic embryos were transferred to rooting & regeneration medium. Any plantlets produced were stored and separated by explant, and it was assumed that multiple shoots produced from the same explant were clones derived from a single integration event. After several weeks on rooting & regeneration medium, plants were transplanted to soil and grown in the greenhouse. The number of plants produced from independent explants that were TdTomatopositive were counted and the total number of shoots was estimated.

Results

Initial Screen:

The results of the initial screen of the expression constructs are presented in Table 2. The constructs encoding the B73 and A188 versions of the WOX2A gene induced somatic embryogenesis at similar, low frequencies (i.e., in 40 around 16% of explants and 23% of explants, respectively). The constructs encoding GRAS23 did not induce somatic embryogenesis, and, when expressed under the maize ubiquitin 1 promoter, they seemed to negatively impact tissue growth and the abundance of transient TdTomato activity (i.e., in 4 of the 30 T0 explants treated with FA 17). Screening of the constructs encoding GME was postponed so that follow-up work with WOX2A could be initiated.

TABLE 2

Summary of initial screen results					
Treatment	Explants with somatic embryos	Total explants			
FA 13	4	24			
FA 14	0	28			
FA 21	0	31			
Non-transformed control	0	26			
FA 15	7	30			
FA 16	0	32			
FA 21	0	31			
Non-transformed control	0	24			
FA 17	0	32			
FA 18	0	33			
FA 21	0	41			

Direct Comparison of the Embryo-Inducing Constructs:

It was found that the constructs encoding both the B73derived version of the WOX2A gene (i.e., FA 13) and the A188-derived version of the WOX2A gene (i.e., FA 15) induced somatic embryo formation when expressed under 5 control of maize ubiquitin 1 promoter. These WOX2Aexpressing constructs produced somatic embryos at a frequency of 59% among all B73 explants, while no somatic embryos were observed in explants treated with the TdTomato control construct (FA 21) or in the non-Agrobacterium- 10 treated control explants (Table 3). The initial culture response was a mixture of direct somatic embryogenesis and the formation of embryogenic callus. After two weeks of somatic embryo induction, embryos were transferred to a maturation medium to begin regeneration. At this stage, it 15 was clear that the somatic embryos and embryogenic callus that were produced were regenerable. However, the vast majority of regenerable tissue appeared to not express TdTomato, likely due to the lack of selection and the potential cell nonautonomous nature of WOX2A (Daum et 20 al., 2014). After two weeks on maturation medium, explants with greening tissue were transferred to rooting and regeneration medium. Plantlets produced from the WOX2A overexpression constructs (i.e., FA 13 and FA 15) grew vigorously and rooted readily. Several TdTomato-positive 25 plantlets and TdTomato-negative plantlets were selected to determine whether fertile T0 plants could be produced and if germline transmission of the transgene cassette occurred in T1 progeny.

It was observed that there were more shoots produced from explants treated with the FA construct as compared to those treated with the FA 13 construct. However, when these treatments were compared using a chi-square test, this difference was not found to be significant (Table 5).

TABLE 5

)	Chi-square test to compare embryo-inducing constructs						
	Construct	Explants with shoots	Total explants	Row totals			
5	FA 13	38 (43.10) [0.60]	66 (60.90) [0.43]	104			
	FA 15	54 (48.90) [0.53]	64 (69.10) [0.38]	118			
)	Column totals	92	130	Grand total: 222			

*Chi-square statistic: 1.9382; P value: 0.16. The result is not significant at p < 0.5.

PCR analysis was conducted to determine whether the regenerated B73 plants were transgenic. Genomic DNA was extracted from leaf samples and two sets of PCR primers were utilized. The P0035/P0036 primer pair generates a 701-base pair (bp) product from the TdTomato gene, and the D0167/D0168 primer pair generates a 108 bp product from

TABLE	3

Summary of traits related to somatic embryogenesis and the regeneration of embryogenic callus									
Explants Explants with with Plate transient somatic Total <u>Somatic embryos per explant</u> producing									
Construct	ID	TdTomato	embryos	explants	1	2	3	shoots	
FA 13	А	36	20	36	24	14	8	19	
FA 13	в	30	19	30	16	16	8	19	
FA 15	Α	36	20	36	18	22	11	29	
FA 15	в	28	18	28	15	12	7	25	
FA 21	А	30	0	30	N/A	N/A	N/A	0	
FA 21	в	36	0	36	N/A	N/A	N/A	0	
Control	Α	29	0	29	N/A	N/A	N/A	1	
Control	В	30	0	30	N/A	N/A	N/A	0	

55

A total of 92 explants produced shoots, but only a subset of these explants produced TdTomato-positive shoots. The FA 13 and FA 15 constructs each produced five independently derived TdTomato-positive shoots (Table 4), which will be referred to as "putative events". For each of these putative events, there were multiple TdTomato-negative shoots produced.

TABLE 4

 ive TdTomato-positive events	Summary of puta
TdTomato+ shoots	Construct
 5	FA13
5	FA15
0	FA21
0	Control

the maize ADH gene, which was used as a positive control for genomic DNA. Four putative events in independent explants were found to be PCR-positive for the TdTomato product (FIG. 2).

T0 plants were self-pollinated, and two of the four PCRpositive plants produced T1 seed. The T1 seed was found to segregate for TdTomato (FIG. 6). A selected sample of TdTomato-positive and TdTomato-negative seeds were sown, and the resulting plants were evaluated (FIG. 7). PCR analysis of genomic DNA extracted from these plants confirmed the presence or absence of TdTomato, as predicted based on fluorescence phenotype (FIG. 8). Segregation analysis based on the TdTomato phenotype of the T1 seed indicated that both PCR-positive events that produced TdTomato-positive seed were single-copy insertions rather than two-copy insertions (Table 6; Table 7), segregating at a 3:1 Mendelian ratio.

TABLE 6

Chi-square test for single insertion or two-independent insertions of T-DNA in TdTomato-positive T1 seed WP-001715-001A, DF = 1, $\alpha = 0.05$

	SINGLE INSERTION						
	POS	NEG	SUM	H0: segregation matches expectation for single-copy, hemizygous parent. HA: segregation does not match expectation for single-copy, hemizygous parent.			
OBSERVED	87	34	121				
RATIO EXPECTED χ ²	3 90.75 0.154959	1 30.25 0.464876	0.619835	p-value > 0.05; we cannot reject the null hypothesis			
		1	WO INSERI	TIONS			
	POS	NEG	SUM	H0: segregation matches expectation for two-copy, hemizygous parent. HA: segregation does not match expectation for two-copy, hemizygous parent.			
OBSERVED	87	34	121				
RATIO EXPECTED	15 113.4375	1 7.5625					
χ^2	6.16146			p-value < 0.01; we can reject the null hypothesis			

TABLE 7

	-			r two-independent insertions of /P-001715-002A, DF = 1, $\alpha = 0.05$		
		SI	NGLE INS	ERTION		
	POS	NEG	SUM	H0: segregation matches expectation for single-copy, hemizygous parent. HA: segregation does not match expectation for single-copy, hemizygous parent.		
OBSERVED	69	28	97			
RATIO	3	1				
EXPECTED	72.75	24.25				
χ ²	0.193299	0.579897	0.773196	p-value > 0.05; we cannot reject the null hypothesis		
		ΤV	VO INSERI	TIONS		
H0: segregation matches expectation for two-copy, hemizygous parent. HA: segregation does not match expectation for two-copy, hemizygous POS NEG SUM parent.						
OBSERVED	69	28	97			
RATIO	15	1				
EXPECTED	90.9375	6.0625				
χ^2	5.292139		84.67423	p-value < 0.01; we can reject the null hypothesis		

TABLE	8
-------	---

<u>Maize a</u>	nd TdTomato	primer sequences used in a multiplex PCR	analysis of T1 seeds
Primer	Target	Sequence (5' -> 3')	Amplicon size
D0035	ZmADH1F	GAATGTGTGTTGGGTTTGCAT (SEQ ID NO: 6)	71 bp
D0036	ZmADH1R	TCCAGCAATCCTTGCACCTT (SEQ ID NO: 7)	
P0035	TdTomato	GGCGAAGGTAGACCATACGAGGGC (SEQ ID NO: 8)	701 bp
P0036	TdTomato	CCATTCATGCTGCCCTCCATACGG (SEQ ID NO: 9)	

Discussion

In this work, it was demonstrated that constitutive expression of the WOX2A gene is sufficient to induce somatic embryogenesis in maize. In the absence of a suitable tissue culture response gene, the maize inbred line B73 produces essentially no somatic embryos or embryogenic callus and is generally regarded as being incapable of regeneration through embryogenic culture systems. It was found that WOX2A expression driven by the strong maize ubiquitin 1 promoter was sufficient to induce somatic embryogenesis in B73, whereas WOX2A expression driven by the relatively weak Agrobacterium tumefaciens NOS promoter was not. 25 This was surprising given that WOX2A is expressed at low levels in the regenerable maize line A188 and in embryogenic cultures (Salvo et al., 2014). It may be that a limited number of cells on the surface of the scutellum are transformed by the Agrobacterium, such that only a few cells in the transgenic B73 plants express WOX2A and higher levels of expression are required as compared to in A188. Alternatively, it is possible that the need for high expression levels of WOX2A indicates that this gene is not a causal gene that is necessary for the production of friable, embryo-35 genic callus in A188. It is remarkable that several PCRpositive events have been recovered with constitutive expression of WOX2A, given the total lack of selection and the tendency of WOX2A genes to function in a cell nonautonomous manner. The production of fertile T0 plants and viable T1 seed indicate that WOX2A constitutive expression can improve regeneration for both traditional transformation and genome editing applications.

In contrast to the genes WUSCHEL and BABYBOOM, WOX2A does not appear to require precise expression 45 control by a tissue-specific promoter (Lowe et al., 2018) or excision (Lowe et al., 2016) to regenerate fertile transgenic plants (FIG. 5). In this sense, the WOX2A system is similar to the GRF-GIF4 gene system, which improves the regenerability of cultures and does not require excision or tightly 50 controlled expression of the genes (Debernardi et al., 2020). It is possible that WOX2A expression is regulated by miRNAs, which allow the plant tissue to limit expression to a point where it does not kill the tissue or cause negative pleotropic effects. Further, additional gene products could be 55 necessary for WOX2A to function, which may only be present in certain tissue types.

Extensive work went into attempting to elucidate the underlying mechanisms behind the production of highly embryogenic, regenerable type II callus in maize line A188. The production of friable, embryogenic callus is controlled by many genes, and WOX2A is likely a significant component of the embryogenic pathway. There are certainly other tissue culture modulating genes, or genes which aid in acclimation to culture conditions, which will be identified in the future.

REFERENCES

- Armstrong, C. L., Romero-Severson, J., & Hodges, T. K. (1992). Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. *Theoretical and Applied Genetics*, 84(5-6), 755-762.
 - Daum, G., Medzihradszky, A., Suzaki, T., & Lohmann, J. U. (2014). A mechanistic framework for noncell autonomous stem cell induction in *Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America*, 111(40), 14619-14624.
 - Debernardi, J. M., Tricoli, D. M., Ercoli, M. F., Hayta, S., Ronald, P., Palatnik, J. F., & Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. *Nature Biotechnology*, 38(11), 1274-1279.
 - Green, C. E., & Phillips, R. L. (1975). Plant Regeneration from Tissue Cultures of Maize 1. wCrop Science, 15(3), 417-421.
 - Lowe, K., la Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., & Gordon-Kamm, W. (2018). Rapid genotype "independent" *Zea mays* L. (maize) transformation via direct somatic embryogenesis. *In Vitro Cellular and Developmental Biology—Plant*, 54(3), 240-252.
 - Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.-J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K., . . . Gordon-Kamm, W. (2016). Morphogenic Regulators *Baby boom and Wuschel* Improve Monocot Transformation. *The Plant Cell*, 28(9), 1998-2015.
 - Salvo, S. A. G. D., Hirsch, C. N., Buell, C. R., Kaeppler, S. M., & Kaeppler, H. F. (2014). Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. *PLoS One*, 9(10), e111407.
 - Salvo, S., Cook, J., Carlson, A. R., Hirsch, C. N., Kaeppler, S. M., & Kaeppler, H. F. (2018). Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (*Zea mays* L.). *Plant Genome*, 11(2).

SEQUENCE LISTING

SEQ ID NO: 1 moltype = DNA length = 2562

Sequence total quantity: 9

US 12,201,077 B2

-continued

FEATURE		Location/0	Qualifiers			
source		12562				
			= genomic DI	AN		
SEQUENCE: 1	1	organism	= Zea mays			
		atccqccqcc	accaccacca	ccgccgccca	cqqqcaqqac	60
				cggcggcgct		120
				ggctgtacga		180
				ggctgcggga		240
				aggcccgcca		300 360
				gccggccccc gcgtcccggc		420
				acgacaacgg		480
				ctgtattttc		540
				tcgattgttg		600
				ttgccattcc		660
				cgtgatagtc tggctgtttc		720 780
				cgggcaattg		840
				cacgctcgta		900
				atcaacggtg		960
				gtgtacgtgc		1020
				tacagettee tettettegt		1080 1140
				gtgactgtga		1200
				gccacacgcg		1260
tgccggcctg	cctttccccc	tatggtagct	actgctgctg	ctaccttttg	tageteetge	1320
				cggctgcgga		1380
				gcctgctcgg		1440 1500
				tatctatctg acctaaaacc		1560
				aattcagtta		1620
tgtataaaaa	attataaaga	gacagactct	tcgtgatgaa	cccgtcttt	attttttctg	1680
				ctaatattcc		1740
				caatggaagt		1800 1860
				taggagtagc aaacgtagca		1920
				tatatgatta		1980
ggtacataag	cttaaaaacg	gcatcgatcg	gttaatatgt	ttttcgctaa	cttctcttgt	2040
				acccattcta		2100
				agccacagca tagccggcca		2160 2220
				gcgccgggca		2220
				cgctccagcc		2340
				acgactccct		2400
				ccgcttccat		2460
			aagggcgtcg ggaggccgct	aggaggcgcc	cgcgctgccg	2520 2562
cccacgact	reccegggee	ceageceeee	ggaggeegee	ga		2002
SEQ ID NO:	2	moltype =	DNA lengt	n = 2562		
FEATURE			Qualifiers			
source		12562	- other DNA			
			= other DNA = synthetic	construct		
SEQUENCE: 2	2		-,			
				ccgccgccca		60
				cggcggcgct		120
				ggctgtacga		180 240
				ggctgcggga aggcccgcca		300
				geeggeeeee		360
				gcgtcccggc		420
				acgacaacgg		480
				ctgtatttc		540 600
				tcgattgttg ttgccattcc		660 660
				cgtgatagtc		720
				tggctgtttc		780
				cgggcaattg		840
ttctctctgt	gggaccactg	gcgcagggac	acgaggccag	cacgctcgta	gcagtagcac	900
				atcaacggtg		960
				gtgtacgtgc		1020
				tacagettee		1080 1140
				tgtttttcgt gtgactgtga		1200
				gccacacgcg		1260
				ctaccttttg		1320
				cggctgcgga		1380
caccgaaacg	gccagacaca	gccctccaca	tcattcctca	gcctgctcgg	tttccccatc	1440

-continued

cattcaatga	gcaaacattt	ccccqtaaaa	aatgatcgtg	tatetatetg	tatacqtttq	1500
			gtcatgtaca			1560
						1620
			ctagaatatt			
			tcgtgatgaa			1680
			tgggtatgtc			1740
			atttggcttc			1800
			ggtaggactc			1860
tccagtaatt	aattacatct	ttctttttt	agaagttact	aaacgtagca	tgccgattga	1920
tttcgtctaa	tatatggcat	cggtatatat	atgattaaca	tatatgatta	aaaatgccac	1980
ggtacataag	cttaaaaacg	gcatcgatcg	gttaatatgt	ttttcgctaa	cttctcttgt	2040
			atctacagga			2100
			tactacccac			2160
			agaatggagg			2220
			cagcacaacg			2280
						2340
			cagetgttee			
			ggcagtaata			2400
			gcgacagcgt			2460
tcggatggcc	tggagagcgg	cageteegge	aagggcgtcg	aggaggcgcc	cgcgctgccg	2520
ttctatgact	tcttcgggct	ccagtcctcc	ggaggccgct	ga		2562
SEQ ID NO:	3	moltype =	DNA length	n = 2553		
FEATURE			Qualifiers			
source		12553	~			
			= genomic D1	475		
				NA		
anomenan	_	organism :	= Zea mays			
SEQUENCE: 3						
			geegeegeeg			60
gacggcgggt	cgccgccgat	gtcgccggcc	tccgccgcgg	cggcggcgct	ggcgaacgcg	120
cggtggaacc	cgaccaagga	gcaggtggcc	gtgctggagg	ggctgtacga	gcacggcctg	180
cgcaccccca	gcgcggagca	gatacagcag	atcacgggca	ggctgcggga	gcacggcgcc	240
			cagaaccaca			300
			aggeteetee			360
			catcacggcc			420
						480
			gcatgcaacg			
			tttgtttctg			540
			ccatatatcg			600
gttttgcgcg	tcgagtgggg	aattaggata	ggacgggttg	ccattccatt	ccggcccccg	660
gccggttcat	gtgctggcca	cggcgtccac	gcgtgtgcgt	gatagtcaac	gctgacgtgc	720
tgcatataat	gcttgcgcca	atagccgtct	tttctcttgg	ctgtttcctt	gtcaaaggtt	780
tctttttgc	gaacgtgcgt	gtgggttgca	tgacaaccgg	gcaattgacg	tgcatgcttc	840
			aggccagcac			900
			tgtgctgatc			960
			ataatatgtg			1020
			tgtatattac			1080
						1140
			tctctcgtct			
			tcgcagtgtg			1200
			gctcatggcc			1260
			gctgctgcta			1320
ccgtgcatgc	tttgccccag	ccttgaagcc	atgcctgcgg	ctgcggagct	cagetgeeac	1380
cgaaacggcc	agacacagcc	ctccacatca	ttcctcagcc	tgctcggttt	ccccatccat	1440
tcaatgagca	aacatttccc	cgtaaaaaat	gatcgtgtat	ctatctgtat	acgtttggtt	1500
			atgtacaacc			1560
			gaatattaat			1620
			tgatgaaccc			1680
			gtatgtccta			1740
			tggcttccaa			1800
			aggactctag			1860
						1920
			agttactaaa			
			attaacatat			1980
			aatatgtttt			2040
			tacaggaacc			2100
caggcacccc	ctgcaaatgc	cgcctactac	tacccacagc	cacagcagca	gcagcagcaa	2160
		ccagtacccg	agaatggagg	tagccggcca	ggacaagatg	2220
cagcaggtgt	cagttatgta					2280
					agaaccgggga	2200
atgagcaggg	ccgcggcgca	gcagcagcag	cagcacaacg	gcgccgggca		2340
atgagcaggg cgcgccggcc	ccgcggcgca accccagccg	gcagcagcag cgagacgctc	cagcacaacg cagctgttcc	gcgccgggca cgctccagcc	taccttcgtg	2340
atgagcaggg cgcgccggcc ctgcggcacg	ccgcggcgca accccagccg acaaggggcg	gcagcagcag cgagacgctc cgtcgccaat	cagcacaacg cagctgttcc ggcagtaata	gcgccgggca cgctccagcc ataacgactc	taccttcgtg cctgacgtcg	2340 2400
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg	ccgcggcgca accccagccg acaaggggcg cgactgcgac	gcagcagcag cgagacgctc cgtcgccaat agcgacagcg	cagcacaacg cagctgttcc ggcagtaata tccgcttcca	gcgccgggca cgctccagcc ataacgactc tctccgagga	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg	gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc	gcgccgggca cgctccagcc ataacgactc tctccgagga	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg	ccgcggcgca accccagccg acaaggggcg cgactgcgac	gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc	gcgccgggca cgctccagcc ataacgactc tctccgagga	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg	gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc	gcgccgggca cgctccagcc ataacgactc tctccgagga	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg	ccgcggcgcga accccagccg acaagggggcg cgactgcgac gtagctccgg tccagtcctc	gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga	gcgccgggca cgctccagcc ataacgactc tctccgagga	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg tccagtcctc	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc cggaggccgc moltype =</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length	gegeegggea egeteeagee ataaegaete teteegagga eegegetgee	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg tccagtcctc	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc cggaggccgc moltype = Location/0</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga	gegeegggea egeteeagee ataaegaete teteegagga eegegetgee	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO:	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg tccagtcctc	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caggggcgcc cggaggccgc moltype = Location/0 12553</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers	gegeegggea egeteeagee ataaegaete teteegagga eegegetgee	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg tccagtcctc	<pre>gcagcagcagc cgagacgete cgtcgccaat agcgacagcg ccagggggecge moltype = Location/0 12553 mol_type 3</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA	gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcggccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source	ccgcggcgca accccagccg acaaggggcg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcagc cgagacgete cgtcgccaat agcgacagcg ccagggggecge moltype = Location/0 12553 mol_type 3</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers	gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553	taccttcgtg cctgacgtcg ctcggatggc	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source SEQUENCE: 4	ccgcggcgca acccagccg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc cggaggccgc moltype = Location/0 12553 mol_type = organism =</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA = synthetic	gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553 construct	taccttcgtg cctgacgtcg ctcggatggc gttctacgac	2340 2400 2460 2520 2553
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source SEQUENCE: 4	ccgcggcgca acccagccg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caagggcgtc cggaggccgc moltype = Location/0 12553 mol_type = organism =</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA	gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553 construct	taccttcgtg cctgacgtcg ctcggatggc gttctacgac	2340 2400 2460 2520
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source SEQUENCE: 4 atggaaacac	ccgcggcgca accccagccg acaagggcg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caggggcgctc cggaggccgc moltype = Location/0 12553 mol_type a organism a atccgccgcc</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA = synthetic	gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553 construct ccgccgccca	tacttcgtg cctgacgtcg ctcggatggc gttctacgac	2340 2400 2460 2520 2553
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source SEQUENCE: atggaaacac gacggcgggt	ccgcggcgca accaggcgg acaagggcg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caggggcgcc moltype = Location/0 12553 mol_type : organism : atccgccgcc gtcgccggcc</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA = synthetic gccgccgcgg	<pre>gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553 construct ccgccgccca cggcggcgct</pre>	tacttcgtg ctggacgtcg ctcggatggc gttctacgac cgggcaggac ggcgaacgcg	2340 2400 2460 2520 2553 60 120
atgagcaggg cgcgccggcc ctgcggcacg acgtcgacgg ctggagagcg ttcttcgggc SEQ ID NO: FEATURE source SEQUENCE: atggaaacac gacggcgggt	ccgcggcgca accaggcgg acaagggcg cgactgcgac gtagctccgg tccagtcctc 4	<pre>gcagcagcag cgagacgctc cgtcgccaat agcgacagcg caggggcgcc moltype = Location/0 12553 mol_type : organism : atccgccgcc gtcgccggcc</pre>	cagcacaacg cagctgttcc ggcagtaata tccgcttcca gaggaggcgc tga DNA length Qualifiers = other DNA = synthetic gccgccgccg	<pre>gcgccgggca cgctccagcc ataacgactc tctccgagga ccgcgctgcc h = 2553 construct ccgccgccca cggcggcgct</pre>	tacttcgtg ctggacgtcg ctcggatggc gttctacgac cgggcaggac ggcgaacgcg	2340 2400 2460 2520 2553

-continued

	~~~~~~~~~	asteasaaaa		aaataaaaaa	~~~~~~~~~	240
				ggctgcggga		240
atcgagggca	agaacgtgtt	ttactggttc	cagaaccaca	aggcccgcca	gcgccagagg	300
				geeggeeeee		360
				gcgtcccggc		420
atgccgatgc	cgatgccgcc	geegeeeget	gcatgcaacg	acaacggcgg	cgcgcgtggt	480
acqtatatca	tcatcatcgt	catctcatta	tttatttcta	tattttcctt	taccottaoc	540
				attgttgttg		600
gttttgcgcg	tcgagtgggg	aattaqqata	ggacgggttg	ccattccatt	ccggcccccg	660
				gatagtcaac		720
tgcatataat	gettgegeea	atageegtet	tttctcttgg	ctgtttcctt	gtcaaaggtt	780
tctttttqc	qaacqtqcqt	qtqqqttqca	tgacaaccgg	gcaattgacg	tgcatgcttc	840
						900
				gctcgtagca		
ccggccacac	tagcagcagt	ccactctatt	tgtgctgatc	aacggtgcgt	gcggtgcggt	960
qcatqcacac	qcctqcttct	tqtqctcaca	ataatatqtq	tacgtgcgtg	tqcaatqcat	1020
				agettecagt		1080
tcaggcttgt	tttatcattt	aattatttcc	tctctcgtgt	ttttcgtagt	agtagggcag	1140
ggetagagee	tgaccettge	ttctccatct	tcacaatata	actgtgatca	attagagcag	1200
				acacgcgatt		1260
cggcctgcct	ttccccctat	ggtagctact	gctgctgcta	ccttttgtag	ctcctgcccc	1320
ccqtqcatqc	tttgccccag	ccttgaagcc	atgcctgcgg	ctgcggagct	cagetgeeac	1380
				tgeteggttt		1440
tcaatgagca	aacatttccc	cgtaaaaaat	gatcgtgtat	ctatctgtat	acgtttggtt	1500
acatccaatc	tgctcatcct	tattaaqqtc	atgtacaacc	taaaaccttt	tactcqqttt	1560
				tcagttaaga		1620
ataaaaaatt	ataaagagac	agactcttcg	tgatgaaccc	gtcttttatt	ttttctgcac	1680
				atattcctgt		1740
				-		1800
				tggaagtgtt		
gatcaagcgt	catcagttaa	gatgcttggt	aggactctag	gagtagcatg	acattgetee	1860
agtaattaat	tacatette	ttttttaga	agttactaaa	cgtagcatgc	cgattgattt	1920
						1980
				atgattaaaa		
acataagctt	aaaaactgca	tcgatcggtt	aatatgtttt	tcgctaactt	ctcttgtcaa	2040
				cattctacgt		2100
caggcacccc	ctgcaaatgc	egectactac	tacccacage	cacagcagca	gcagcagcaa	2160
cagcaggtgt	cagttatgta	ccagtacccg	agaatggagg	tagccggcca	ggacaagatg	2220
				gcgccgggca		2280
cgcgccggcc	accccagccg	cgaaaccctc	cagctgttcc	cgctccagcc	taccttcgtg	2340
ctqcqqcacq	acaaqqqqqcq	cqtcqccaat	qqcaqtaata	ataacgactc	cctqacqtcq	2400
				tctccgagga		2460
ctggagagcg	gtageteegg	caagggcgtc	gaggaggcgc	ccgcgctgcc	gttctacgac	2520
ttcttcaaac			+ ~ ~			0550
	tecagteete					2553
SEQ ID NO: FEATURE source		<pre>moltype = Location/0 12056 mol_type :</pre>	DNA lengt] Qualifiers = other DNA	n = 2056		2003
SEQ ID NO: FEATURE source	5	<pre>moltype = Location/0 12056 mol_type :</pre>	DNA lengtl Qualifiers			2003
SEQ ID NO: FEATURE	5	<pre>moltype = Location/0 12056 mol_type :</pre>	DNA lengt] Qualifiers = other DNA			2003
SEQ ID NO: FEATURE source SEQUENCE: !	5	<pre>moltype = Location/g 12056 mol_type = organism =</pre>	DNA lengt] Qualifiers = other DNA = synthetic	construct	tacatatota	
SEQ ID NO: FEATURE source SEQUENCE: ! ctgcagtgca	5 5 gcgtgacccg	<pre>moltype = Location/( 12056 mol_type = organism = gtcgtgcccc</pre>	DNA lengt Qualifiers = other DNA = synthetic tctctagaga	construct taatgagcat		60
SEQ ID NO: FEATURE source SEQUENCE: 9 ctgcagtgca agttataaaa	5 5 gcgtgacccg aattaccaca	<pre>moltype = Location/0 12056 mol_type = organism = gtcgtgcccc tattttttt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg	construct taatgagcat tttgaagtgc	agtttatcta	60 120
SEQ ID NO: FEATURE source SEQUENCE: 9 ctgcagtgca agttataaaa	5 5 gcgtgacccg aattaccaca	<pre>moltype = Location/0 12056 mol_type = organism = gtcgtgcccc tattttttt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg	construct taatgagcat	agtttatcta	60
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca	5 gcgtgacccg aattaccaca tatatttaaa	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat	construct taatgagcat tttgaagtgc aatctatagt	agtttatcta actacaataa	60 120 180
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca tatcagtgtt	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc	<pre>moltype = Location/d 12056 mol_type organism gtcgtgcccc tattttttt ctttactcta atataaatga</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa	agtttatcta actacaataa ggacaattga	60 120 180 240
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tattagtgt gtatttgac	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc aacaggactc	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttacttta atataaatga tacagtttta</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt	agtttatcta actacaataa ggacaattga tctccttttt	60 120 180 240 300
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tattagtgt gtatttgac	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc aacaggactc	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttacttta atataaatga tacagtttta</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa	agtttatcta actacaataa ggacaattga tctccttttt	60 120 180 240
SEQ ID NO: FEATURE source SEQUENCE: 1 ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgca	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc aacaggactc agcttcacct	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga atataaatga atataaatct</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt tcatccattt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca	agtttatcta actacaataa ggacaattga tctccttttt tccatttagg	60 120 180 240 300 360
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca tatcagtgtt gtatttgcaaat gtttagagtt	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc aacaggactc agcttcacct aatggttttt	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactaat</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tcatccattt	construct taatgaggat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattt	60 120 180 240 300 360 420
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca tatcagtgtt gtatttgca gtatttgca gtttagggtt agcctctaaa	5 gcgtgacccg aattaccaca ttatattaaa ttagagaatc aacaggactc agcttcacct aatggttttt ttagaaaac	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactaat taaaactcta</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataata acagttagac tcttttagt tcatccattt tttttagta ttttagttt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat	agtttatcta actacaataa ggacaattga tctccttttt tccatttagg attctatttt aatttagata	60 120 180 240 300 360 420 480
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gtttagggt dactctaaa taaaatagaa	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc agcttcacct attaggtttt ttaagaaac taaaagaatc	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atagactaat tgactaaaaa</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tcatccattt ttttttagta tttttagttt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattaat accctttaag	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctatttt aatttagata aaattaaaaa	60 120 180 240 300 360 420 480 540
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gtttagggt dactctaaa taaaatagaa	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc agcttcacct attaggtttt ttaagaaac taaaagaatc	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atagactaat tgactaaaaa</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tcatccattt ttttttagta tttttagttt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctatttt aatttagata aaattaaaaa	60 120 180 240 300 360 420 480
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca tttgcaat gtattagggtt agcctctaaa taaaatagaa aactaagga	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc agcttcacct aatggttttt ttaagaaaac taaaag acatttttct	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga atataatact atagactaat tgactaaaaa tgtttcgagt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt tcatccattt tttttagta ttttagtat tttaacaat agataacagc	construct taatgaggat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat accetttaag agcctgttaa	agtttatcta actacaataa ggacaattga tctccttttt tccatttagg attctatttt aatttagata acgccgtcga	60 120 180 240 300 360 420 480 540 600
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca tgtatttgac ttttgcaatt gtatttggagtt agcctctaaa taaaatagaa aactaaggaa cgagtctaac	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc agcttcacct aatggttttt ttaagaaaaac taaataag acatttttct ggacaccaac	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atagactaat tgactaaaaat tgactaaaaa tggttcgagt cagcgaacca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt tcatccattt tttttagta ttttagtatt ttaaacaaat agataatgcc gcagcgtcgc	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa	agtttatcta actacaataa ggacaattga tctccttttt tccatttagg attctatttt aatttagata aaattaaaaa acgccgtcga gcgaagcaga	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgac ttttgcaaat gtttagggtt agcctctaaa acaaataggaa cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc aatggttttt ttaagaaaac taaaataaag acattttc ggacaccaac tcctgtcgc	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atagactaat tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tctttttagt tcatccattt ttttttagta ttttagtat tttagattt tttaacaaat gcagegtege cccctctcga	construct tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa gagttccgct	agtttatcta actacaataa ggacaattga tctcctttt tccatttag attctattta aattagata acgccgtcga gcgaagcaga ccaccgttgg	60 120 180 240 300 360 420 480 540 600 660 720
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgac ttttgcaaat gtttagggtt agcctctaaa acaaataggaa cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc aatggttttt ttaagaaaac taaaataaag acattttc ggacaccaac tcctgtcgc	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atagactaat tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgactaaaaa</pre>	DNA lengt] Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tctttttagt tcatccattt ttttttagta ttttagtat tttagattt tttaacaaat gcagegtege cccctctcga	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa	agtttatcta actacaataa ggacaattga tctcctttt tccatttag attctattta aattagata acgccgtcga gcgaagcaga ccaccgttgg	60 120 180 240 360 420 480 540 600 660 720 780
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gtataaggat aactaaggaa aactaaggaa agtctaac cggcacggca	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc agcttcacct ataggttttt ttaagaaac ttaaataag acatttttct ggacaccaac tctctgtcgc ctgtcggcat	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga atataatata</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tcatccattt tttttagta ttttagtttt tttaacaaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattaat accctttaag agcctgttaa gtgggccaa gagttccgct cggcagacgt	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aatttagata acgccgtcga gcgaagcaga ccaccgttgg gagccggcac	60 120 180 240 360 420 480 540 600 660 720 780
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtattttgca ttttgcaat gttataggtt agcctctaaa caactaaggaa cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc agcttcacct aatggttttt ttaagaaaaa acattttct ggacaccaac tctcgtcggcat ctgctcgcca	<pre>moltype = Location/0 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatat tgactaaaaa tgttcgagt cagcgaacca tgcctctggg tccacggca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcatccattt tcttttagt ttttttagta ttttagttt tttaacaat agataatgcc gcagcgtcgc cccctctcga cggcgggag cggcagctac	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa gagtccgct cggcagacgt gggggattcc	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aatttagata aaattaaaaa gcgaagcaga gcgaagcaga gagccggcac tttcccaccg	60 120 180 240 360 420 480 540 600 660 720 780 840
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tctttataca tatcagtgtt gtattttga gtatttgaaat gttagggtt agcctctaaa taaaatagga cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca ttagagaatc aacaggactc agcttcacct aatggttttt ttaagaaaac taaaataaag acatttttc ggacaccaac tctctgtcgc ctgtcggcat tccctcctcct	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactaat tgactaaaa tgttcgggt ccagcgaacca tgcctctgga ccagcaaatg cctaggca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcaacacttg cgaataata acagttagac tcttttagt tcatccattt ttttagta ttttagtttt ttaacaaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag cggcagctac aataaataga	construct taatgaggat tttgaagtgc aatctatagt dtggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat agcctgttaa gtcgggccaa gagttccgct gggggattcc cacccctcc	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctatttt aatttagata acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttcccaccg acaccttt	60 120 180 240 360 420 480 540 600 660 720 780 840 900
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaa tcttataca ttttagac ttttgcaaat gtatttgac tttggat gtattagggt agcctctaaa cgagtctaac cggcaggcgg acttgctccg ggcaggcggca acttgctccg tccctacact	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc aacaggactc aggttsacct taatggtttt ttaggaaaac taaaataaag acattttet ggacaccac tcctgtcggcat ctgtcggcat ctcctctcct	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgctccgga ccagaaattg ccagcaaattg ccccgccd ggagcgcaca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagtagac tcttttagt ttttagta ttttagta ttttagta ttttagta ttttagta gcagcagcac gcagcgtcgc cccctctcga cgtggcggag aataaataga	construct tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa gagttccgct cggcagacgt gggggattcc cacccctcc cagcccetcc cagatttcc	agtttatota actacaataa ggacaattga tctoctttt tccatttagg attotagtta aattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttoccaccg acaccottt ccaaatccca	60 120 240 300 360 420 480 540 600 720 780 840 900 900 960
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaa tcttataca ttttagac ttttgcaaat gtatttgac tttggat gtattagggt agcctctaaa cgagtctaac cggcaggcgg acttgctccg ggcaggcggca acttgctccg tccctacact	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc aacaggactc aggttsacct taatggtttt ttaggaaaac taaaataaag acattttet ggacaccac tcctgtcggcat ctgtcggcat ctcctctcct	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaaaa tgactaaaaa tgactaaaaa tgactaaaaa tgctccgga ccagaaattg ccagcaaattg ccccgccd ggagcgcaca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagtagac tcttttagt ttttagta ttttagta ttttagta ttttagta ttttagta gcagcagcac gcagcgtcgc cccctctcga cgtggcggag aataaataga	construct tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttatttaat accctttaag agcctgttaa gtcgggccaa gagttccgct cggcagacgt gggggattcc cacccctcc cagcccetcc cagatttcc	agtttatota actacaataa ggacaattga tctoctttt tccatttagg attotagtta aattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttoccaccg acaccottt ccaaatccca	60 120 180 240 360 420 480 540 600 660 720 780 840 900
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gttataggtt agcctctaaa taaaatagaa cggcacggca	5 gcgtgacccg aattaccaca ttaatttaaa ttagagaatc aacaggactc agcttcacct ataggttttt ttaagaaaac taaaataaag acatttttct ggacaccaac tctctgtcg ctgtcggcat ctcctcetcc tcccttcct cggttgttc	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataatact atagactaat taagactaat tgactagat cagcgaacca tgcctctgga cccagaattg tctcacggca tggagcgcaca aaacccacc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcattttagt tcatccattt tttttagta ttttagttt ttttagta ttttagttt tttaacaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag cggcagctac aataaataga cacacaaca	construct taatgagggat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattaat agcctgttaa gagttcgggcaa gagttcgc cggcagacgt gggggattcc caccetec cagattccc	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttcccaccg acaccctct ccaaatcca gtacgccgc	60 120 180 240 360 420 480 540 600 660 720 780 840 900 960 1020
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gttatagggtt agcctctaaa taaaatagaa caggccgacggca ctgcacggca ggcaggcggc ctccttcgct tccccaacca cgtcctccca	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc agcttcacct aatggttttt ttaagaaaac taaaataaag acattttct ggacaccaac tctctgtcggcat ctcctcgtccg tccctcctcc cgtgttgttc	<pre>moltype = Location// 12056 mol_type = organism = gtcgtgcccc tatttttt ctttactcta atataaatga tacagtttta atataaatact atagactaat tgactaaaaa tgtttcgagt cagcgaacca tgcctctgga tcccacggca ggacgcacg cagaaattg tcccacggca cagaaattg tcccacggca cagacca cagaccac ccacactc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcatctagtt tcatccattt tttttagta ttttagtt ttttagta ttttagta ttttagta ccccctctcg cgagcggcgg cggcagctac aataataga cacacacaa gtcggcgcact	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat acctttaag agctgggccaa gagtccgct cggcagacgt gggggattcc caccectec cagattcccgt	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga caccgttgg aacccgtcg acaccgtcg acacctctt ccaaatccca gtacgccgc catggttagg	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca ttttgcaaat gttatagggtt agcctctaaa taaaatagaa caggccgacggca ctgcacggca ggcaggcggc ctccttcgct tccccaacca cgtcctccca	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc agcttcacct aatggttttt ttaagaaaac taaaataaag acattttct ggacaccaac tctctgtcggcat ctgtcggcat ctccctcctc gggttgttc	<pre>moltype = Location// 12056 mol_type = organism = gtcgtgcccc tatttttt ctttactcta atataaatga tacagtttta atataaatact atagactaat tgactaaaaa tgtttcgagt cagcgaacca tgcctctgga tcccacggca ggacgcacg cagaaattg tcccacggca cagaaattg tcccacggca cagacca cagaccac ccacactc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcatctagtt tcatccattt tttttagta ttttagtt ttttagta ttttagta ttttagta ccccctctcg cgagcggcgg cggcagctac aataataga cacacacaa gtcggcgcact	construct taatgagggat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattaat agcctgttaa gagttcgggcaa gagttcgct cggcagacgt gggggattcc caccetce cagattcccag	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga caccgttgg aacccgtcg acaccgtcg acacctctt ccaaatccca gtacgccgc catggttagg	60 120 180 240 360 420 480 540 600 660 720 780 840 900 960 1020
SEQ ID NO: FEATURE source Sequence: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgca gtatttgca gtatggtt agcctctaaa taaaatagga cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagggactc agcttcacct aacggttttt ttaagaaac tatatttc ggacaccac tctctgtcgc ctgtcggcat tccctcctcct ctgcgtgtgttc gatttccct cgtgttgttc tcccctcct tcccctcct tcccctcct tcccctcct	<pre>moltype = Location/G 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactaat tgactaaaatg tgcctctgga ccaggaacca tgcctctgga ccaggaccaa cgcccgccgt ggagcgcaca aaatccacttc ttcatgtttg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcaacacttg cgaataata acagttagac tcttttagt ttttagtttt ttaaccaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag cgcagctac aataaataga caacaacaac gtcggcacct tctagatcgg tgttagatcc	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat acctttaag agctggccaa gagtccggt gggggattcc cacccctcc cagattcccg cggttcaag ggttccggtc	agtttatcta actacaataa ggacaattga tctcctttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttcccaccg acacccttt ccaaatccca gtacgccgt gtaggcggttagg tagatccgtg	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttataca ttttagac ttttgcaaat gtatttgac tttggatt agcctctaaa caggtctaac cggcagggg gcaggcggc ctccttcgct tccccaacct caccaacaa cgcccggtagt	5 gcgtgacccg aattaccaca tatatttaaa ttagagaatc aacaggactc aatggttttt ttaagaaaac taaaataaag acattttet ggacaccac tcctcgtcgc ctgtcggcat ctcctcgtcgc ctgcctcct tccctcct cgtgttgttc gatttecccc cccccccct tccattctg tccccqtccg tcctctgtcgc tccctcctcct tccctcctcct cgtgttgttc gatttecccc	<pre>moltype = Location/G 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atgactaaaat tgactaaaaat gtttcgagt ccaggaacca tgcctctgga ccaggaacca tgccccgcc ggagcgcaca aaatccaccc ctctaccttc ttcatgtttg atgcgacctg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tctttttagt tcatccattt ttttttagta ttttagtat tttagtat tttagta gcgcgcgcg cgcagcgtcg cgcagcgtcg cgcagcacta aataataga cacacacaac gcggcacct tctagatcgg tgtagatc tctagatcgg	construct tttgaagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttattaat accctttaag agcctgttaa gtcgggcaa gagttccgct cggcagacgt gggggattcc cacccctcc cagattccc cgctccaag cgttccggtc gtgtttgtg	agtttatota actacaataa ggacaattga tctcetttt tccatttagg attetagata aaattaaaaa acgcegtega gegageeggeae ttteceaegg gageeggeae ttteceaegg gageeggeae ttteceaegg tagategg tagategg tagategg tagategg tagategg tagategg tagategg tagategg tagategg tagategg tagategg	60 120 180 240 300 360 420 480 540 600 720 780 840 900 900 900 900 1020 1080 1140 1200
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttatagtt gtatttgca tttcagtgt gtatttgca tatcagtgt gtattagggt agctctaaa cgagtctaac cggcaggcga acttgctccg ggcaggcggc ctccttcgct tccccaacca cgcccggtagt ctgctagcgt ccagtgttc	5 gcgtgacccg aattaccaca tatatttaaa ttaggatc aacaggactc aggttcacct ttagggatttt ttaggaaac gacaccac tcctgtcgc ctgtcggcat ctcctgtcgc ttcctcctcc cccccccc ttcctctcc gatttcccc tcctctcg gattccccc tccctcctc gatttccccc tccccccc tccctcct gatttccccc tccccccc tccccccc tccccccc tcccccc	<pre>moltype = Location/d 12056 mol_type a organism a gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaaa tgactaaaa tgactaaaa tgactaaaa tgctccgga ccagaaattg ctcacggca ccgccgct ggagcgcaca aaatccaccc ctctacettc ttcatgtttg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacactg cgaataatat acagtagac tcttttagt tttttagta ttttagttt tttttagta ttttagttt tttaaacaaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag cagcaacaac gtcggcacct tctagatcgg tgttagatcc tacgtcagac ggctctagac	construct tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttatttaat accctttaag agcctgttaa gtgggccaa gagttccgct cggcagacgt gggggattcc cacccctcc cagcttcaag cgttccggtc gtgttgtgt acgttctgat gttccgcaga	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga gagccggcac tttcccaccg acaccettt ccaaatccca gtacgccgct catggttagg tagatccgtg tgctaacttg cgggatcgat	60 120 180 240 300 360 420 480 540 600 600 720 780 840 900 960 1020 1080 1140 1200 1260
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttatagtt gtatttgca tttcagtgt gtatttgca tatcagtgt gtattagggt agctctaaa cgagtctaac cggcaggcga acttgctccg ggcaggcggc ctccttcgct tccccaacca cgcccggtagt ctgctagcgt ccagtgttc	5 gcgtgacccg aattaccaca tatatttaaa ttaggatc aacaggactc aggttcacct ttagggatttt ttaggaaac gacaccac tcctgtcgc ctgtcggcat ctcctgtcgc ttcctcctcc cccccccc ttcctctcc gatttcccc tcctctcg gattccccc tccctcctc gatttccccc tccccccc tccctcct gatttccccc tccccccc tccccccc tccccccc tcccccc	<pre>moltype = Location/d 12056 mol_type a organism a gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaaa tgactaaaa tgactaaaa tgactaaaa tgctccgga ccagaaattg ctcacggca ccgccgct ggagcgcaca aaatccaccc ctctacettc ttcatgtttg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg atgcgacctg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacactg cgaataatat acagtagac tcttttagt tttttagta ttttagttt tttttagta ttttagttt tttaaacaaat agataatgcc gcagcgtcgc cccctctcga cgtggcggag cagcaacaac gtcggcacct tctagatcgg tgttagatcc tacgtcagac ggctctagac	construct tttgaagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat accctttaag agcctgttaa gtcgggcaa gagttccgct cggcagacgt gggggattcc cacccctcc cagatttccc ccgcttcaag cgttccggtc gtgtttgtg	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga gagccggcac tttcccaccg acaccettt ccaaatccca gtacgccgct catggttagg tagatccgtg tgctaacttg cgggatcgat	60 120 180 240 300 360 420 480 540 600 720 780 840 900 900 900 900 1020 1080 1140 1200
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgca tttgcaat gtattaggtt agcctctaaa taaaatagaa cggcacggca	5 gcgtgacccg aattaccaca ttatttaaa ttagagaatc aacaggactc agcttcacct ataggatttt ttaagaaaac taaaataaag acatttttct ggacaccaac tctctgtcg ctgtcggcat ctcctcctcc tcccttcct gatttccccc cccccccct tctacttctg tcgtacacgg tctttgggga ttttggga ttttgttc	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatgattta atataatact atagactaat tgactaaaaa tgtttcgagt cagcgaacca tgcctctgga cccagaaattg tctcacggca ggagcgcaca aaacccaccc ctctaccttc ttcatgtttg atgcgacctg atgcgaccggat gttgcatagg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcattttagt tcatccattt tttttagta tttttttagta ttttagtttt ttaacaaat agataatgcc gcagcggcgg cgccagctcg cacctctcga cgcggcagctac aataaataga cacacacac gtcggcacct tctagatcgg tgttagatcc tacgtcagac ggcttagatcg ggctctagcc ggcttggctt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat acctttaag agctgggcaa gagttcggt gggggattcc caccectec cagattccogct cagttcagt gtgttgtgt acgttctgat gttccgcag accttttct	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttcccaccg gtaccccctt ccaaatccca gtacgccgct catggttagg tggtaactgg tggtaacttg cgggatcgat ttatttcaat	60 120 180 240 300 360 420 480 540 600 600 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320
SEQ ID NO: FEATURE source Sequence: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgcaat gtatttgcaat gttagggtt agcctctaaa taaaataggaa cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagggactc agcttcacct aacggttttt ttaagaaac tatatttc ggacaccaac tctctgtcgc ctgtcggcacce tcccttcct cgtgttgttc gattcccct tcccttctg gcgacaccac ttccctcct cgtgttgttc gattcccct tcccttctg gcgacaccac tctctgtgtg tcttcggga tcttgggg tcttgggg	<pre>moltype = Location/G 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactact tgactaaaaatg tgcctctgga ccaggaacca tgccccgcgt ggagcgcaca aaatccacttc ttcatgtttg atccaggta ctcacggca ctctaccttc ttcatgtttg atccaggta tgcctctgga ccccgcgt ggagcgcaca aaatccacttc ttcatgtttg atccaggta tcgggtcatc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcaacacttg cgaataata acagttagac tcttttagt tttagttt ttatagtat ttttagttt ttaacagtti cgcagcgtcg cgcagcgtcg cgcagcgtac aataataga cacacacaac gtcggcacct tctagatcgg tgttagatcc tacgtcagac gtttggttg	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttattaat acctttaag agctgggccaa gagtcccgct cggcagacgt gggggattcc cacccctcc cagattcccg gtgttgtgt gtgttgtgt gtccggtc gtgtttgtgt acctttact	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga caccgttgg aacccgtcgg acaccgtcgg acaccctct ccaaatccca gtacgccgc tgtaggttagg tggtaccgt cgggatcgat ttatttcaat ttggttgtga	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1020 1080 1140 1200 1320 1380
SEQ ID NO: FEATURE source Sequence: ctgcagtgca agttataaaa tcttataca tatcagtgtt gtatttgcaat gtatttgcaat gttagggtt agcctctaaa taaaataggaa cgagtctaac cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagggactc agcttcacct aacggttttt ttaagaaac tatatttc ggacaccaac tctctgtcgc ctgtcggcacce tcccttcct cgtgttgttc gattcccct tcccttctg gcgacaccac ttccctcct cgtgttgttc gattcccct tcccttctg gcgacaccac tctctgtgtg tcttcggga tcttgggg tcttgggg	<pre>moltype = Location/G 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atataatact atagactact tgactaaaaatg tgcctctgga ccaggaacca tgccccgcgt ggagcgcaca aaatccacttc ttcatgtttg atccaggta ctcacggca ctctaccttc ttcatgtttg atccaggta tgcctctgga ccccgcgt ggagcgcaca aaatccacttc ttcatgtttg atccaggta tcgggtcatc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcaacacttg cgaataata acagttagac tcttttagt tttagttt ttatagtat ttttagttt ttaacagtti cgcagcgtcg cgcagcgtcg cgcagcgtac aataataga cacacacaac gtcggcacct tctagatcgg tgttagatcc tacgtcagac gtttggttg	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat acctttaag agctgggcaa gagttcggt gggggattcc caccectec cagattccogct cagttcagt gtgttgtgt acgttctgat gttccgcag accttttct	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga caccgttgg aacccgtcgg acaccgtcgg acaccctct ccaaatccca gtacgccgc tgtaggttagg tggtaccgt cgggatcgat ttatttcaat ttggttgtga	60 120 180 240 300 360 420 480 540 600 600 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tcttataca tttacagtgtt gtatttgac tttgcaaat gtattggt agctctaaa caggtctaaa cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc aacaggactc aatggttttt ttaagaaac taaaataaag acattttct ggacaccaac tctctgtcgc ctgtcggcat ctcctctct cgtgtgtgttc gattteccc cccccccct tctactctg tcgtacacgg tcttsggga ttttggggg tcttgggggg	<pre>moltype = Location/G 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atagactaat tgactaaaaatg tgactagagt cagcgaacaa tgcctctgga ccaggaacca tgcccctgga ccagcacca tgccccgccgt ggagcgcaca aaatccaccc cttaactttg atgcgacctg atgcgacctg gtcgggcatcg atgcgacctg gtcgggcatcg gtcgggtcatc gtcggtcatcg</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tctttttagt tcatccattt tttttagta ttttagttt ttaacaat gcagcgtcg cgcagcgtcg cgcagcgtcg cgcagctac aataaataga cacacacaac gtggcggagcta tctagatcgg tgttagatcc tacgtcagac ggtctagac ggtctagac ggtctagac ggtctagac ggtctagac ggtctagac	construct ttaatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tttattgtaca catctatttt tttatttaat accctttaag agccggccaa gagttccgct gggggattcc cacccctcc cagattccc ggttcagtc gtgttgtgt acgttcggtc gtgttgtgt acgttctgat gttccgcaga ccttttcct	agtttatota actacaataa ggacaattga tctoctttt tcoatttagg attotattt aattagata aaattaaaaa gogaagcaga gccacegttgg gagceggcac tttoccaceg gagceggcac ttagatcocgt gtagatcocgt tggtaactg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tggtaccgg tgggatcgat	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1020 1080 1140 1200 1320 1380
SEQ ID NO: FEATURE source Sequence: ctgcagtgca agttataaaa tcttatacgt gtatttgac tttgcaaat gtatttgac tttgcaaat gtattagggt agctctaaa cgagtctaaa cgagtctaac cggcaggcggc ctccttcgc ttccccaacct cacacaacaa cgccggtagt ctgctagcgt tccatggtttc ttcatgattt atatgcggt gtaggtta	5 gcgtgacccg aattaccaca tatattaaa ttaggaatc aacaggactc aggttcacct taaggttttt ttaggaaac ggacaccac tcctgtcggcat ctcctgtcgc ctgcggcat ctcctctcc cccccccct tctacttct ggttgtttc gatttecccc cccccccct tctacttct tcgtgtggga tcttgggga tctttgggga tctttggttc cacttgttg tcgtacacgg tctttgggga tctttggttc cacttgttg tcgtacacgg tctttgggga	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaaat tgactaaaat tgactaaaat tgactacagca cgcggaacta ggagcgcaca aaatccacec ctctacettc ttcatggat gtcgggccatg atgcggcactg atgcggtcatc gtcgtctaga</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagtagac tcttttagt ttttagta ttttagta ttttagta ttttagttt ttaaacaat gcagcgtcgc cccctctcga cgtggcggag cgcagcacat tctagatcag tgtagatccg tgtagatccg tgttagatcc gcagctcagcc gctctagac ggctctagcc gtttggtttg	construct ttaatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttattaat accctttaag agcctgttaa gtggggcata gagttccgct cagccagacgt gggggattcc cagcttcaag cgttccggtc gtgttctgat gttccgcaga gttccggtc tgtttgtgt acgttctgat gttccgcaga	agtttatota actacaataa ggacaattga tctoetttt tccatttagg attotattt aatttagata aaattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttoccaccg gaaccctott ccaaatccca gtacgccgt gtagtggag tggtacggg tggtacggt ttatttcaat ttggttgga	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 900 900 900 900 1020 1020 1140 1200 1140 1200 1380 1440 1500
SEQ ID NO: FEATURE source Source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca tattaggtt gtatttgca tatcagtgtt gtattagggt tagcctcaaa cagcacggca acttgctccg gccaggcggc ctccttcgct tccccaacca cgcccggtagt ctgctagcgt cccagtgtttc ttcatgattt atatgccgtg gtgatgtggtc ggagttaac	5 gcgtgacccg aattaccaca ttaatttaaa ttagagaatc aacaggactc agcttcacct atagatat taaaaagactc dgcttcacct tcacagc ctgtcggcat ctcctgtcg ctgtcggcat ctcctctcc tccctcctc tcctctcc tcctctcg ttcttgggga tctttgggga tctttgggga ttttggtgg tggtggggg ttaatttcg gatggaaata	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactta atataatata</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt ttatecattt tttttagta ttttagttt ttaacaat agataatgcc gcagcgcg cgccactctga cgtggcggag tgttagatcc tacagtagatcg tgttagatcc tacgtcagca ggcttagatcg tgttggtttg tttcatcatagt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctatttt tttatttaat acctttaag aggtcgggcaa gagttcggt gggggattcc cagcagacgt gggggattcc cagttcaag cgttccggt gtgttgtgt acgttctgat gttccgcag accttttcct tttttttgtc aattctgtt atgttcgtat gttccgtaag	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgtgg gagccggcac tttcccaccg acaccctctt ccaaatccca gtacgccgct catggttagg tggtaacttg tggtaactg tggtagtcgat ttatttcaat ttggttgtga gaacaactact	60 120 180 240 300 360 420 640 640 640 640 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560
SEQ ID NO: FEATURE source Source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt gtatttgca tattaggtt gtatttgca tatcagtgtt gtattagggt tagcctcaaa cagcacggca acttgctccg gccaggcggc ctccttcgct tccccaacca cgcccggtagt ctgctagcgt cccagtgtttc ttcatgattt atatgccgtg gtgatgtggtc ggagttaac	5 gcgtgacccg aattaccaca ttaatttaaa ttagagaatc aacaggactc agcttcacct atagatat taaaaagactc dgcttcacct tcacagc ctgtcggcat ctcctgtcg ctgtcggcat ctcctctcc tccctcctc tcctctcc tcctctcg ttcttgggga tctttgggga tctttgggga ttttggtgg tggtggggg ttaatttcg gatggaaata	<pre>moltype = Location/d 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactta atataatata</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tcttttagt ttatecattt tttttagta ttttagttt ttaacaat agataatgcc gcagcgcg cgccactctga cgtggcggag tgttagatcc tacagtagatcg tgttagatcc tacgtcagca ggcttagatcg tgttggtttg tttcatcatagt	construct ttaatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtac catctatttt tttattaat accctttaag agcctgttaa gtggggcata gagttccgct cagccagacgt gggggattcc cagcttcaag cgttccggtc gtgttctgat gttccgcaga gttccggtc tgtttgtgt acgttctgat gttccgcaga	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgtgg gagccggcac tttcccaccg acaccctctt ccaaatccca gtacgccgct catggttagg tggtaacttg tggtaactg tggtagtcgat ttatttcaat ttggttgtga gaacaactact	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 900 900 900 900 1020 1020 1140 1200 1140 1200 1380 1440 1500
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaaa tatcagtgtt agcttatacat gtatttgca ttttgcaaat gtattagggt agctctaaa cagcccgca ggcaggca ggcaggca ggcaggcggc ctccttcgct tccccaacca cagccacgaca ggcaggcggc ctcctcccc gcccggtagt ctgctagct tcccacacca cagtctacac tcagttcccc gccggtagt tcagtgttc ttcatgattt atatgccgtg ggaggtta aatagcagg ggaggtta cagtctacac cagccggtagt	5 gcgtgacccg aattaccaca ttagagaatc agcgtcacct aacaggactc agctcacct ttaagaaac cacttttct ggacaccaac tctcgtcggcat ctcctcgtcc ctgccggcat ctccctccc cccccccc cccccccc tctacttcgt tcgattccccg tcgatacacg tctttggga tctttggga tctttggtg tcactgttg ggatggaaata cagagatgct	<pre>moltype = Location// 12056 mol_type a organism a gtcgtgcccc tattttttt ctttactcta atataatact atataatact atataatact atgactaata tgactaataa tgttcgagt cagcgaacca tgcctctgga tgcagcgcac atgaccaca cccagaattg tccacggca tgaggcgacca atgacctacttc ttcatgtttg atgcgacctg atgcggtcatc gtcggtcatc gtcggtcatc gtcggtcatc gtcggtcatc gtcgttctag atctgattg ttcgatctgg ttcggtcatc</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat tcattttagt tcatcattt tttttagta ttttagttt ttttagttt ttttagttt tttaacaat agataatgcc gcagcgtcgc cccctctcg cggcagctac aataaataga cacacacaac gtcggcagct tctagatcgg tgttagatcc tacgtcagac gtttggttg tttcatgct atcaggagtag ttttcatgct atcaggagtag	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttatttaat acctttaag agctgggccaa gagttccggt cggcagacgt gggggattcc ccacccctcc cagattcccgt gtgttgtgt acgttctgag gttccggtc gtgttgtgt acctttact ttttttgtc aatctgttt catatcata atgtcgggc gagtacggt gtgttgtgt gtccgcaga ccctttcct	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgacgcagca tttcccaccg gagccggcac tttcccaccg gtacgccgct catggttagg tggtacctgg tggtacctg tggtacctg tggtaccga tttcccaccg gtagccgct gtagtcgat gtagtcgat ttatttcaat ttggttgtga caacatact gttacgat gggatttact tggttgggcg	60 120 180 240 300 360 420 480 540 600 600 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaa tcttataca ttttagac gtatttgaa taccagtgtt gtatttgaa aactaaggat cgagtctaaa cgagtctaaa cgagcacggca ggcaggggc ctccttcgct tccccaacct cgccagtgttc tcgctagcgt ctgatgtggttta gtagtggatta gagagatgtaa agtcgtactag	5 gcgtgacccg aattaccaca tatattaaa ttaggaatc aacaggactc aatggttttt ttaagaaac tatatttc ggacaccaac tctctgtcgc ctgtcggcat ctccctcct cggttgttc cdgttgtgtc cccccccct tccactcg tcgacacgg tcttgggga ttttgggg ggtgggaga ttttggtggcg ttaattttg cggtcggca tctctgttgc cccccccct cccccccct tccactctg tcgacacgg tcttgggg ccgacacgg tcttggggg ccgacacgg tcttgggga ttttggtggcg ttaatttcg tcgacacacg tcttggtggcg tcactgttg tcgacacgg tcttggtggcg ttaatttcg tcgacacac tcccctctg tcgacacgg tcttggtggacac tcttggtggcg ttaatttcg tcgacacacg tcttcgggacac tcttggtggcg tcactggtggaca tcttcgggacac tcactcgttg tcgacacacg tcttcgtcggca tcttcgttggcg tcactcgttg tcactcg tcactcg tcactcg tcgacacacac tccccccc tccccccc tccccccc tccccccc tcccccc	<pre>moltype = Location/G 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atagactaat tgactaaaatg tgcctctgga ccaggaacca tgcctctgga ccagcacca tgcctctgga ccacgccgt ggagcgcaca aaatccacccc ttcatgtttg atgcgacctg gtcggacctg gtcggtcatc gtcgttctag atcdgtatgt tcggtcatca gtcgttctag atcdgtatgt tcggtcatag tcggtcatag tcggtcatag atcdgtatgt tcggtcatag atcdgtatgt tcggtcatag atcdgtatgt tcggtcataga atcgtatgt tcggtcataga atcgtatgt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tcttttagt ttttagta ttttagttt ttaaccaat agtaatgcc gcagcgccg cgcagctccg cgcagcgcgag cggcagctac aataaataga caacaacaac gtcggcacct tctagtcagat gtgtagatgg ggtctagat acagtcagac gtttggttg ttttcatgct ataggagtag dgtggccata atagggagtag ataggtagcata ataggtagcata ataggtagcata ataggtagcata ataggtagcata	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttatttaat acctttaag ggcggccaa gagtcccgct cggcagacgt gggggattcc cccctcaag cgttccggtc gtgttgtgt acgttctgat gttctgag accttttcct ttttttgtc aatctgttt catattcata atgttgagg gactagtccgd gtttgtgt acgttctgag cctttcct	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattagata acgcogtcga gcgaagcaga ccaccgttgg acaccgtcgg acaccctct ccaaatccca gtacgccgc tgggatcgg tggttgat tggttgga caaactact ggggttga tggtttact tggttgggcg tggtttact	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1680
SEQ ID NO: FEATURE source SEQUENCE: ctgcagtgca agttataaa tcttataca ttttagac gtatttgaa taccagtgtt gtatttgaa aactaaggat cgagtctaaa cgagtctaaa cgagcacggca ggcaggggc ctccttcgct tccccaacct cgccagtgttc tcgctagcgt ctgatgtggttta gtagtggatta gagagatgtaa agtcgtactag	5 gcgtgacccg aattaccaca tatattaaa ttaggaatc aacaggactc aatggttttt ttaagaaac tatatttc ggacaccaac tctctgtcgc ctgtcggcat ctccctcct cggttgttc cdgttgtgtc cccccccct tccactcg tcgacacgg tcttgggga ttttgggg ggtgggaga ttttggtggcg ttaattttg cggtcggca tctctgttgc cccccccct cccccccct tccactctg tcgacacgg tcttgggg ccgacacgg tcttggggg ccgacacgg tcttgggga ttttggtggcg ttaatttcg tcgacacacg tcttggtggcg tcactgttg tcgacacgg tcttggtggcg ttaatttcg tcgacacac tcccctctg tcgacacgg tcttggtggacac tcttggtggcg ttaatttcg tcgacacacg tcttcgggacac tcttggtggcg tcactggtggaca tcttcgggacac tcactcgttg tcgacacacg tcttcgtcggca tcttcgttggcg tcactcgttg tcactcg tcactcg tcactcg tcgacacacac tccccccc tccccccc tccccccc tccccccc tcccccc	<pre>moltype = Location/G 12056 mol_type = organism = gtcgtgcccc tattttttt ctttactcta atataaatga tacagtttta atagactaat tgactaaaatg tgcctctgga ccaggaacca tgcctctgga ccagcacca tgcctctgga ccacgccgt ggagcgcaca aaatccacccc ttcatgtttg atgcgacctg gtcggacctg gtcggtcatc gtcgttctag atcdgtatgt tcggtcatca gtcgttctag atcdgtatgt tcggtcatag tcggtcatag tcggtcatag atcdgtatgt tcggtcatag atcdgtatgt tcggtcatag atcdgtatgt tcggtcataga atcgtatgt tcggtcataga atcgtatgt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tcttttagt ttttagta ttttagttt ttaaccaat agtaatgcc gcagcgccg cgcagctccg cgcagcgcgag cggcagctac aataaataga caacaacaac gtcggcacct tctagtcagat gtgtagatgg ggtctagat acagtcagac gtttggttg ttttcatgct ataggagtag dgtggccata atagggagtag ataggtagcata ataggtagcata ataggtagcata ataggtagcata ataggtagcata	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttatttaat acctttaag agctgggccaa gagttccggt cggcagacgt gggggattcc ccacccctcc cagattccagt gtgttgtgt acgttctgag gttccggtc gtgttgtgt acctttact ttttttgtc aatctgttt catatcata atgtcgggc gagtacggt gtgttgtgt gtccgcaga ccctttcct	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattagata acgcogtcga gcgaagcaga ccaccgttgg acaccgtcgg acaccctct ccaaatccca gtacgccgc tgggatcgg tggttgat tggttgga caaactact ggggttga tggtttact tggttgggcg tggtttact	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1020 1020 1020 1140 1200 1240 1380 1440 1500 1560 1680 1740
SEQ ID NO: FEATURE source Source SEQUENCE: ctgcagtgca agttataaaa tcttatagt gtatttgac tttgaa tacagtgtt gtatttgac tttgaggt aggctaaac cggcacggca	5 gcgtgacccg aattaccaca tatattaaa ttagagaatc aacaggactc aggttcacct taatggttttt ttaggaaac taaaataag acattttet ggacaccac tcctgtcgc ctgtcggcat ctcctgtcgc ctgctgtgtttc gattteccc cccccccct tccacttctg tcgtacacgg tcttgggga ttttggtc gatttgggcg ttaattttgtttc cacttgttgg cactgttggtc cggttgggcg ttaattttgg tcg tcactgttgg tcattgggaaata cagagatgc cgtctagat	<pre>moltype = Location/d 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataataga tacagttta atagactaat tgactaaaat tgactaaaaatg tgcctctgga ccaggaacaa tgcctctgga ccagcacca gagcgcacca aaatccaccc ctctaccttc ttcatgtttg atgcgacctg atgcgacctg atgcgacctg gagcgcacca gtggtcatag tgtggtcatag ttcggataga gttttgttcg atcggataga gtgtcataca gtgtcataga tcggagtcatag gtggtcatag gtggtcataca gtgtcataga stggataga agtgcataca gtgtcataca agtgataga stggtcataca gtgtcataca stggataga gtgtcataca gtgtcataca gtgtcataca gtgtcataca gtgtcataca gtgtcataca gtgtcataca gtgtcataca</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gcgaataata acagttagac tcttttagt tcatccattt tttttagta ttttagta ttttagta ttttagttt ttaaacaat gcagcgtcg cgcagcgtcg cgcagcgtcg cgcagcacta tctagatcgg tgttagatcc tacgtcagac ggttggagtag tttcatgt tgttagatcc tacggagtag tttcatgt tgttggtgtcata ataggttgcata tacggtgtgta tacgttgtga ttctatgttcatagt	construct ttaatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tttattgtaca catctatttt tttatttaat accctttaag agccggccaa gagttccgct gggggattcc cacccctcc cagattccc gtgttgtgt acgttcggtc gtgttgtgt acgttctgat gtttttttttgtc aattctgttt catattcata atgttgagg gagts catttcgtt gtgttggtgt acgtccgtc gtgttgtgt cattctgtt	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattt aatttagata aaattaaaaa acgccgtcga gcgaagcaga ccaccgttgg gagccggcac tttcccaccg gaagccggcac tttcccaccg gaagccggcac ttagatccgtg tggtaacttg tggtaactgg tggtatcgat ttagttgga caacactact ggggttgaat ggtttgga ggatttaat tggttggag ggattgaatt gggtttgag	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1680
SEQ ID NO: FEATURE source Source SEQUENCE: ctgcagtgca agttataaaa tcttataca gtatttgac ttttgcaaat gtatttgac tacaggt gtaggtctaac cggcaggcga acttgctccg ggcaggcggc ctccttcgct tccccaacct cacacaacaa cgccggtagt ctgctacgt tccaggtttc ttccatgattt atatgcggt tgatgtggtc ggtggattaa gagatgaga gagagaggac actgctcccc	5 gcgtgacccg aattaccaca tatatttaaa ttaggatt aacaggactc aggtccacct taaggtttt ttaggaacc ggacaccac tcctgtcgc ctgtcggcat ctcctgtcgc tccctcctc cccccccct tctacttctg tcgtacacag tcttgggga ttttggtgg tcgttgggg tcttgggga tctttggtgc tcacttgttg tcgtcggca tcttgggga tctttggtgc tcgtcggca tcttgggga tctttggtgc tcactgtcg cactgttg tcatttgttc cactgttg tcgtcgacacag tctttgggga tctttgggga tctttgggga tctttggtgc tcactgttg tcgtcacacg tctttggtgc tcactgttg tcgtcggcg tcactgttg tcgtcacacag tctttgggga tctttgggga tctttggtgc tcactgttg tcgtcacacag tctttgggga tctttggga tcactgttg tcgtcacacag tcactgttg tcactgtggcg tcactgttg tcacttgttg tcgtcacaca tcttcg tcgtcacacag tctttggga tcactgtggcg tcactgtggga tcttgggaaata cagaatagg	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataaatga tacagttta atataatact atgactaat tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgactaaaa tgaccagca cggagcaca aaatccaccc ctctaccttc ttcatggat gtcgggtcatc gtcgtatgg tcgggtcatcag gtcttcag atctgatagg tcgggtcatcag gtctctaga tcggagtagaa gtcgactaaa atacaactgt ttgatcaga tcggagtagaa ttggtcataca tatacatgtt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacactg cgaataatat acagtagac tcttttagt ttttagta ttttagttt ttaaccaata gcagcgtcg gcagcgtcg cgccgctctcga cgtggcggag cgtcggcacct tctagatcgg tgttagatcc tacgtcagac ggctctagac ggctctagcc gtttggttgg tttcatgtag tacggagtag tatcggtaga tacggagtag gtgtgccata ataaggtatac ttggttgga tactgtttcatgt gatggttgg	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattagtaca gagctgttaa gagtccggt gggggattcc cagcatcag gggggattcc cagattcaga gttccggtc gtgtttgtgt acgttctgat gttccgcaga ccttttcct tttttttgtc aattctgtt catattcata atgttgatgc gacctgtta atgttgatgc aattctggtt gacctgtta catcttgtt tcatattcata atgttgatgc gacctggttagatg acctcttgat gtacagatta	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgtgg gagccggcac tttcccaccg dacacctctt ccaaatccca gtacgccgt gagtcggt tgctaacttg tggatcggt tgctaacttg tggtgtga caactacct gttacgaatt gggttttact tggtgggg gggtcgacg tggtattatt agatggatgg atatacatga	60 120 180 240 300 360 420 480 540 600 720 780 840 900 900 900 900 900 1020 1020 1020 1140 1200 1140 1200 1380 1440 1500 1560 1620 1680 1740 1800
SEQ ID NO: FEATURE source Source Ctgcagtgca agttataaaa tatcagtgtt gtatttgca tattaggtt gtatttgca tataagga tacaatagaa aactaaggaa cggcagcgca ctccttcgc ttccccaact cacacaacca cgcccggtagt tccagtgtttc ttcatgattt atatgcgtg tgatgtggt tgatgtggt gaagaggataaa gaagagataa cggcagcggc ctccttcgc ttcctcgc tccatcgc tccatagttt ttcatgattt atatgccgtg gaagagagag tagaggattaa cggcagcggt tccagtgtttc ttcatgattt atatgcgtg gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa aaatatcgat tggcatatag	5 gcgtgacccg aattaccaca ttaatttaaa ttagagaatc aacaggactc agcttcacct atagatat taaaaag acattttct ggacaccaac ttcctgtcgc ctgtcggcat ctcctcccc ctgctgtgt gattccccc cccccccct ttcacttctg tcgtatttc ggatggaaata cagagatgct cgtgttcgacat ttttgtttc cactgtttg ggatggaaata cagagatgct ctdggatgtgt tcattggtgg tcattggtgg gatggaaata cagagatgct ctdggatgtgt	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataatacta atataatact atagactaat tgactaaaaa tgttcgagt cagcaacca cgccgccgt ggagcgacca acatccactcc ttcatgtttg atgcgaccdg atgcggcctg atgcggctcatc gtgggcacca gtcgctctggg tcggggtcatc gtcgtctagg tcggggtcatc gtcgtctagg tttgttcgc gtcgtctagg tttgttcgc gtgtgtcatag tttgttcgc gtgtgtcatag tttgttcgc gtgtgtcatag tttgttcgc sgggtcatca gtgtcatagt tttgttcgc sgggtcataca sgtcctacattt tcgatctagg tttgttcgc sgggtcataca sgtcctacattt tcgatctagg tttgttcgc sggggtcatcc sgtgtcatagt tttgttcgc sgggtcataca sgtcataca sgtcatacatgtt staacatgtt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tttttagtt tttttagta ttttagttt tttaacaat agataatgcc gcagcgtcg cgccagctcg cgcgcagctac aataaataga gtggcggag tgttagatcc tacgtcagac ggcttggtttg tttcatgatag ggtgtgccata ataggtagta ataggtagta tctggttgg gtgtgcata ataggtagta tctggttgg tgtggggt gacacatagt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttatttaat acctttaag agctgggccaa gagttccgct cggcagact gggggattcc ccacttcag gtgttcggt gtgtttgtgt gtccgcag gttccgcag gttccgcag gttccgcag gttccgcag gttccgtc adgttctgat gttccgcaga ttttttttgtc aatctttct ttttttgtc aatctgatg gaagtgggg gaagtgggg aactacctgg tacgagtta	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgtgg gaaccggcac tttcccaccg acaccctct ccaastccca gtagtcgg tggtaccgt tggtattgg tgtaacttg gtgttgtga caactactt gttacgaatt gggtttact tggttgggg tgtaattat agatggagg gtattatt	60 120 180 240 300 360 420 600 600 600 720 780 840 900 1020 1020 1020 1260 1320 1380 1440 1500 1500 1560 1620 1680 1740 1800 1860
SEQ ID NO: FEATURE source Source Ctgcagtgca agttataaaa tatcagtgtt gtatttgca tattaggtt gtatttgca tataagga tacaatagaa aactaaggaa cggcagcgca ctccttcgc ttccccaact cacacaacca cgcccggtagt tccagtgtttc ttcatgattt atatgcgtg tgatgtggt tgatgtggt gaagaggataaa gaagagataa cggcagcggc ctccttcgc ttcctcgc tccatcgc tccatagttt ttcatgattt atatgccgtg gaagagagag tagaggattaa cggcagcggt tccagtgtttc ttcatgattt atatgcgtg gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa gaagatgataa aaatatcgat tggcatatag	5 gcgtgacccg aattaccaca ttaatttaaa ttagagaatc aacaggactc agcttcacct atagatat taaaaag acattttct ggacaccaac ttcctgtcgc ctgtcggcat ctcctcccc ctgctgtgt gattccccc cccccccct ttcacttctg tcgtatttc ggatggaaata cagagatgct cgtgttcgacat ttttgtttc cactgtttg ggatggaaata cagagatgct ctdggatgtgt tcattggtgg tcattggtgg gatggaaata cagagatgct ctdggatgtgt	<pre>moltype = Location/0 12056 mol_type : organism : gtcgtgcccc tattttttt ctttactcta atataatacta atataatact atagactaat tgactaaaaa tgttcgagt cagcaacca cgccgccgt ggagcgacca acatccactcc ttcatgtttg atgcgaccdg atgcggcctg atgcggctcatc gtgggcacca gtcgctctggg tcggggtcatc gtcgtctagg tcggggtcatc gtcgtctagg tttgttcgc gtcgtctagg tttgttcgc gtgtgtcatag tttgttcgc gtgtgtcatag tttgttcgc gtgtgtcatag tttgttcgc sgggtcatca gtgtcatagt tttgttcgc sgggtcataca sgtcctacattt tcgatctagg tttgttcgc sgggtcataca sgtcctacattt tcgatctagg tttgttcgc sggggtcatcc sgtgtcatagt tttgttcgc sgggtcataca sgtcataca sgtcatacatgtt staacatgtt</pre>	DNA lengtl Qualifiers = other DNA = synthetic tctctagaga gtcacacttg cgaataatat acagttagac tctttttagt tttttagtt tttttagta ttttagttt tttaacaat agataatgcc gcagcgtcg cgccagctcg cgcgcagctac aataaataga gtggcggag tgttagatcc tacgtcagac ggcttggtttg tttcatgatag ggtgtgccata ataggtagta ataggtagta tctggttgg gtgtgcata ataggtagta tctggttgg tgtggggt gacacatagt	construct taatgagcat tttgaagtgc aatctatagt atggtctaaa gtgcatgtgt tattagtaca catctattt tttattagtaca gagctgttaa gagtccggt gggggattcc cagcatcag gggggattcc cagattcaga gttccggtc gtgtttgtgt acgttctgat gttccgcaga ccttttcct tttttttgtc aattctgtt catattcata atgttgatgc gacctgtta atgttgatgc aattctggtt gacctgtta catcttgtt tcatattcata atgttgatgc gacctggttagatg acctcttgat gtacagatta	agtttatcta actacaataa ggacaattga tctcetttt tccatttagg attctattta aattaaaaa acgccgtcga gcgaagcaga ccaccgtgg gaaccggcac tttcccaccg acaccctct ccaastccca gtagtcgg tggtaccgt tggtattgg tgtaacttg gtgttgtga caactactt gttacgaatt gggtttact tggttgggg tgtaattat agatggagg gtattatt	60 120 180 240 300 360 420 480 540 600 720 780 840 900 900 900 900 900 1020 1020 1020 1140 1200 1140 1200 1380 1440 1500 1560 1620 1680 1740 1800

-continued					
	ctgcetteat aegetattta tttgettggt aetgtttett gtttggtgtt aettetgeag gtegaeteta gaggateeee				
SEQ ID NO: 6 FEATURE source	<pre>moltype = DNA length = 21 Location/Qualifiers 121 mol_type = other DNA organism = synthetic construct</pre>				
SEQUENCE: 6		21			
gaatgtgtgt tgggtttgca	L.	21			
SEQ ID NO: 7 FEATURE source	<pre>moltype = DNA length = 20 Location/Qualifiers 120 mol_type = other DNA organism = synthetic construct</pre>				
SEQUENCE: 7	organism - synchecte construct				
tccagcaatc cttgcacctt		20			
SEQ ID NO: 8 FEATURE source	<pre>moltype = DNA length = 24 Location/Qualifiers 124 mol_type = other DNA organism = synthetic construct</pre>				
SEQUENCE: 8					
ggcgaaggta gaccatacga	aaac	24			
SEQ ID NO: 9 FEATURE source	<pre>moltype = DNA length = 24 Location/Qualifiers 124 mol_type = other DNA organism = synthetic construct</pre>				
SEQUENCE: 9					
ccattcatgc tgccctccat	acgg	24			

What is claimed:

**1**. A construct comprising a WUSCHEL-like homeobox 2a (WOX2A) gene from maize operably connected to a ³⁵ ubiquitin promoter comprising SEQ ID NO:5.

25

**2**. The construct of claim **1**, wherein the WOX2A gene is from a line of maize selected from B73 and A188.

**3**. The construct of claim **2**, wherein the WOX2A gene comprises a DNA sequence selected from the group consisting of SEQ ID NOs:1-4.

4. The construct of claim 1, further comprising a gene encoding a reporter protein.

5. A vector comprising the construct of claim 1.

6. A method of inducing somatic embryogenesis in a plant

tissue from a cereal monocot plant, the method comprising:a) introducing the construct of claim 1 into at least one cell of the plant tissue; and

b) incubating the plant tissue to allow a somatic embryo  $_{50}$  to form.

7. The method of claim 6, wherein the plant tissue is from a meristematic explant.

8. The method of claim 6, wherein the plant tissue is an immature embryo.

9. The method of claim 8, wherein:

a) the immature embryo was pollinated about 8-25 days prior to use in the method; and/or

b) the embryo is 1-4 mm in length.

10. The method of claim 6, wherein the plant tissue is from a plant selected from the group consisting of maize, wheat, rice, barley, oats, rye, and sorghum.

11. The method of claim 10, wherein the plant tissue is from maize.

12. The method of claim 6, wherein the plant tissue is from a plant that is recalcitrant to transformation.

13. The method of claim 12, wherein the plant tissue is from the maize line B73.

**14**. The method of claim **6**, wherein the construct is introduced via *Agrobacterium*-mediated transformation.

**15**. The method of claim **6**, further comprising harvesting the plant tissue from a plant prior to step (a).

**16**. The method of claim  $\mathbf{6}$ , further comprising growing the somatic embryo into a plant following step (b).

17. A plant produced by the method of claim 16, wherein said plant comprises the construct.

* * * * *

26