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and media for Eulerian single-photon computer vision are 
provided. In some embodiments, the system comprises: an 
image sensor comprising detectors configured to detect 
arrival of individual photons, and arranged in an array; a 
processor programmed to: cause the image sensor to gen
erate a sequence of images representing a scene, each of the 
images comprising a plurality of pixels; perform, for each of 
a plurality of three dimensional filters, a convolution 
between the three dimensional filter and a plurality of 
frames, wherein each of the plurality of frames is based on 
one or more of the images of the sequence of images; 
generate, for each of the plurality of frames, a plurality of 
filter bank responses each corresponding to a three dimen
sional filter of the plurality of three dimensional filters; and 
perform a computer vision process based on the plurality of 
filter responses. 
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SYSTEMS, METHODS, AND MEDIA FOR 
EULERIAN SINGLE-PHOTON COMPUTER 

VISION 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

This invention was made with government support under 
1943149 awarded by the National Science Foundation. The 
government has certain rights in the invention. 

NIA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

BACKGROUND 

Conventional digital camera image sensors typically cap
ture hundreds to thousands of photons per pixel to create an 
image. Recently, single-photon avalanche diodes (SPADs) 
that can detect individual photons, and precisely measure the 
time-of-arrival, have become more prevalent. SPADs are 
driving the development of new devices with novel func
tionalities due to the sensitivity and picosecond time reso
lution that can be achieved, such as imaging at very high 
frame rates (e.g., in excess of a billion frames per second), 
non-line-of-sight (NLOS) imaging, and microscopic imag-
ing of nano time-scale bio-phenomena. 

However, these new SPAD-based imaging techniques are 
typically active, where the SPAD is used in precise temporal 
synchronization with an active light source (e.g., a pulsed 
laser). This includes applications such as NLOS imaging, 
LiDAR, and microscopy. Due to the output of a SPAD (e.g., 

2 
the plurality of three dimensional filters; and perform a 
computer vision process based on the plurality of filter 
responses. 

In some embodiments, each of the plurality of detectors 
5 comprises a single photon avalanche diode (SPAD). 

In some embodiments, each image of the sequence of 
images comprises a binary image that represents photons 
detected by the image sensor during an exposure time i. 

In some embodiments, each of the plurality of three 
10 dimensional filters comprises a velocity tuned filter, and 

wherein a first subset of the plurality of three dimensional 
filters are tuned to a three dimensional frequency k:=(kx, k,,, 
k,), where kx and k,, represent spatial patterns, and k, repre-

15 
sents a pattern in time, each of the three dimensional filters 
of the first subset having a different scale. 

In some embodiments, the at least one processor that is 
further programmed to: determine a z-score for each of the 
plurality of filter bank responses; map each z-score to a 

20 
weight associated with the respective filter bank for which 
the z-score was determined; and utilize the weighted filter 
bank responses to perform the computer vision process 
based on the plurality of filter responses. 

In some embodiments, the at least one processor that is 

25 
further programmed to: estimate a variance value Var(Rk[pl) 
using a relationship Vk[p]:=V(c[pl)Lqlhk[q]l 2

, where Rk[p] 
is a filter bank response generated by applying a filter hk[q] 
to the plurality of frames B[p], V(c[pl) is a variance of an 
estimated local average flux over B[p], and Lqlhk[q]l 2 is a 

30 
sum of the filter hk[q] over q<p; and determine the z-score 
using a relationship 

a detection of a single photon at a precise time), SPADs are 35 

not as well suited to more conventional imaging tasks, such 

[ l 
·- IRk[Pll 

Zk p .- ✓ Vk[p] • 

as capturing images of a scene under passive, uncontrolled 
illumination (e.g., sunlight, moonlight). While passive 
SPAD-based imaging systems could potentially expand the 
scope of SPADs to a considerably larger set of applications, 40 

including machine vision, data generated from passive 
SPAD-based data has so far been of relatively low quality 
compared to images captured using conventional image 
sensors. 

Accordingly, new systems, methods, and media for Eul- 45 

erian single-photon computer vision are desirable. 

SUMMARY 

In accordance with some embodiments of the disclosed 50 

subject matter, systems, methods, and media for Eulerian 
single-photon computer vision are provided. 

In some embodiments, the at least one processor that is 
further programmed to: map each z-score to a weight 
associated with the respective filter bank for which the 
z-score was determined using a relationship w(z):=1-exp(
max(O, z-z0 )), where z0 comprises a threshold z-score. 

In some embodiments, the computer vision process is an 
edge detection process, and wherein at least one processor 
that is further programmed to: perform the computer vision 
process based on a phase congruency associated with each 
of the plurality of filter responses. 

In some embodiments, at least one processor that is 
further programmed to: detect one or more comers based on 
the phase congruency associated with each of the plurality of 
filter responses. 

In some embodiments, the computer vision process is a 
motion estimation process, and wherein at least one proces
sor that is further programmed to: perform the computer 
vision process for each of the plurality of pixels based on a 

55 phase constancy relationship vx cos 0+vy sin 0=cot ~, 'Yhere 
(vx, vy) is a velocity at the respective pixel, vn=cot <p is a 
component velocity of a respective three dimensional filter 
k in a spatial direction 0, and k:=s•(sin ~ cos 0, sin ~ sin 0, 
cos~), where (0, ~) is a spatio-temporal direction of k. 

In accordance with some embodiments of the disclosed 
subject matter, a system for facilitating single-photon com
puter vision tasks is provided, the system comprising: an 
image sensor comprising a plurality of detectors configured 
to detect arrival of individual photons, the plurality of 
detectors arranged in an array; at least one processor that is 
programmed to: cause the image sensor to generate a 
sequence of images representing a scene, each of the images 60 

comprising a plurality of pixels; perform, for each of a 
plurality of three dimensional filters, a convolution between 
the three dimensional filter and a plurality of frames, 
wherein each of the plurality of frames is based on one or 
more of the images of the sequence of images; generate, for 65 

each of the plurality of frames, a plurality of filter bank 
responses each corresponding to a three dimensional filter of 

In accordance with some embodiments of the disclosed 
subject matter, a method for facilitating single-photon com
puter vision tasks is provided, the method comprising: 
causing an image sensor to generate a sequence of images 
representing a scene, each of the images comprising a 
plurality of pixels, wherein the image sensor comprises a 
plurality of detectors configured to detect arrival of indi-
vidual photons, the plurality of detectors arranged in an 
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array; performing, for each of a plurality of three dimen
sional filters, a convolution between the three dimensional 
filter and a plurality of frames, wherein each of the plurality 
of frames is based on one or more of the images of the 
sequence of images; generating, for each of the plurality of 
frames, a plurality of filter bank responses each correspond
ing to a three dimensional filter of the plurality of three 
dimensional filters; and performing a computer vision pro
cess based on the plurality of filter responses. 

4 
FIG. 7 shows examples of edge detection results gener

ated using techniques described herein for Eulerian single
photon computer vision for various levels of frame averag
ing and various levels of scene flux in accordance with some 
embodiments of the disclosed subject matter. 

In accordance with some embodiments of the disclosed 10 

subject matter, a non-transitory computer readable medium 
containing computer executable instructions that, when 
executed by a processor, cause the processor to perform a 
method for facilitating single-photon computer vision tasks 

FIG. 8 shows examples of a binary frame of a scene at two 
flux levels, and edge detection results generated using tech
niques described herein for Eulerian single-photon computer 
vision using various numbers and coarseness of scaling in 
the filters in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 9 shows examples of binary frames of a scene, and 
motion estimates generated using various techniques, 
including techniques described herein for Eulerian single
photon computer vision. 

is provided, the method comprising: causing an image 15 

sensor to generate a sequence of images representing a 
scene, each of the images comprising a plurality of pixels, 
wherein the image sensor comprises a plurality of detectors 
configured to detect arrival of individual photons, the plu
rality of detectors arranged in an array; performing, for each 20 

of a plurality of three dimensional filters, a convolution 
between the three dimensional filter and a plurality of 
frames, wherein each of the plurality of frames is based on 
one or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality of 25 

filter bank responses each corresponding to a three dimen
sional filter of the plurality of three dimensional filters; and 
performing a computer vision process based on the plurality 

FIG.10 shows examples ofa binary frame of two scenes, 
and motion estimates generated using techniques described 
herein for Eulerian single-photon computer vision using 
various coarseness of scaling in the filters in accordance 
with some embodiments of the disclosed subject matter. 

DETAILED DESCRIPTION 

In accordance with various embodiments, mechanisms 
(which can, for example, include systems, methods, and 
media) for Eulerian single-photon vision are provided. 

Single-photon sensors, such as SPADs, can measure light 
signals at the finest possible resolution, individual photons. of filter responses. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The patent or application file contains at least one drawing 
executed in color. Copies of this patent or patent application 
publication with color drawing(s) will be provided by the 
Office upon request and payment of the necessary fee. 

Various objects, features, and advantages of the disclosed 
subject matter can be more fully appreciated with reference 
to the following detailed description of the disclosed subject 
matter when considered in connection with the following 
drawings, in which like reference numerals identify like 
elements. 

FIG. lA shows an example of a computer vision result 
generated from an image of a scene obtained by averaging 
a series of binary frames. 

FIG. 1B shows an example of computer vision results 
generated from images of the same scene obtained using a 
quanta burst imaging technique. 

FIG. lC shows an example of a flow for Eulerian single
photon computer vision in accordance with some embodi
ments of the disclosed subject matter. 

FIG. 2 shows an example of a system for Eulerian 
single-photon computer vision in accordance with some 
embodiments of the disclosed subject matter. 

30 Such sensors introduce two major challenges in the form of 
strong Poisson noise and extremely large data acquisition 
rates, which are also inherited by downstream computer 
vision tasks. Previous work has largely focused on solving 
the image reconstruction problem first and then using o:ff-

35 the-shelf techniques for downstream tasks. However, the 
most general solutions that account for motion are typically 
computationally costly and not scalable to large data vol
umes produced by single-photon sensors. 

In some embodiments, mechanisms described herein can 
40 facilitate performing computer vision tasks using data from 

a single-photon imager without performing explicit image 
reconstruction from the data. For example, as described 
herein, computationally light-weight phase-based tech
niques for computer vision tasks ( e.g., of edge detection and 

45 motion estimation) can be used to perform computer vision 
tasks that directly process raw single-photon data as a 3D 
volume (e.g., using velocity-tuned filtering), applying 3D 
convolution kernels to the incoming photon stream. As 
described below in connection with FIGS. 6-10, experiments 

50 that demonstrate results of using techniques described herein 
on both edge detection and motion estimation tasks were 
conducted, achieving more than two orders of magnitude 
speed-ups compared to explicit reconstruction-based tech-
niques. 

FIG. 3 shows examples of two-dimensional signals and 55 

corresponding two-dimensional velocity-tuned filters corre
sponding to the velocity. 

In general, digital image sensors record light on discrete 
sensing elements (often referred to as pixels). The spatio
temporal density of these measurements has continually 
increased over time, and recent developments have results in 
single-photon quanta sensors, such as single-photon ava-

FIG. 4 shows an example of a weight function that can be 
used to determine a z-score for a response in accordance 
with some embodiments of the disclosed subject matter. 

FIG. 5 shows an example of a process for Eulerian 
single-photon vision in accordance with some embodiments 
of the disclosed subject matter. 

FIG. 6 shows examples of binary frames of two scenes, 
and edge detection results generated using various tech
niques, including techniques described herein for Eulerian 
single-photon computer vision. 

60 lanche diodes (SPADs) and jots (e.g., as described in Fos
sum et al., "The Quanta Image Sensor: Every Photon 
Counts," Sensors, 16, 1260 (2016)). Such single-photon 
sensors can be configured to record measurements at the 
granularity of individual photons, and can be facilitate an 

65 exciting array of applications, such as photography in chal
lenging conditions (e.g., low-light, fast-motion, and/or high 
dynamic range), high-speed tracking, and 3D imaging. 
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Such single-photon sensors open up new opportunities by 
providing access to individual photon arrival times. A chal
lenge presented by such sensors is the amount of raw data 
captured by these sensors (e.g., leading to difficulties mov-

6 
vision pipeline. For example, a recorded photon stream can 
be processed in a single shot with a bank of velocity-tuned 
three-dimensional filters, followed by local pixel-wise com
putation to extract low-level information, such as edges and 
motion vectors. Such a single-pass technique can lead to less 
computation overall, and less data movement, than the 
pipeline shown in FIG. 1B for a fixed output frame rate. 

In many computer vision tasks, a full image of the scene 
being analyzed is not necessary, and such computer visions 
tasks are therefore not necessarily tied to the same cost
versus-quality trade-off as image reconstruction. In some 
embodiments, mechanisms described herein can be used to 
perform signal phase recovery as a proxy for recovering 
information that can be recovered from image reconstruc-

ing the data off the image sensor), that such raw data is 
heavily quantized ( e.g., going down to a single bit per pixel), 
and that such raw data is generally noisy ( e.g., due to 
Poisson statistics of photons). Additionally, computational 
(and therefore power) costs to analyze such raw data is 
generally high, as treating individual photons independently 10 

instead of aggregating them (like conventional sensors) 
increases the amount of storage, computational, and com
munication costs associated with capturing and using such 
data. These challenges are precluding the large-scale prac
tical adoption of this otherwise exciting technology. 15 tion, and which can be addressed without reconstructing the 

entire signal (image). Phase is an important feature both in 
visual perception and in vision tasks. In the context of video, 
local phase from oriented 3D filters can directly encode 

In some embodiments, mechanisms described herein can 
be used to implement relatively light-weight (e.g., using 
relatively fewer computing resources, such as memory, 
processing resources, and communication resources) com
puter vision techniques for single-photon imagers that cap- 20 

ture binary single-photon frames (and/or multi-bit single
photon frames) at relatively high speeds. The most widely 
studied problem in single-photon imaging has been image 
reconstruction, under the assumption that recovering a high
quality image from single-photon data is critical for down- 25 

stream inference. However, strong noise and heavy quanti
zation make reconstructing images from binary frames 
(particularly from single binary frames) a difficult problem, 
often needing strong priors and computationally intensive 
techniques to reconstruct an image. In some embodiments, 30 

mechanisms described herein 
FIG. lA shows an example of a computer vision result 

generated from an image of a scene obtained by averaging 
a series of binary frames. 

As shown in FIG. lA, as radiance in a scene changes over 35 

time, a SPAD array (or other suitable single-photon image 
sensor) can capture a high-speed sequence of binary frames. 

information about scene motion (e.g., as described below in 
connection with FIG. 5). In some embodiments, a family of 
3D velocity-tuned filter banks can be used to extract phase 
information from single-photon sensor data. Multiple com
puter vision techniques are described herein that can be used 
to extract scene information (e.g., edges, motion) from 
recovered phase information. Such phase-based techniques 
can involve only linear filtering and pixel-wise operations, 
leading to extremely fast execution relative to image recon
struction-based approaches. As described below in connec
tion with FIGS. 6-10, results using implementations of 
mechanisms described herein demonstrate computational 
speedups of more than two orders of magnitude as compared 
to an explicit burst vision approach with comparable quality 
(see, e.g., FIGS. 6-10). 

In some embodiments, large differences in speed between 
explicit burst vision techniques ( and other image reconstruc
tion-based techniques) and mechanisms described herein 
can follow from the different perspectives the techniques 
take. For example, burst reconstruction can be considered a 
form of search: given a patch, the task is to find similar 

As shown in FIG. lA, a single frame is extremely noisy and 
quantized, and naively averaging frames over time increases 
the signal, but loses motion information. 40 patches across the other frames of the video. Searching over 

long sequences incurs a high cost, exacerbated when repeat
ing the search for every patch. The general idea of tracking 
the trajectory of a patch through the exposure volume can be 

An intuitive technique to mitigate the noise and quanti
zation of the data is to aggregate information over many 
frames. However, this approach is prone to potentially 
severe motion blur. For example, as shown in FIG. lA, the 
falling ball gets completely blurred when binary frames are 45 

naively averaged. 
FIG. 1B shows an example of computer vision results 

generated from images of the same scene obtained using a 
quanta burst imaging technique. The technique shown in 
FIG. 1B can be described as a Lagrangian vision pipeline 50 

based on frame-by-frame reconstruction as an intermediate 
step. Quanta burst imaging techniques are described in Ma 
et al., U.S. Pat. No. 11,170,549, which is hereby incorpo
rated by reference herein in its entirety. As shown in FIG. 
1B, quanta burst imaging can include: an aligmnent phase in 55 

which motion is estimated at a patch-level, which can be 
followed by a robust merging (sum) of the frames after 
compensating for the estimated motion (robustness can 
mitigate inaccurate motion estimates under shot noise). 
While high-quality frames can be obtained using quanta 60 

burst imaging techniques, these techniques generally incur 
heavy computational and memory/bandwidth costs. 

analogized to a Lagrangian specification in fluid mechanics, 
that describes the motion of individual particles in a flow 
field. In contrast, mechanisms described herein can be 
analogized to Eulerian approaches in fluid mechanics, where 
properties of the flow (such as rate) are described at each 
point in space and time, without the notion of a particle. 

As single-photon sensors become more widely used and 
specialized processor architectures have been developed for 
such sensors, the simplicity of a Eulerian approach can make 
it an attractive candidate for on-chip implementation, which 
can be advantageous in practical single-photon imaging due 
to the reduction in cost of data movement ( e.g., if the data 
can be analyzed on the image sensor chip, transmission of 
the raw photon data from the image sensor chip can be 
omitted. In some embodiments, Eulerian single-photon 
vision techniques described hereine can be used to provide 
a general strategy for designing lightweight algorithms for 
extremely fast vision tasks, directly from raw single-photon 
data. 

FIG. lC shows an example of a flow for Eulerian single
photon computer vision in accordance with some embodi
ments of the disclosed subject matter. 

As shown in FIG. lC, in some embodiments, mechanisms 
described herein can be used to implement an Eulerian 

FIG. lC shows a SPAD array observing a scene capturing 
a sequence of frames ( e.g., binary frames) over time. The 

65 average incident flux at a pixel can be denoted by flp] (in 
photons/second), where p:=(i, j, n) represents the spatial 
location (i, j) and temporal frame index n of the pixel. The 
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number of incident photons can be modeled as a Poisson 
random variable, with mean flp]. In some embodiments, 
during each frame exposure, a pixel can be limited to 
detecting at most one photon. Note that in some SPAD 
arrays, a single frame can be captured in which multiple 
photon detections are permitted, which can be used to 
generate multi-bit frames (e.g., with a number of detections 
within the frame capture time being recorded up to an upper 
limit). Additionally or alternatively, data from multiple 
frames (e.g., multiple binary frames, multiple multi-bit 
frames) can be combined (e.g., by summing the number of 
photon detections). Hence, the pixel measurements B [p] can 
be binary-valued and follow a Bernoulli distribution, which 
can be represented using the following relationships: 

Pr(Bfp] ~o)~e-<=J•d)c 

where the exposure time of each frame is r seconds, 17E(0,l] 

8 
for single-tone sinusoids the Fourier coefficient phases are 
unbiased under the imaging model described above in 
connection with EQ. (1) for almost all frequencies. Further, 
simulations described in Appendix A show that the variance 
of the Fourier coefficient phase is close to the Cramer-Rao 
lower bound on unbiased estimators. Both the proof and the 
simulation results are included in Appendix A, which is 
hereby incorporated by reference herein in its entirety. While 
velocity-tuned filters are not pure sinusoids, it can be 

10 expected that extracting the phase of such filters directly to 
be close to optimal (maximum-likelihood) estimation, given 
the resemblance of the filters to sinusoids. The particular 
cases of the low-level vision tasks of edge detection and 
motion estimation are described below in connection with 

15 FIGS. 5-10, for which velocity-tuned filter banks (as applied 
to single-photon data) were designed and analyzed. 

FIG. 2 shows an example 200 of a system for Eulerian 
single-photon computer vision in accordance with some 
embodiments of the disclosed subject matter. 

is the quantum efficiency of the single-photon detectors, and 20 

d is the dark count rate (DCR) representing spurious detec
tions unrelated to incident photons. It can be assumed that 
distinct quanta samples B[p] and B[p'] are statistically 
independent of each other. 

As shown, system 200 can include an image sensor 204 
( e.g., an area sensor that includes an array of single photon 
detectors); optics 206 (which can include, for example, one 
or more lenses, one or more attenuation elements such as a 
filter, a diaphragm, and/or any other suitable optical ele-

In some embodiments, mechanisms described herein can 
be used to extract information from photon cube data 
captured by an array of single-photon detectors (e.g., a 
SPAD array). Since individual frames are extremely noisy 
and quantized (binary), in general, information must aggre
gated over sequences of multiple single-photon frames. 
However, simply s=ing frames over time results in 
potentially severe motion blur (e.g., depending on the com
position of the scene), which makes it challenging to extract 
meaningful scene information from photon cubes. As 
described above, it is possible to explicitly compensate for 
motion via search-based burst photography-like techniques 
to reconstruct high-quality images from the photon cube, but 
such techniques are computationally- and bandwidth-inten
sive, and not amenable to real-time processing with current 
technology. 

In some embodiments, mechanisms described herein can 
extract scene information directly from the photon cube, 
without an intermediate step of image reconstruction. In 
some embodiments, mechanisms described herein can be 
based on an analysis of motion as spatio-temporal orienta
tion of intensity or phase iso-surfaces when viewing videos 
as 3D volumes. Motion information can be extracted 
through 3D oriented filters used. Such filters can be referred 
to as velocity-tuned filters, because filters at a given orien
tation in the 3D frequency domain only respond to move
ment at a particular range of velocities. In FIG. lC, the hue 
shown in the depiction of velocity-tuned filters and the 
filter-bank response represents the phase of a complex 
valued number (e.g., having two values per pixel). As 
shown, the phase of the filters and responses can be undu
lating based on the wavelet shape of the impulse response 
function. 

In some embodiments, a benefit of using velocity-tuned 
filters for single-photon video is that compared to frame
by-frame processing, 3D filters can aggregate information 
about the scene (including fine details and motion) over a 
large spatio-temporal support, leading to a large reduction in 
noise. Although it is still challenging to reconstruct the entire 
flux signal from the filter responses, the phase information 
is preserved sufficiently well in them to be used directly by 
downstream algorithms, despite strong noise and quantiza
tion in the raw photon cube. Note that it can be proved that 

25 ments such as a beam splitter, etc.); a processor 208 that can 
be configured to control operations of system 200 which can 
include any suitable hardware processor (which can be a 
central processing unit (CPU), a digital signal processor 
(DSP), a microcontroller (MCU), a graphics processing unit 

30 (GPU), an accelerated processing unit (APU), etc.) or com
bination of hardware processors; an input device 210 (such 
as a shutter button, a menu button, a microphone, a touch
screen, a motion sensor, a liquid crystal display, a light 
emitting diode display, etc., or any suitable combination 

35 thereof); memory 212; a signal generator 214 that can be 
configured to generate one or more signals to control opera
tion of image sensor 204; a communication system or 
systems 216 that can be configured to facilitate communi
cation between system 200 and other devices, such as a 

40 smartphone, a wearable computer, a tablet computer, a 
laptop computer, a personal computer, a server, an embed
ded computer (e.g., for controlling an autonomous vehicle, 
robot, etc.), etc., via a communication link; and/or a display 
218 that can be configured to present information (e.g., 

45 images, user interfaces, etc.) for consumption by a user. In 
some embodiments, memory 212 can store image data, 
and/or any other suitable data. Memory 212 can include a 
storage device (e.g., a hard disk, a Blu-ray disc, a Digital 
Video Disk, random access memory (RAM), read-only 

50 memory (ROM), electronically erasable read-only memory 
(EEPROM), etc.) for storing a computer program for con
trolling processor 208. In some embodiments, memory 212 
can include instructions for causing processor 208 to execute 
processes associated with the mechanisms described herein, 

55 such as processes described below in connection with FIG. 
5. 

In some embodiments, image sensor 204 can be an image 
sensor that is implemented at least in part using an array of 
SPAD detectors (which can sometimes be referred to as a 

60 Geiger-mode avalanche diode) and/or one or more other 
detectors that are configured to detect the arrival time of 
individual photons. In some embodiments, one or more 
elements of image sensor 204 can be configured to generate 
data indicative of the arrival time of photons from the scene 

65 via optics 206. For example, in some embodiments, image 
sensor 204 can be an array of multiple SPAD detectors. As 
yet another example, image sensor 204 can be a hybrid array 
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including SPAD detectors and one or more conventional 
light detectors (e.g., CMOS-based pixels). As still another 
example, image sensor 204 can be multiple image sensors, 
such as a first image sensor that includes an array of SPAD 
detectors that can be used to generate information about the 5 

brightness of the scene and a second image sensor that 
includes one or more conventional pixels that can be used to 
generate information about the colors in the scene. In such 
an example, optics can be included in optics 206 (e.g., 
multiple lenses, a beam splitter, etc.) to direct a portion of IO 

incoming light toward the SPAD-based image sensor and 
another portion toward the conventional image sensor. In 
some embodiments, image sensor 204 can have an imaging 
plane upon which optics 206 can focus light from the scene. 

In some embodiments, system 200 can include additional 15 

optics. For example, although optics 206 is shown as a single 
lens, it can be implemented as a compound lens or combi
nation of lenses. Note that although the mechanisms 
described herein are generally described as using SPAD
based detectors, this is merely an example of a single photon 20 

detector. As described above, other single photon detectors 
can be used, such as jot-based image sensors. 

In some embodiments, signal generator 214 can be one or 
more signal generators that can generate signals to control 
image sensor 204. For example, in some embodiments, 25 

signal generator 214 can supply signals to enable and/or 
disable one or more pixels of image sensor 204 (e.g., by 
controlling a gating signal of a SPAD used to implement the 
pixel). As another example, signal generator 214 can supply 
signals to control readout of image signals from image 30 

sensor 208 (e.g., to memory 212, to processor 208, to a cache 
memory associated with image sensor 204, etc.). 

In some embodiments, system 200 can communicate with 
a remote device over a network using communication sys
tem(s) 216 and a communication link. Additionally or alter- 35 

natively, system 200 can be included as part of another 
device, such as a smartphone, a tablet computer, a laptop 
computer, an autonomous vehicle, a robot, etc. Parts of 
system 200 can be shared with a device within which system 
200 is integrated. For example, if system 200 is integrated 40 

with an autonomous vehicle, processor 208 can be a pro
cessor of the autonomous vehicle and can be used to control 
operation of system 200. 

In some embodiments, system 200 can communicate with 
any other suitable device, where the other device can be one 45 

of a general purpose device such as a computer or a special 
purpose device such as a client, a server, etc. Any of these 
general or special purpose devices can include any suitable 
components such as a hardware processor (which can be a 
microprocessor, digital signal processor, a controller, etc.), 50 

memory, communication interfaces, display controllers, 
input devices, etc. For example, the other device can be 
implemented as a digital camera, security camera, outdoor 
monitoring system, a smartphone, a wearable computer, a 
tablet computer, a personal data assistant (PDA), a personal 55 

computer, a laptop computer, a multimedia terminal, a game 
console, a peripheral for a game counsel ( or any of the above 
devices), a special purpose device, etc. 

Communications by communication system 216 via a 
communication link can be carried out using any suitable 60 

computer network, or any suitable combination of networks, 
including the Internet, an intranet, a wide-area network 
(WAN), a local-area network (LAN), a wireless network, a 
digital subscriber line (DSL) network, a frame relay net
work, an asynchronous transfer mode (ATM) network, a 65 

virtual private network (VPN). The communications link 
can include any communication links suitable for commu-

10 
nicating data between system 200 and another device, such 
as a network link, a dial-up link, a wireless link, a hard-wired 
link, any other suitable communication link, or any suitable 
combination of such links. 

In some embodiments, display 218 can be used to present 
images and/or video generated by system 200, to present a 
user interface, etc. In some embodiments, display 218 can be 
implemented using any suitable device or combination of 
devices, and can include one or more inputs, such as a 
touchscreen. 

It should also be noted that data received through the 
communication link or any other communication link(s) can 
be received from any suitable source. In some embodiments, 
processor 208 can send and receive data through the com
munication link or any other communication link(s) using, 
for example, a transmitter, receiver, transmitter/receiver, 
transceiver, or any other suitable communication device. 

FIG. 3 shows examples of two-dimensional signals and 
corresponding two-dimensional velocity-tuned filters corre
sponding to the velocity. 

As shown in FIG. 3, velocity-tuning principles can be 
demonstrated using a 1D box-shaped signal imaged over 
time (vertical) at two speeds: in panel (a) v=0, and in panel 
(b) v=l pixel/frame. In both cases, the 2D (x-t) spectrum 
lies along a line given by k,=-v·kx. EQ. (3), described below, 
extends this to moving 2D signals (video) in the 3D fre
quency domain. 

FIG. 4 shows an example of a weight function that can be 
used to determine a z-score for a response in accordance 
with some embodiments of the disclosed subject matter. 

Consider three-dimensional complex linear filters hk 
applied to an input video stream of quanta samples B[p]: 

(2) 

where hk is band-pass, tuned around the 3D frequency 
k:=(kx, k,,, k,). Su(h) denotes the spatio-temporal support of 
h, p represents a possible data point location of possible data 
point locations and time (e.g., frame) instants, and Rk[p] is 
the filter bank response generated by applying the filter to 
the samples from the stream of quanta samples B[p], where 
kin Rk[P] represents one of the filters in the filter bank, tuned 
to a particular frequency (which can also be denoted using 
k). Note that h can represent a size of the filter, which can 
be in any suitable range. For example, h can be in a range 
of 2 pixels to 100 pixels in space, and in a range of 2 frames 
to a range of 5000 frames in time. As another example, h can 
be in a range of 3 pixels to 75 pixels in space, and in a range 
of 3 frames to a range of 2500 frames in time. As yet another 
example, h can be in a range of 3-50 pixels in space, and in 
a range of 3-2000 frames in time. As still another example, 
h can be in a range of about 3-5 pixels in space, and in a 
range of about 3-5 frames in time. As a further example, h 
can be in a range of about 30-50 pixels in space, and in a 
range of about 1000-3000 frames in time. In the context of 
video, 3D filters can be interpreted as being velocity-tuned, 
such that hk above can respond maximally to spatial patterns 
of frequency (kx, k,,) moving along the unit vector 

at a speed 
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-k, . . 
Vnarmal = ~ (velocity - tunmg) 

(3) 

12 
robustly estimating the noise and/or uncertainty in the filter 
responses can facilitate more accurate rejection of spurious 
responses. 

'\/k; + k; 

FIG. 3 shows a simplified 2D example that can demon
strate this relation through the example of a moving one
dimensional signal (2D overall). 

From the central limit theorem, the response Rk[p] of EQ. 
5 (2) can be expected to be approximately (complex) nor

mally-distributed, with a variance: 

For computational efficiency, in some embodiments, log- 10 
Gabor filters (e.g., as described in Field, "Relations between 
the statistics of natural images and the response properties of 
cortical cells," International Journal of Computer Vision, 
5(1):77-104 (1990), and Kovesi, "Image Features from 
Phase Congruency," Videre: Journal of Computer Vision 15 

Research, 1(3) (1999)) that are space-time separable. 

Var[Rk[p ]]=LqeSuth,A[q] 12-Var(B[p-q]) (4) 

This variance can be approximated by assuming an ideal 
sensor where quantum efficiency fl=l and the dark counts 
d=0. Then it follows from EQ. 1 that Var(B[pl)=V(f[pl), 
where 

V(x):=e-x(l-e-x). 

From an estimate c[p] of the local average flux (through 
a blur kernel on B[pl), EQ. (4) can be approximated further 
using the following representation: 

Vk[p ]:= V( c[p ])Eqlhk[ q] lz Var(Rk[p ]). (5) 

For example, in some embodiments, spatial filters used in 
connection with mechanisms described herein can be polar
separable in the frequency domain (e.g., similar in shape to 
steerable filter-banks). Such filters can be tuned at equally
spaced orientations (e.g., in a range of 2-12 orientations, in 

The sum Lqlhk[q]l 2 is known. In some embodiments, at 
20 

run-time, Rk[P] can be converted to a 

a more particular example the filters can be equally-spaced 
at six different orientations, at two orientations, at three 
orientations, at four orientations, at five orientations, at 

25 
seven orientations, at eight orientations, at nine orientations, 
at ten orientations, at eleven orientations, at twelve orien
tations, etc), and constructed at multiple scales (e.g., in a 
range of 2-6 scales, in a more particular example at two 
scales, at three scales, at four scales, at five scales, at six 30 
scales, etc.). Note that the scale and/or number of scales can 
be different along the spatial dimensions (e.g., along x,y), 

IRk[Pll 
z-scorezk[Pl := ✓ Vi[p]. 

Additionally or alternatively, in some embodiments, the 
z-score can be mapped to a weight WE [0,1] as w(z):=1-exp 
(-max(0, z-z0 )), for example, as shown in FIG. 4. In some 
embodiments, the parameter z0 can be set ahead-of-time 
(e.g., within a range including 2 to 6), which can ensure that 
weak responses do not contribute. In some embodiments, the 
z-score can be used as a secondary input in a computer 
vision task as an indicator of reliability of the responses 
(e.g., which can be provided in the input without modifica
tion). Note that the downstream computer vision task does 
not necessarily need to scale the response based on the 
z-score directly (though it is one possibility). For example, 
a motion estimation technique can ignore raw response 

and along the temporal dimensions (e.g., t), which can be 
treated separately/independently because the relation can 
vary with the video content, through the velocity-tuning 35 

formula. For example, the filter design can be any suitable 
combination of spatial and temporal scale (e.g., coarse 
spatial and temporal scales, coarse spatial scale and fine/fast 
temporal scale, fine spatial scale and fine/fast temporal scale, 
fine spatial scale and coarse temporal scale, etc.). 40 magnitudes, and can be based on the z-score and response 

phase. In some embodiments, the radial bandwidth of filters can 
be any suitable range, such as approximately one to three 
octaves. In a particular example, radial bandwidth of filters 
can be two octaves. Note that a choice of bandwidth is 
relatively unlikely to make a substantial difference to system 
operations, and can be relatively small implementation 
detail. In some embodiments, the temporal filters can be 
adjusted separately for each scale, with the center 
frequencies k, obtained for a pre-specified set of velocities 
{0, v1, v2, ... } through EQ. (3). In some embodiments, any 
suitable number of velocities can be used. For example, in 
the experiments described below, three velocities were gen
erally used. 

From the Gabor uncertainty relation, smaller band-width 
corresponds to larger spatio-temporal support (e.g., for 
coarse scales, or for elongated filters with small angular 

45 sensitivity). Typically such filters have lower variance in 
EQ. 4, but also exhibit poor localization, resulting in a 
classic trade-off. Ultimately, the filter performance depends 
on the true extent of the signal structures (e.g., edges). 

A pervasive fact of single-photon vision is that the noise 
50 level changes with light levels, so a reliable filter in strong 

light can become unreliable in low light. In some embodi
ments, filter designs and downstream algorithms can be 
configured to adapt to this variation, for example, via use of 
multi-scale filter-banks. The use of z-scores further can 

In some embodiments, filter responses can be used with- 55 

out sub-sampling the filter responses at coarse scales (e.g., 
unlike pyramid representations). This can simplify the 
implementation of algorithms as no interpolation is needed 

further facilitate techniques to adapt to changes in noise 
(e.g., due to ambient light levels). 

FIG. 5 shows an example 500 of a process for Eulerian 
single-photon vision in accordance with some embodiments 
of the disclosed subject matter. to get back to the native sensor resolution, but at the cost of 

higher memory usage. For example, an over-completeness 60 

factor can be calculated as 2x#scalesx#orientationsx 
#speeds. Using more memory-efficient representations can 
bring further cost reductions in the future. 

At 502, process 500 can capture a sequence of binary 
frames of a scene using any suitable image sensor. For 
example, as described above in connection with FIGS. lC 
and 2, the image sensor can be a SPAD-based image sensor, 
or a jot-based image sensor. However, these are merely Since individual SPAD samples are binary and noisy, 

filter-banks that can extract relevant details while rejecting 
spurious responses (which tend to dominate the data) as 
much as possible are desirable. In some embodiments, 

65 examples, and mechanisms described herein can be used to 
facilitate computer vision tasks using any sensor that 
includes single photon detectors. 
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In some embodiments, process 500 can cause the 
sequence of frames can be captured at any suitable frame 
rate and/or within any suitable time budget. For example, 
process 500 can cause the sequence of frames to be captured 
with a high frame rate in situations where there is likely to 
be scene motion and/or high scene intensity. In a more 
particular example, the frame rate can set between about 300 
frames per second (fps) and about 100,000 fps for current 
SPAD-based image sensors. As another more particular 
example, the frame rate can set between about 10 fps and 
about 1,000 fps for current jot-based image sensors. 

In some embodiments, the total time budget can be in a 
range from about 1 millisecond to about 1 second. In a 
particular example, the total time budget can be in a range 
from about 10 milliseconds (ms) to about 100 ms for scenes 
with relatively high dynamic range. In some embodiments, 
the total time budget can be constrained based on the amount 
of motion in the scene, as it is more difficult to generate a 
high quality image for scenes with more motion for longer 
time budgets and/or more binary frames, especially if an 
object moves outside of the scene during the time budget. 
Additionally, in some embodiments, the total time budget 
can be constrained based on the amount of available 

14 
to about one pixel per frame of movement. For example, 
process 500 can evaluate the data in the frequency domain 
( e.g., based on a Fourier transform), and blur can be apparent 
by an absence of high-frequency information in the Fourier 
domain. In some embodiments, 504 can be omitted (e.g., 
where movement in the scene is below 1 pixel per frame, or 
where every binary frame is processed as a binary frame). 

At 506, process 500 can perform a convolution of the 
binary frames (or multi-bit frames) with each of multiple 

10 filters in a filter bank. For example, as shown in FIG. lC, a 
convolution between each binary frame in a sequence of 
binary frames and each velocity-tuned filter can be per
formed. For example, this can be 3D convolution that is 
similar to a convolution performed in convolutional neural 

15 networks. In some embodiments, any suitable stride can be 
used in the convolution. For example, the convolution can 
use a stride of 1. As another example, the convolution stride 
can be set relative to the tuning frequency of the filter. In a 
more particular example, coarse-scale (e.g., low-frequency) 

20 responses can be taken at larger strides (e.g., a lower 
sampling rate) without losing information. Note that the 
filters can be applied in the frequency-domain (e.g., implic
itly assuming periodic boundary conditions). 

memory, as a longer time budget and/or more binary frames 
requires additional memory availability that can be written 25 

to at speeds that are comparable to the frame rates of the 

At 508, process 500 can generate filter responses for each 
of the filters based on the results of the convolution between 
the filter and the binary frame (or multi-bit frame) informa
tion. For example, each filter can produce a response cor
responding to each pixel. In a more particular example, if 
there are N filters and the video includes X pixels per frame, 

image sensor. 
In some embodiments, the total time budget can be 

omitted, and a stream of binary frames can be captured, with 
a sequence of binary frames corresponding to a particular 
time period selected after the frames have already been 
captured. For example, process 500 can cause binary frames 
of a scene to be captured continuously, and a sequence of 
frames can be selected from the continuously captured 
sequence at any suitable time for use in a computer vision 
task. As another example, process 500 can cause binary 
frames of a scene to be captured continuously, and as frames 
are captured, process 500 can continuously analyze the 
newest frame ( e.g., as described below in connection with 
506 and/or 508), and information from an oldest frame can 
be omitted ( e.g., deleted, replaced, no longer considered, 
flagged for overwriting, etc.) from use in a computer vision 
task. 

In some embodiments, at 502, process 500 can capture a 
series of multi-bit frames of the scene using any suitable 
image sensor. For example, an image sensor can be config
ured to record up to any suitable number of photon arrivals 
during a frame ( e.g., recording up to one photon arrival can 
be used to generate a binary frame, recording up to two to 
three photon arrivals can be used to generate a 2-bit frame, 
recording up to seven photon arrivals can be used to generate 
a 3-bit frame, etc.). 

30 the responses can include NxX values. As another example, 
each filter can produce less than one response corresponding 
to each pixel (e.g., with a stride greater than 1 pixel and/or 
frame). In some embodiments, process 500 can generate a 
filter response corresponding to each frame in the sequence 

35 of frames captured at 502 and/or for each multi-bit frame 
created at 504. In some embodiments, the filter response can 
be a feature map based on the results of the convolution 
between the filter and one or more binary frames. 

At 510, process 500 can perform any suitable computer 
40 vision process or processes to analyze the series of binary 

frames based on the filter responses generated at 508. 
In some embodiments, at 510, process 500 can utilize a 

phase-based technique to perform an edge detection com
puter vision process. Additionally or alternatively, in some 

45 embodiments, at 510, process 500 can utilize a phase-based 
technique to perform a motion estimation computer vision 
process. These algorithms can be described as Eulerian since 
no search is performed, and only local information is used, 
with most of the computations being pixel-wise, and there-

50 fore easily parallelizable. Note that these techniques can be 
operated y directly processing sequences of single-photon 
frames without expensive image or video reconstruction, 
which can increase the speed at which computer vision tasks At 504, process 500 can create one or more multi-bit 

frames from the series of binary frames. Additionally or 
alternatively, in some embodiments, process 500 can create 55 

one or more longer multi-bit frames from a series shorter 
multi-bit frames. 

can be performed on single-photon data. 
In some embodiments, process 500 can perform an edge 

detection computer vision process, which can be based on 
temporal phase congruency. Phase congruency is the 
insightful observation that features like edges are disconti
nuities where the phase of all frequency components in the 

In some embodiments, process 500 can determine a 
number of binary (or multi-bit) frames to use to create a 
multi-bit frame using any suitable criteria or combination of 
criteria. For example, process 500 can combine frames to 
target a maximum amount of motion in each multi-bit frame 
to be no greater than one pixel per frame, which can mitigate 
blurring in the combined frame. In some embodiments, 
process 500 can use any suitable technique or combination 
of techniques to determine an amount of movement in a 
scene and/or a number of frames to combine to correspond 

60 signal align. Phase congruency also applies to video, as a 
moving edge traces a plane in 3D through time. In this case 
a multi-scale bank of velocity-tuned filters can play the role 
of the frequency components and temporal phase congru
ency (TPC) can be detected. The tuned frequency k of one 

65 filter of a ml!;lti-scale bank of filters can be reyresented as 
(kx, ky, k,)=sk, where s denotes the scale and k:=(sin cp cos 
8, sin cp sin 8, cos cp) the unit vector along its spatio-temporal 
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orientation (0, qi), where 0 and <p can be spherical coordi
nates with 0 corresponding to an angle in the x,y plane 
deflected from x=0 and <p corresponding to an angle in the 
time dimension deflected from x,y=0. the phase congruency 
PC along this direction can be represented as: 

(6) 

which is 1 if the responses at all scales have the same phase. 
In some embodiments, EQ. (6) can be adjusted to be 
l-cos-1 (PC) when the responses at all scales have the same 
phase, as it can better localize features. For example, adjust
ments to EQ. (6) can be made based on the discussion in 
Kovesi, "Image Features from Phase Congruency", which 
can better handle blurred features. Note that phase congru
ency is a normalized quantity, invariant to any scaling of the 
amplitudes (such as due to light level). The above expression 
in EQ. (6) uses phase information only implicitly, which 
avoids the phase wrapping issue. 

In some embodiments, once PC;; is computed for all 
orientations, process 500 can estimate edge strength using 
(3-dimensional) principal component analysis, which can be 
implemented efficiently using a closed-form expression for 
the eigenvalues of a 3x3 matrix (e.g., based on the descrip
tion in Kopp, "Efficient Numerical Diagonalization of Her
mitian 3x3 matrices," International Journal of Modern Phys
ics C, 19(03):523-548 (2008) and Smith, "Eigenvalues of a 
Symmetric 3x3 matrix," Communications of the ACM, 
4(4): 168 (1961). In some embodiments, the second eigen
value (when significant) can be indicative of space-time 
"corners" in the 3D volume. 

In some embodiments, in the noisy conditions of single
photon sensing, the right-hand side of EQ. (6) can be 
multiplied by the weight term described above in connection 
with FIG. 4, which can exclude orientations with weak 
responses (e.g., z0 was set to 2 for all edge detection 
experiments described below). 

16 
In some embodiments, process 500 can obtain one equation 
from each reliable filter response, which can then be put 
together and solved as a weighted least-squares problem, 
with the weights described above in connection with FIG. 4 

5 (the threshold z0 was set to 6 for optical flow experiments 
described below). Appendix A, which has been incorporated 
by reference herein, include additional implementation 
details. In some embodiments, such a motion estimate can 
be applied independently at each scale. The role of scale is 

10 described below in connection with FIG. 8. 
In some embodiments, process 500 can perform 502-510 

on any suitable block of frames. For example, process 500 
can divide the sequence of binary frames captured at 502 

15 
into any suitable number of blocks. In some embodiments, 
the sequence of binary images can be divided into blocks of 
a particular size (e.g., blocks of 50 to 10,000 frames for 
frame rates up to 100,000 fps, blocks corresponding to about 
10 milliseconds of total exposure time, etc.). In some 

20 embodiments, blocks can include at least a minimum num
ber of binary frames to ensure that when convolved with 
filters at 506, sufficient information is included in filter 
responses. For example, in some embodiments, each block 
can include at least 20 binary frames. As another example, 

25 in a particular range of light levels (e.g., around 1 photon/ 
pixel), each block can include a single binary frames. 

In some embodiments, process 500 can be subject to some 
latency, for example, corresponding to at least a time 
between when a first binary frame in a block of binary 

30 frames being analyzed is captured, and a time when a last 
binary frame in a block of binary frames being analyzed is 
captured. 

In some embodiments, process 500 can return to 502, and 
can begin capturing additional binary frames of the scene 

35 after performing the computer vision process(es) at 510, or 
in parallel as 504-510 are performed. In such embodiments, 
process 500 can analyze discrete blocks of frames (e.g., a 
first block of frames can be analyzed beginning at a first 
time, and a second block of frames that does not include any 

40 of the frames included in the first block of frames can be 
analyzed beginning at a later second time). 

In some embodiments, process 500 can perform a motion 
estimation computer vision process that estimates edge 
normal velocities, which can be based on temporal phase 
congruency. Such information can be used to estimate 45 

normal velocities from 3D edge orientation estimates. Since 

Additionally or alternatively, in some embodiments, pro
cess 500 can move to 512 after performing ( or initiating 
performance of) a computer vision process(es) at 510, and 
can capture an additional binary frame (or frames) of the 
scene. 

the principal direction yielded by temporal phase congru
ency is in 3D (it is the normal to the plane traced out by a 
moving edge over time), process 500 can also directly 
receive normal velocity estimates at the edge locations, 50 

which are similar to the optical flow obtained from event 
cameras. Additional description of these estimates is 
included below in connection with FIG. 9. 

In some embodiments, process 500 can perform a motion 
estimation computer vision process, which can be based on 55 

local frequency information. In some embodiments, a filter 
at spatio-temporal frequency k can be defined, and process 
500 can estimate a velocity in the direction of k that is given 
by the instantaneous frequency ( e.g., the gradient of the local 
phase arg(Rk[P ])). In some embodiments, the instantaneous 60 

frequency can be represented as k:=s•(sin ~ cos 0, sin ~ sin 
0, cos~), the component velocity v n is in the spatial direction 

At 514, process 500 can create one or more additional 
multi-bit frames from the series of binary frames. Addition
ally or alternatively, in some embodiments, process 500 can 
create one or more longer multi-bit frames from a series 
shorter multi-bit frames. In some embodiments, 514 can be 
omitted (e.g., where movement in the scene is below 1 pixel 
per frame, or where every binary frame is processed as a 
binary frame). 

At 516, process 500 can perform a convolution of the 
additional binary frame(s) ( or multi-bit frame(s)) captured at 
512 to determine a contribution of that frame(s) to the filter 
responses generated at 508 (or in a previous iteration of 518) 
for each of multiple filters in a filter bank. 

At 518, process 500 can generate one or more new filter 
responses corresponding to the additional frame(s) based on 
the convolution performed at 516, and in some cases, in part 
based on the convolution performed at 506 (or an earlier 
iteration of 516). For example, the results of the convolution 

0, and given as vn=cot ~- To obtain the 2D velocity (optical 
flow) (vx, vy) at a pixel, process 500 can form phase 
constancy equations from component estimates: 

(7) 

65 of the filters with earlier frames in the series of frames can 
be added to the results of the convolution performed at 516 
to generate a filter response for the current frame(s). 
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At 520, process 500 can remove and/or disregard the 
oldest filter responses (e.g., from memory) and/or the con
tributions to the oldest filter responses that have not been 
removed ( e.g., by removing the contributions to the oldest 
filter responses from the oldest frames). 

18 
results as the Lagrangian technique, but was more than two 
orders of magnitude faster (e.g., performing an analysis in 
0.145 seconds in the MATLAB implementation compared to 
153 seconds for the Legrangian MATLAB implementation. 
The Eulerian approach was also faster than the tested BM3D 
implementation by an order of magnitude, in the same 
hardware and software environment. 

At 522, process 500 can perform any suitable computer 
vision process or processes to analyze the series of binary 
frames based on the filter responses generated/updated at 
518 and/or 520. In some embodiments, process 500 can 
return to 512, and can capture additional binary frames of 
the scene after performing the computer vision process( es) 
at 522, or in parallel as 514-520 are performed. In such 
embodiments, process 500 can analyze an updating stream 

FIG. 7 shows examples of edge detection results gener
ated using techniques described herein for Eulerian single-

10 photon computer vision for various levels of frame averag
ing and various levels of scene flux in accordance with some 
embodiments of the disclosed subject matter. 

of frames ( e.g., a first block of frames can be analyzed 
beginning at a first time, and a second block of frames that 15 

includes many of the same frames included in the first block 
of frames can be analyzed beginning at a later second time). 

FIGS. 6 and 8-10 show examples demonstrating results 
generated using techniques described herein on real binary 
frame sequences captured with the SwissSPAD sensor, 20 

which has a 256x512 resolution and frame rate up to 97,700 
fps. Flux levels are reported as photons-per-pixel, abbrevi
ated as ppp. 

Sequences with gradual motion (where the flow is <<l 
pixel per frame, common with high frame rates) were 25 

temporally low-passed and sub-sampled, approximately 
equivalent to sampling with a multi-bit sensor. The set of 
tuned velocities was adapted accordingly. 

The SPAD prototype is a research-grade device with 
several "hot pixels" with high dark count rate. These pixels 30 

were detected oflline with a dark frame, and interpolated. 
Filtering was done in frequency-domain due to the large 

support of the filters. For fair comparisons, the algorithms 
described herein and the techniques compared to (e.g., 
BM3D, made available by Tampere University ofTechnol- 35 

ogy at https( colon)//webpages( dot )tuni( dot)fi/foi/GCF
BM3D/index( dot )html; and burst reconstruction as 
described in Ma et al., U.S. Pat. No. 11,170,549) were 
implemented in MATLAB and run on CPUs. 

FIG. 6 shows examples of binary frames of two scenes, 40 

and edge detection results generated using various tech
niques, including techniques described herein for Eulerian 
single-photon computer vision. 

In FIG. 6, edge detection results on real SPAD video is 
shown. Binary frames from SwissSPAD (top) and edges 45 

from the Eulerian Temporal Phase Congruency algorithm 
(TPC, bottom) described above in connection with FIG. 5, 
compared against various reconstruction-based approaches 
(middle rows). Single-image denoising used BM3D and 
Lagrangian vision used burst photography. The Richer Con- 50 

volutional Features detector was used for all reconstruction
based results. TPC recovered sharp edges even under noise 
and motion at a fraction of the cost of burst reconstruction 
(and faster than BM3D). Direct detection from a single 
frame and the naive average are fast, but suffer from the 55 

noise vs. motion blur tradeoff, respectively. Single-image 
denoising avoids motion blur but has over-smoothing arti
facts resulting in loss of many edges. 

The results shown in FIG. 6 show edges obtained by TPC 
from videos captured with the SwissSPAD sensor, lowpass- 60 

filtered to sequences of 120 frames. For comparison, results 
with reconstruction-based approaches are also presented, 
including the Lagrangian reconstruction-based approach of 
FIG. lB. Richer Convolutional Features (RCF) were used as 
a representative frame-based edge detector for comparisons. 65 

The Eulerian approach implemented in accordance with 
mechanisms described herein achieved similar-quality 

FIG. 7 demonstrates the influence of flux on edge detec
tion in a simulated scene. A SPAD video with 51 frames of 
size 128x128, simulated with motion of 1 pixel per frame 
and at varying flux levels (in photons per pixel, ppp) and 
precision, with edges detected by temporal phase congru
ency are shown in FIG. 7. Edge recovery quality depends on 
the total incident flux (its contour lines are roughly the 
dotted diagonals), and if the flux is at least 1 ppp, edges can 
be detected even from binary video. 

The performance of the edge detector depends on the light 
level in the scene as well as the amount of motion. Indeed, 
in slow-moving scenes, higher-precision data can be 
achieved with simple low-pass filtering. FIG. 7 shows this 
variation for the TPC detector with a fixed filter-bank, with 
a simulated synthetic scene. An ideal sensor was assumed 
with no dark counts and full quantum efficiency. Even under 
extremely challenging conditions (1-bit samples and 
motion), TPC successfully recovered edges. The recovery 
ultimately depends on the total number of incident photons, 
with flux levels as low as -1 photon-per-pixel being suffi
cient for reasonable quality. 

FIG. 8 shows examples of a binary frame of a scene at two 
flux levels, and edge detection results generated using tech
niques described herein for Eulerian single-photon computer 
vision using various numbers and coarseness of scaling in 
the filters in accordance with some embodiments of the 
disclosed subject matter. 

FIG. 8 demonstrates results of edge detection under 
varying filter configurations. A scene with non-rigid motion 
(a person juggling two footballs) was captured. Faces are 
blurred for privacy. In the top row, an input frame after 
temporal low pass filter is shown, and edges detected with 
temporal phase congruency over two scale ranges. Inset 
shows a tone-mapped burst reconstruction for reference. In 
the bottom row, an input frame from the same scene is 
shown from a re-recording under less light. The fine-scale 
edge map worsens significantly, but the coarse scale map 
retains quality. In the last colunm the angular bandwidth of 
the filters was reduced. Long edges are now recovered more 
reliably, but the detector overshot around curved edges such 
as the football, the head, and the elbows. 

As described above in connection with EQS. (4) and (5), 
design of the filters is important, and can impact results. 
FIG. 8 shows a somewhat similar example as shown in FIG. 
7, but with real data. In this example, the same controlled 
scene ( a person juggling two footballs) was captured twice 
under different light conditions (moderate and low light). 
TPC was run with filter-banks having two different scale 
ranges: one spanning spatial wavelengths from 3 to 13 pixels 
("fine scales"), and another spanning 6 to 28 pixels ("coarse 
scales"). Filters were created at six spatial orientation tun
ings {0°, 60°, ... , 300°} and three velocity-tunings {0, 0.3, 
1} pixels/frame. The fine-scales filter-bank yielded sharp 
edges under more light, but suffered in low light. In contrast, 
the coarse-scale filters gave thicker (less resolved) edges, but 
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were more reliable under low light. The SNR can be 
improved further by reducing the angular bandwidth of the 
filters, which helps with long edges but is prone to over
shooting around curved edges-this is another form of 
de-localization or loss of resolution. These results are con
sistent with the detection vs. localization trade-off which has 
been long-studied in the edge detection literature. 

FIG. 9 shows examples of binary frames of a scene, and 
motion estimates generated using various techniques, 
including techniques described herein for Eulerian single
photon computer vision. 

In FIG. 9, motion estimation from real SPAD video is 
illustrated. FIG. 9 shows a low light scene with a moving 
object (a toy train on a track), and optical flow estimates. 
Reference flows were estimated with RAFT-it. In the top 
row, a binary frame after temporal low-pass filtering (LPF) 
is shown (with originals inset) on the left, and an optical flow 
based on two binary frames is shown on the right. In the 
second row, a sample reconstructed image and optical flow 
results generated from a frame-by-frame denoising with 
BM3D are shown. In the third row, a sample reconstructed 
image generated using Lagrangian/explicit burst vision and 
optical flow results generated from reconstructed images are 
shown. In the bottom row, normal velocities from edges 
(magnified at top-right) extracted by temporal phase con
gruency, and 2D velocities from an implementation of the 
motion estimation computer vision process described above 
in connection with FIG. 5. The motion of the train is clearly 
isolated, unlike two-frame estimation directly or with 
BM3D. The Lagrangian technique provides good quality 
and reliability, but at considerably higher cost (in time). 

FIG. 9 shows results from both edge normal velocities and 
2D velocity estimation techniques described above in con
nection with FIG. 5 on a real SwissSPAD sequence. For 
comparison, RAFT-it, a state-of-the-art two-frame tech
nique, was applied with and without image reconstruction. 
The results generated using implementations of mechanisms 
described herein are significantly better than directly apply-
ing RAFT-it on noisy frames, in that it can reliably separate 

20 
localization. Edge velocities are naturally sparse, though the 
underlying algorithm (TPC) does use coarse-scale filters as 
well. The quality varies spatially with the local light level 
and image contrast, as expected from Poisson noise. 

The fine-scale and the normal velocity estimates are 
better-localized but may not always be reliable due to noise. 
They can also suffer from the aperture problem. Coarse
scale estimates are more robust (the responses have a higher 
z-score) and suffer less from the aperture problem, but they 

10 are poorly localized and can bleed over object boundaries. 
Implementations of Eulerian temporal phase congruency

based edge detection and edge normal velocity detection, 
and phase-based 2D motion were also evaluated quantita
tively on simulated data, and compared to the single-image 

15 denoising-based approach which is faster than burst recon
struction. Those results are described in Appendix A, which 
has been incorporated herein by reference. 

While single-photon sensors provide the prospect of 
recording visual details at the resolution of individual pho-

20 tons, they also introduce challenges: a very noisy and 
quantized imaging model, and extremely large volumes of 
data generated, resulting in prohibitive compute and band
width requirements. In some embodiments, mechanisms 
described herein can be used to implement relatively light-

25 weight vision algorithms based on linear filtering and local 
phase-based processing of raw single-photon data, bypass
ing the expensive intermediate step of image reconstruction. 

In some embodiments, mechanisms described herein can 
be used to implement at least a portion of a computer-vision 

30 pipeline on a single-photon detector-based image sensor. As 
new hardware architectures are developed for single-photon 
sensors that can perform complex calculations at the photon
level, mechanisms described herein can facilitate completely 
on-chip real-time photon-processing, as the photons are 

35 captured. This is made possible by the computational sim
plicity of mechanisms described herein. In some embodi
ments, mechanisms described herein can be implemented 
with better memory efficiency by performing filtering fully 
on-line (e.g., through exponential smoothing), such that 

40 memory of past frames is not required. Such on-chip Eul
erian vision systems can facilitate widespread deployment of 
single-photon imaging in real-world computer vision appli
cations, including SLAM, scientific fields like bio-mechan-

the moving object from the static background. The results 
generated using implementations of mechanisms described 
herein also achieved considerably better performance as 
compared to single-image denoising, due to the temporal 
incoherence of denoising artifacts. The Lagrangian tech
nique yielded the best quality results, but also at significantly 45 

higher cost. 

ics, and in consumer domains like sports videography. 
As described above, a specific family of velocity-tuned 

log-Gabor filters have been described in connection with 
mechanisms described herein. In some embodiments, better 
and more efficient filters can be obtained by formulating 
appropriate loss functions for the downstream vision task, 

One may notice from the phase-based 2D velocity esti
mates that the movement of the train's projected head-lights 
was also detected as motion, but RAFT-it ignored that and 
only segmented the train. This may be due to better higher
level knowledge in the learning-based technique, and moti
vates developing similar multi-frame or 3D flow estimators 
for single-photon sensors. 

FIG. 10 shows examples ofa binary frame of two scenes, 
and motion estimates generated using techniques described 
herein for Eulerian single-photon computer vision using 
various coarseness of scaling in the filters in accordance 
with some embodiments of the disclosed subject matter. 

In FIG. 10, multiple velocity cues from multi-scale 
motion estimation and edge detection are illustrated. From 
left, SPAD sequences after pre-filtering are shown, then 
normal velocity estimates from 3D edge orientation based 
on temporal phase congruency, and 2D velocity estimates at 
two scales. Burst reconstruction using is inset for reference. 
Since coarser-scale filter responses have less noise, more 
reliable estimates were obtained from them compared to 
finer scales. This yields denser flow maps but with poorer 

50 including filters learned end-to-end from data. Additionally 
or alternatively, in some embodiments, 3D gradients and 
monogenic filters can be used very similarly as phase, with 
the Canny edge detector (and its 3D counterpart), and the 
Lucas-Kanade optical flow estimator being classic algo-

55 rithms that can be adapted for use with mechanisms 
described herein. Such techniques can be expected to run 
faster than the phase-based techniques described herein, 
since fewer filters are needed. Apart from SNR and local
ization, which are standard optimization criteria in this 

60 setting, other relevant constraints such as causality and 
resource cost may impact which types of filters are suitable 
for a particular computer vision application. 

In general, velocity-tuned filters operate under the local 
linear-motion assumptions, which may be violated by sud-

65 den appearances or disappearances of objects. In some 
embodiments, explicit occlusion reasoning, as done in more 
modern optical flow techniques, can be used in certain 
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practical implementations to mitigate errors that may be 
caused violation of the linear-motion assumptions. 

As described herein, reconstructing high-SNR input (e.g., 
high SNR reconstructed images) is not always necessary for 
visual tasks. A related notion is the prospect of any-time 5 
results, which improve as the algorithm runs for longer. In 
some embodiments, the filter-bank scale can be considered 

22 
7. The method of clause 6, further comprising: mapping 

each z-score to a weight associated with the respective filter 
bank for which the z-score was determined using a relation
ship w(z):=1-exp(-max(O, z-z0)), where z0 comprises a 
threshold z-score. 

8. The method of any one of clauses 1 to 7, wherein the 
computer vision process is an edge detection process based 
on a phase congruency associated with each of the plurality 
of filter responses. 

9. The method of clause 8, further comprising: detecting 
one or more comers based on the phase congruency asso
ciated with each of the plurality of filter responses. 

as the equivalent of time, as information gets aggregated 
over wider volumes, but the algorithms attempt to detect 
features fine scales. In some embodiments, mechanisms 
described herein can be used in connection with diffusion-

10 

based algorithms, which may have even lower compute and 
bandwidth costs on specialized architectures. 

10. The method of clause 1, wherein the computer vision 
process is a motion estimation process based on a phase 

15 constancy relationship. 
Further Examples Having a Variety of Features 

Implementation examples are described in the following 
numbered clauses: 

11. The method of clause 1, wherein the computer vision 
process is a motion estimation process, and the method 
further comprises: performing the computer vision process 
for each of the plurality of pixels based on a phase constancy 

1. A method for facilitating single-photon computer vision 
tasks, the method comprising: causing an image sensor to 
generate a sequence of images representing a scene, each of 20 relationship vx cos 0+vy sin 0=cot ~, w~ere (vx, vy) is a 

velocity at the respective pixel, vn=cot <p is a_ component 
velocity of a resp_ective thr_ee di11:ensio~ml fil!er k i~ a spatial 
direction 0, and k:=s•(sin <p cos 0, sin <p sin 0, cos qi), where 

the images comprising a plurality of pixels, wherein the 
image sensor comprises a plurality of detectors configured to 
detect arrival of individual photons, the plurality of detectors 
arranged in an array; performing, for each of a plurality of 
three dimensional filters, a convolution between the three 25 

dimensional filter and a plurality of frames, wherein each of 
the plurality of frames is based on one or more of the images 

(0, ~) is a spatio-temporal direction of k. 
12. A non-transitory computer-readable medium storing 

computer-executable code, comprising code for causing a 
computer to cause a processor to: perform a method of any 
of clauses 1 to 11. 

13. A system for simulating interactions with an infant, 
comprising: at least one processor that is configured to: 
perform a method of any of clauses 1 to 11. 

of the sequence of images; generating, for each of the 
plurality of frames, a plurality of filter bank responses each 
corresponding to a three dimensional filter of the plurality of 30 

three dimensional filters; and performing a computer vision 
process based on the plurality of filter responses. 14. The system of clause 13, further comprising: the 

image sensor comprising a plurality of detectors configured 
to detect arrival of individual photons, the plurality of 

35 detectors arranged in an array. 

2. The method of clause 1, wherein each of the plurality 
of detectors comprises a single photon avalanche diode 
(SPAD). 

3. The method of any one of clauses 1 or 2, wherein each 
image of the sequence of images comprises a binary image 
that represents photons detected by the image sensor during 
an exposure time T. 

4. The method of any one of clauses 1 to 3, wherein each 40 

of the plurality of three dimensional filters comprises a 
velocity tuned filter, and wherein a first subset of the 
plurality of three dimensional filters are tuned to a three 
dimensional frequency k:=(kx, k,,, k,), where kx and k,, 
represent spatial patterns, and k, represents a pattern in time, 45 

each of the three dimensional filters of the first subset having 
a different scale. 

5. The method of any one of clauses 1 to 4, further 
comprising: determining a z-score for each of the plurality 
of filter bank responses; mapping each z-score to a weight 50 

associated with the respective filter bank for which the 
z-score was determined; and utilize the weighted filter bank 
responses to perform the computer vision process based on 
the plurality of filter responses 

6. The method of clause 5, further comprising: estimating 55 

a variance value Var(Rk[pl) using a relationship Vk[p]:=V 
(c[pl)Lqlhk[q]l 2

, where Rk[p] is a filter bank response gen
erated by applying a filter hk[q] to the plurality of frames 
B[p], V(c[pl) is a variance of an estimated local average flux 
over B[p], and Lqlhk[q]l 2 is a sum of the filter hk[q] over q<p; 60 

and determining the z-score using a relationship 

[ l 
·- IRk[Pll 

Zk p .- ✓ Vk[p] • 65 

In some embodiments, any suitable computer readable 
media can be used for storing instructions for performing the 
functions and/or processes described herein. For example, in 
some embodiments, computer readable media can be tran
sitory or non-transitory. For example, non-transitory com
puter readable media can include media such as magnetic 
media (such as hard disks, floppy disks, etc.), optical media 
(such as compact discs, digital video discs, Blu-ray discs, 
etc.), semiconductor media (such as RAM, Flash memory, 
electrically programmable read only memory (EPROM), 
electrically erasable programmable read only memory (EE-
PROM), etc.), any suitable media that is not fleeting or 
devoid of any semblance of permanence during transmis
sion, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 

It should be noted that, as used herein, the term mecha
nism can encompass hardware, software, firmware, or any 
suitable combination thereof. 

It should be understood that the above described steps of 
the process of FIG. 5 can be executed or performed in any 
suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 5 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 

Although the invention has been described and illustrated 
in the foregoing illustrative embodiments, it is understood 
that the present disclosure has been made only by way of 
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example, and that numerous changes in the details of imple
mentation of the invention can be made without departing 
from the spirit and scope of the invention, which is limited 
only by the claims that follow. Features of the disclosed 
embodiments can be combined and rearranged in various 5 

ways. 

What is claimed is: 
1. A system for facilitating single-photon computer vision 

10 
tasks, comprising: 

an image sensor comprising a plurality of detectors con
figured to detect arrival of individual photons, the 
plurality of detectors arranged in an array; 

at least one processor that is programmed to: 
cause the image sensor to generate a sequence of 

images representing a scene, each of the images 
comprising a plurality of pixels; 

15 

perform, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 20 

filter and a plurality of frames, 
wherein each of the plurality of frames is based on 

one or more of the images of the sequence of 
images; 

generate, for each of the plurality of frames, a plurality 25 

of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimen
sional filters; and 

perform a computer vision process based on the plu-
30 

rality of filter responses. 
2. The system of claim 1, wherein each of the plurality of 

detectors comprises a single photon avalanche diode 
(SPAD). 

3. The system of claim 1, wherein each image of the 35 
sequence of images comprises a binary image that represents 
photons detected by the image sensor during an exposure 
time T. 

4. The system of claim 1, wherein each of the plurality of 
three dimensional filters comprises a velocity tuned filter, 40 

and 
wherein a first subset of the plurality of three dimensional 

filters are tuned to a three dimensional frequency 
k:=(kx, k,,, k,), where kx and k,, represent spatial pat
terns, and k, represents a pattern in time, each of the 45 

three dimensional filters of the first subset having a 
different scale. 

5. The system of claim 1, wherein the at least one 
processor that is further programmed to: 

50 
determine a z-score for each of the plurality of filter bank 

responses; 
map each z-score to a weight associated with the respec

tive filter bank for which the z-score was determined; 
and 55 

24 
determine the z-score using a relationship 
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7. The system of claim 6, wherein the at least one 
processor that is further programmed to: 

map each z-score to a weight associated with the respec
tive filter bank for which the z-score was determined 
using a relationship w(z):=1-exp(-max(O, z-z0)), 
where z0 comprises a threshold z-score. 

8. The system of claim 1, wherein the computer vision 
process is an edge detection process, and 

wherein at least one processor that is further programmed 
to: 
perform the computer vision process based on a phase 

congruency associated with each of the plurality of 
filter responses. 

9. The system of claim 8, wherein at least one processor 
that is further programmed to: 

detect one or more comers based on the phase congruency 
associated with each of the plurality of filter responses. 

10. The system of claim 1, wherein the computer vision 
process is a motion estimation process, and 

wherein at least one processor that is further programmed 
to: 
perform the computer vision process for each of the 

plurality of pixe]s based 5m a p];iase constancy rela
tionship vx cos 0+vy sin 0=cot <p, 
where (vx,_ vy) is a velocity at the respective pixel, 

vn=cot <pis a componen! velocity of a respectiv_,e 
three_ dimensiqnal fil_ter k ig a sp_atial dy-ection 0, 
and k:=s•(sin <p cos 0, sin <p sin 0, cos <p ), 

where (0, ~) is a spatio-temporal direction of k. 
11. A method for facilitating single-photon computer 

vision tasks, the method comprising: 
causing an image sensor to generate a sequence of images 

representing a scene, each of the images comprising a 
plurality of pixels, 
wherein the image sensor comprises a plurality of 

detectors configured to detect arrival of individual 
photons, the plurality of detectors arranged in an 
array; 

performing, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 
filter and a plurality of frames, 
wherein each of the plurality of frames is based on one 

or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality 

of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimensional 
filters; and 

performing a computer vision process based on the plu
rality of filter responses. 

12. The method of claim 11, wherein each of the plurality 
of detectors comprises a single photon avalanche diode 
(SPAD). 

utilize the weighted filter bank responses to perform the 
computer vision process based on the plurality of filter 
responses. 

6. The system of claim 5, wherein the at least one 
processor that is further programmed to: 

estimate a variance value Var(Rk[pl) using a relationship 
Vk[p]:=V(c[pl)Lqlhk[q]l 2

, 

13. The method of claim 11, wherein each image of the 
sequence of images comprises a binary image that represents 

60 photons detected by the image sensor during an exposure 
time T. 

where Rk[p] is a filter bank response generated by 
applying a filter hk[q] to the plurality of frames B[p], 
V(c[pl) is a variance of an estimated local average 65 

flux over B[p], and Lqlhk[q] 1
2 is a sum of the filter 

hk[q] over q<p; and 

14. The method of claim 11, wherein each of the plurality 
of three dimensional filters comprises a velocity tuned filter, 
and 

wherein a first subset of the plurality of three dimensional 
filters are tuned to a three dimensional frequency 
k:=(kx, k,,, k,), where kx and k,, represent spatial pat-
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terns, and k, represents a pattern in time, each of the 
three dimensional filters of the first subset having a 
different scale. 

15. The method of claim 11, further comprising: 
determining a z-score for each of the plurality of filter 5 

bank responses; mapping each z-score to a weight 
associated with the respective filter bank for which the 
z-score was determined; and 

utilize the weighted filter bank responses to perform the 
computer vision process based on the plurality of filter 

10 
responses. 

16. The method of claim 15, further comprising: 
estimating a variance value Var(Rk[P]) using a relation

ship Vk[p]:=V(c[pl)Lqlhk[q]l 2
, 

where Rk[p] is a filter bank response generated by 
15 

applying a filter hk[q] to the plurality of frames B[p], 
V(c[pl) is a variance of an estimated local average 
flux over B[p], and Lqlhk[q] 12 is a sum of the filter 
hk[q] over q<p; and 

determining the z-score using a relationship 
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19. A non-transitory computer readable medium contain

ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
facilitating single-photon computer vision tasks, the method 
comprising: 

causing an image sensor to generate a sequence of images 
representing a scene, each of the images comprising a 
plurality of pixels, 
wherein the image sensor comprises a plurality of 

detectors configured to detect arrival of individual 
photons, the plurality of detectors arranged in an 
array; 

performing, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 
filter and a plurality of frames, 
wherein each of the plurality of frames is based on one 

or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality 

of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimensional 
filters; and 

performing a computer vision process based on the plu
rality of filter responses. 

20. The non-transitory computer readable medium of 
claim 19, wherein each of the plurality of detectors com
prises a single photon avalanche diode (SPAD). 

17. The method of claim 11, wherein the computer vision 
process is an edge detection process based on a phase 
congruency associated with each of the plurality of filter 
responses. 

18. The method of claim 11, wherein the computer vision 
process is a motion estimation process based on a phase 
constancy relationship. 

21. The non-transitory computer readable medium of 
claim 19, wherein each image of the sequence of images 

30 comprises a binary image that represents photons detected 
by the image sensor during an exposure time T. 

* * * * * 


