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(57) ABSTRACT 

A computing device computes curve descriptive values to 
correct an error estimate of a prediction. A predefined 
number of times, an input dataset is split into a training 
dataset and a validation dataset, a predictive model and a 
domain model are trained, the trained predictive model and 
the trained domain model are validated, a predictive error 
value, a residual value, and a domain error value are 
computed, and each value is stored in output data. A domain 
threshold value is computed from the stored domain error 
values. Each predictive error value and each residual value 
stored in the output data is stored in in-domain output data 
when a respective domain error value is less than or equal to 
the computed domain threshold value. Curve descriptive 
values are computed to describe a relationship between the 
residual values as a function of the prediction error values 
stored in the in-domain output data. 
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RF RMS Absolute Residuals vs. Model Errors -~ NOT SCALED (hypercube) 
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RF RMS Absolute Residuals vs., Model Errors ,.. ... SCALED (hypercube) 
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RF RMS Absolute Residuals vs. Model Errors .... in--domain only (Synthetic) 
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RF RMS Absolute Residuals vs. Model Errors -- out-domain only (Synthetic} 
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RF RMS Absolute Residuals vs. Model Errors -~ NOT SCALED (hypercube) 

• 
> 0,40 .. , 
~ 

'O µ 
~ 

.µ 0 35 ,i:l) .. ·' •. • · .. 
tn 
m 
4J. 
ro 
·::: (L30 ·· 
tn --m: 
·:, 
32 0,25 
¼ 
<LJ 
~ 

$ ... 
4J. O· 2··0· :, . • .. 

0 
tn 

. .0 

;;; (LlS 
~ 
a: 
~ 0,10·· • 

r--'2 ~ 0.894364 

slope ~- 0.458015 

y«-intercept ~ 0,030669 

• 
• 

• 
• 

• 

0.05---------------------~ 
0.1 0.2 0,3 0,4 0.5 0.6 0.7 OJl 

RF n1odei errors l dataset stdev FIG. 24 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 
~ 
~ 
:-: .... 
~o 
N 
0 
N 
N 

rJJ 
=­('D 
('D ..... 
N 
.i;... 

0 .... 
N 
-....J 

c 
rJJ 
N 
0 
N 
N 

---0 
0 
-....J 
O'I 
0 
-....J 
O'I 

> .... 



Patent Application Publication Mar. 10, 2022 Sheet 25 of 27 US 2022/0076076 Al 

0 
w 
.....J 
<( 
u 
Vt 
L...,, 
r-
0 z 

.......... 

t-0 
0 

u, 
0 

V tri N ,. ,, ., 

0 0 0 

siunoJ paznew10N 

rl 

0 

l{) 
N . 
(.9 

LL 



RF RMS Absolute Residuals vs. Model Errors -¥> SCALED {hypercube) 

> 0.40 
© 

"O• 
4,.,J· 

Vt 

t 0,35 
tflc 
~ .µ 
a) 

:::. 0.30 
tflc ,..... 
~ 
::J• 

"O O ·"')5·. 
❖ .-:,,C.,.X- .,..&,. .. 
v1 
V 
li... 

© 
~· 0<20 
~ 
.,O• 

·~ 0.15 
V1 :a· 
o:;:· 

fA 2 = 0.894364 

slope= 0.984568 

y«intercept ~ 0.000880 

~ 0,10 i • 

-
• 

• 
• 

• • 
• 

0,05-----------------------
0.05 0.10 0.15 0,20 0,25 0,30 0,35 0.40 

RF model errors I dataset stdev FIG. 26 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 
~ 
~ 
:-: .... 
~o 
N 
0 
N 
N 

rJJ 
=­('D 
('D ..... 
N 
O'I 

0 .... 
N 
-....J 

c 
rJJ 
N 
0 
N 
N 

---0 
0 
-....J 
O'I 
0 
-....J 
O'I 

> .... 



Residual / Model error .... SCALED (hypercube} 

OAO 

0,35 i mean = ~0.030635 

std ='. 0,997758 

~ 
4,,i 
C ....,. ,.., 

0,30·· 

8 0,25 
"O 
$ 
N ·-

=:• 0.20 
ro: 
E 
•l-

~ 0.15 

0,10 

0,05 

Q,QQ I ,,.,.,~-, ;;;;,-:-::-rT• 

-4 -2 
•'.~-----

0 2 4 
RF residua is l ( RF model errors * slope + intercept} 

FIG. 27 

""O 
~ ..... 
('D 

= ..... 

t 
"e -.... (') 

~ ..... .... 
0 = 
""O = O" -.... (') 

~ ..... .... 
0 = 
~ 
~ 
:-: .... 
~o 
N 
0 
N 
N 

rJJ 
=­('D 
('D ..... 
N 
-....J 
0 .... 
N 
-....J 

c 
rJJ 
N 
0 
N 
N 

---0 
0 
-....J 
O'I 
0 
-....J 
O'I 

> .... 



US 2022/0076076 Al 

SYSTEM FOR AUTOMATIC ERROR 
ESTIMATE CORRECTION FOR A MACHINE 

LEARNING MODEL 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] The present application claims the benefit of and 
priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent 
Application No. 63/075,362 filed Sep. 8, 2020, the entire 
contents of which are hereby incorporated by reference. 

REFERENCE TO GOVERNMENT RIGHTS 

[0002] This invention was made with govermnent support 
under OCI1148011 awarded by the National Science Foun­
dation. The government has certain rights in the invention. 

BACKGROUND 

[0003] Training accurate machine learning models 
involves multiple challenges. A first challenge is selection of 
a good set of input variables (feature set) that involves using 
various feature selection, feature extraction, and feature 
engineering techniques, as well as selecting the best model 
forms, generally with a goal to make accurate predictions. A 
second challenge is to select the hyperparameters used to 
train the model. Even after resolution of these types of 
challenges, a next challenge is determining an accurate 
estimate of the uncertainty associated with a predicted value. 
A further challenge is a determination of whether a new 
observation is within a domain within which the trained 
model is robust. 

SUMMARY 

[0004] In an example embodiment, a non-transitory com­
puter-readable medium is provided having stored thereon 
computer-readable instructions that, when executed by a 
computing device, cause the computing device to compute 
an error estimate correction for a machine learning model. A 
predefined number of times, an input dataset that includes a 
plurality of observation vectors is split into a training dataset 
and a validation dataset, a predictive model and a domain 
model are trained with the training dataset, the trained 
predictive model and the trained domain model are validated 
with the validation dataset, a predictive error value and a 
residual value are computed from the validated predictive 
model and a domain error value is computed from the 
validated domain model for each observation vector of the 
plurality of observation vectors included in the validation 
dataset, and the computed predictive error value, the com­
puted residual value, and the computed domain error value 
are stored in output data for each observation vector of the 
plurality of observation vectors included in the validation 
dataset. 

[0005] A domain threshold value is computed using the 
stored domain error values. Each predictive error value and 
each residual value stored in the output data is stored in 
in-domain output data when a respective stored domain error 
value is less than or equal to the computed domain threshold 
value. Curve descriptive values are computed based on a 
type of curve, wherein the curve describes a relationship 
between the residual values stored in the in-domain output 
data as a function of the prediction error values stored in the 
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in-domain output data. The curve descriptive values are 
output to correct an error estimate value of a predicted value 
of a new observation vector. 
[0006] In another example embodiment, a computing 
device is provided. The computing device includes, but is 
not limited to, a processor and a non-transitory computer­
readable medium operably coupled to the processor. The 
computer-readable medium has instructions stored thereon 
that, when executed by the computing device, cause the 
computing device to compute an error estimate correction 
for a machine learning model. 
[0007] In yet another example embodiment, a method of 
computing an error estimate correction for a machine learn­
ing model is provided. 
[0008] Other principal features of the disclosed subject 
matter will become apparent to those skilled in the art upon 
review of the following drawings, the detailed description, 
and the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] Illustrative embodiments of the disclosed subject 
matter will hereafter be described referring to the accom­
panying drawings, wherein like numerals denote like ele­
ments. 
[0010] FIG. 1 depicts a block diagram of a model training 
device in accordance with an illustrative embodiment. 
[0011] FIGS. 2A and 2B depict a flow diagram illustrating 
examples of operations performed by the model training 
device of FIG. 1 in accordance with an illustrative embodi­
ment. 
[0012] FIG. 3 depicts a block diagram of a prediction 
device in accordance with an illustrative embodiment. 
[0013] FIG. 4 depicts a flow diagram illustrating examples 
of operations performed by the prediction device of FIG. 3 
in accordance with an illustrative embodiment. 
[0014] FIG. 5 depicts a graph of a predictive model 
residual as a function of a predictive model error for a first 
dataset in accordance with an illustrative embodiment. 
[0015] FIG. 6 depicts a histogram of the predictive model 
residual of FIG. 5 in accordance with an illustrative embodi­
ment. 
[0016] FIG. 7 depicts a histogram of the predictive model 
error of FIG. 5 in accordance with an illustrative embodi­
ment. 
[0017] FIG. 8 depicts a scatter plot of a root mean squared 
predictive model residual as a function of a binned predic­
tive model error for the first dataset and a line fit to the 
scatter plot values in accordance with an illustrative embodi­
ment. 
[0018] FIG. 9 depicts a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for the first dataset and the line fit to 
the scatter plot values of FIG. 8 after removing out of 
domain observation vectors in accordance with an illustra­
tive embodiment. 
[0019] FIG. 10 depicts a histogram of an r-statistic for the 
first dataset in accordance with an illustrative embodiment. 
[0020] FIG. 11 depicts a histogram of the r-statistic of FIG. 
10 after correcting the predictive model error in accordance 
with an illustrative embodiment. 
[0021] FIG. 12 depicts a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for a second dataset and the line fit to 
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the scatter plot values after correcting the predictive model 
error in accordance with an illustrative embodiment. 
[0022] FIG. 13A depicts a histogram of an r-statistic for 
the second dataset in accordance with an illustrative embodi­
ment. 
[0023] FIG. 13B depicts a histogram of the r-statistic of 
FIG. 13A after correcting the predictive model error in 
accordance with an illustrative embodiment. 
[0024] FIG. 14 depicts a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for a third dataset and the line fit to 
the scatter plot values after correcting the predictive model 
error in accordance with an illustrative embodiment. 
[0025] FIG. 15A depicts a histogram of an r-statistic for 
the third dataset in accordance with an illustrative embodi­
ment. 
[0026] FIG. 15B depicts a histogram of the r-statistic of 
FIG. 15A after correcting the predictive model error in 
accordance with an illustrative embodiment. 
[0027] FIGS. 16-27 show additional results in accordance 
with an illustrative embodiment. 

DETAILED DESCRIPTION 

[0028] Referring to FIG. 1, a block diagram of a machine 
learning model training device 100 is shown in accordance 
with an illustrative embodiment. Model training device 100 
may include an input interface 102, an output interface 104, 
a communication interface 106, a non-transitory computer­
readable medium 108, a processor 110, a training application 
122, an input dataset 124, a predictive model description 
128, a domain model description 130, output data 134, and 
in-domain output data 136. Fewer, different, and/or addi­
tional components may be incorporated into model training 
device 100. 
[0029] Input interface 102 provides an interface for receiv­
ing information from the user or another device for entry 
into model training device 100 as understood by those 
skilled in the art. Input interface 102 may interface with 
various input technologies including, but not limited to, a 
keyboard 112, a microphone 113, a mouse 114, a display 
116, a track ball, a keypad, one or more buttons, etc. to allow 
the user to enter information into model training device 100 
or to make selections presented in a user interface displayed 
on display 116. The same interface may support both input 
interface 102 and output interface 104. For example, display 
116 comprising a touch screen provides a mechanism for 
user input and for presentation of output to the user. Model 
training device 100 may have one or more input interfaces 
that use the same or a different input interface technology. 
The input interface technology further may be accessible by 
model training device 100 through communication interface 
106. 
[0030] Output interface 104 provides an interface for 
outputting information for review by a user of model train­
ing device 100 and/or for use by another application or 
device. For example, output interface 104 may interface 
with various output technologies including, but not limited 
to, display 116, a speaker 118, a printer 120, etc. Model 
training device 100 may have one or more output interfaces 
that use the same or a different output interface technology. 
The output interface technology further may be accessible 
by model training device 100 through communication inter­
face 106. 
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[0031] Communication interface 106 provides an interface 
for receiving and transmitting data between devices using 
various protocols, transmission technologies, and media as 
understood by those skilled in the art. Communication 
interface 106 may support communication using various 
transmission media that may be wired and/or wireless. 
Model training device 100 may have one or more commu­
nication interfaces that use the same or a different commu­
nication interface technology. For example, model training 
device 100 may support communication using an Ethernet 
port, a Bluetooth antenna, a telephone jack, a USB port, etc. 
Data and messages may be transferred between model 
training device 100 and another computing device of a 
distributed computing system 132 using communication 
interface 106. 

[0032] Computer-readable medium 108 is a non-transitory 
electronic holding place or storage for information so the 
information can be accessed by processor 110 as understood 
by those skilled in the art. Computer-readable medium 108 
can include, but is not limited to, any type of random access 
memory (RAM), any type ofread only memory (ROM), any 
type of flash memory, etc. such as magnetic storage devices 
( e.g., hard disk, floppy disk, magnetic strips, ... ), optical 
disks (e.g., compact disc (CD), digital versatile disc (DVD), 
... ), smart cards, flash memory devices, etc. model training 
device 100 may have one or more computer-readable media 
that use the same or a different memory media technology. 
For example, computer-readable medium 108 may include 
different types of computer-readable media that may be 
organized hierarchically to provide efficient access to the 
data stored therein as understood by a person of skill in the 
art. As an example, a cache may be implemented in a 
smaller, faster memory that stores copies of data from the 
most frequently/recently accessed main memory locations to 
reduce an access latency. Model training device 100 also 
may have one or more drives that support the loading of a 
memory media such as a CD, DVD, an external hard drive, 
etc. One or more external hard drives further may be 
connected to model training device 100 using communica­
tion interface 106. 

[0033] Processor 110 executes instructions as understood 
by those skilled in the art. The instructions may be carried 
out by a special purpose computer, logic circuits, or hard­
ware circuits. Processor 110 may be implemented in hard­
ware and/or firmware. Processor 110 executes an instruction, 
meaning it performs/controls the operations called for by 
that instruction. The term "execution" is the process of 
running an application or the carrying out of the operation 
called for by an instruction. The instructions may be written 
using one or more programming language, scripting lan­
guage, assembly language, etc. Processor 110 operably 
couples with input interface 102, with output interface 104, 
with communication interface 106, and with computer­
readable medium 108 to receive, to send, and to process 
information. Processor 110 may retrieve a set of instructions 
from a permanent memory device and copy the instructions 
in an executable form to a temporary memory device that is 
generally some form of RAM. Model training device 100 
may include a plurality of processors that use the same or a 
different processing technology. For example, model train­
ing device 100 may include a plurality of processors that 
support parallel processing, for example, using a plurality of 
threads. 
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[0034] Training application 122 performs operations asso­
ciated with defining predictive model description 128 and 
domain model description 130 from data stored in input 
dataset 124. Predictive model description 128 may be used 
to classify, to predict, and/or to monitor data from data 
stored in a second dataset 324 (shown referring to FIG. 3). 
The predicted or classification date may be stored in a 
predicted dataset 326 (shown referring to FIG. 3) to support 
various data analysis functions as well as provide alert/ 
messaging related to the monitored data. Domain model 
description 130 may be used to determine when an obser­
vation vector included in second dataset 324 is in the domain 
of a predictive model described by predictive model descrip­
tion 128. Some or all of the operations described herein may 
be embodied in training application 122. The operations may 
be implemented using hardware, firmware, software, or any 
combination of these methods. 
[0035] Referring to the example embodiment of FIG. 1, 
training application 122 is implemented in software (com­
prised of computer-readable and/or computer-executable 
instructions) stored in computer-readable medium 108 and 
accessible by processor 110 for execution of the instructions 
that embody the operations of training application 122. 
Training application 122 may be written using one or more 
programming languages, assembly languages, scripting lan­
guages, etc. Training application 122 may be integrated with 
other analytic tools. Data mining and data analytics is 
applicable in a wide variety of industries such as materials 
development. 
[0036] Training application 122 may be implemented as a 
Web application. For example, training application 122 may 
be configured to receive hypertext transport protocol 
(HTTP) responses and to send HTTP requests. The HTTP 
responses may include web pages such as hypertext markup 
language (HTML) documents and linked objects generated 
in response to the HTTP requests. Each web page may be 
identified by a uniform resource locator (URL) that includes 
the location or address of the computing device that contains 
the resource to be accessed in addition to the location of the 
resource on that computing device. The type of file or 
resource depends on the Internet application protocol such 
as the file transfer protocol, HTTP, H.323, etc. The file 
accessed may be a simple text file, an image file, an audio 
file, a video file, an executable, a common gateway interface 
application, a Java applet, an extensible markup language 
(XML) file, or any other type of file supported by HTTP. 
[0037] Input dataset 124 may include, for example, a 
plurality of rows and a plurality of colunms. The plurality of 
rows may be referred to as observation vectors or records 
(observations), and the colunms may be referred to as 
variables or features. Input dataset 124 may be transposed. 
The plurality of variables v, may define multiple dimensions 
for each observation vector of input dataset 124. An obser­
vation vector x, may include a value for each of the plurality 
of variables v, associated with the observation i, where i=l, 
... , N r, where N r is a number of observations in input 
dataset 124. 
[0038] Each variable of the plurality of variables v, may 
describe a characteristic of a physical object. For example, 
if input dataset 124 includes data related to operation of a 
vehicle, the variables may include an oil pressure, a speed, 
a gear indicator, a gas tank level, a tire pressure for each tire, 
an engine temperature, a radiator level, etc. Input dataset 124 
may include data captured as a function of time for one or 
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more physical objects. Each observation vector x, includes 
observation vector values 0,,1, where j=l, ... , Nv and i=l, 
... , N r, where N v is a number of the plurality of variables 
v, that make up each observation vector in input dataset 124 
though some values may be missing. Associated with each 
observation vector x, is a target variable value y,, where i=l, 
... , N r· Less than all of the colunms of input dataset 124 
may be used as variables that define each observation vector 
x, or target variable value y, used to define predictive model 
description 128 and domain model description 130. Thus, 
for illustration, input dataset 124 may include greater than 
Nv colunms. 

[0039] In an illustrative application in the area of materials 
science, each observation vector x, corresponds with a 
system such as a material structure and composition to be 
modeled and observation vector values 0,,1 may be a value 
describing some feature of the system such as an amount of 
copper, and the target variable value y, is a vector of material 
properties to be modeled such as band gap. Each observation 
vector x, may start in the form of a human-relevant simple 
description such as a composition and structure, or a sim­
plified molecular-input line-entry system (SMILES) string. 
Corresponding features in a numerical form may then be 
generated. 

[0040] Machine learning can be used to predict the prop­
erties of new materials to enable the discovery, design and 
development of novel materials spanning an array of appli­
cations and materials classes by providing new understand­
ing of key chemical or physical relationships governing 
properties of interest. As a concrete example, in the field of 
halide perovskites for solar photovoltaics, the use of 
machine learning on data resulted in assessment of chemical 
trends (e.g. halogen content and alkali vs. organic species 
content) on properties such as the bandgap and stability, and 
resulted in the prediction of new promising halide perovskite 
materials such as Cs2Au1+Au3 +I6 and NH3 NH2 InBry 
Cs2Au i+ Au3 +I6 has been investigated in detail as a promis­
ing solar material. 

[0041] The data stored in input dataset 124 may be gen­
erated by and/or captured from a variety of sources includ­
ing one or more sensors of the same or different type, one or 
more computing devices, etc. One or more colunms of data 
stored in input dataset 124 further may be computed from a 
value of one or more other variables included in input 
dataset 124. One or more columns of data stored in input 
dataset 124 further may be computed using various feature 
engineering techniques such as principal component analy­
sis to define new features that have been included in input 
dataset 124. Data stored in input dataset 124 may be 
received directly or indirectly from the source and may or 
may not be pre-processed in some manner. 

[0042] The data stored in input dataset 124 may include 
any type of content represented in any computer-readable 
format such as binary, alphanumeric, numeric, string, 
markup language, etc. The content may include textual 
information, graphical information, image information, 
audio information, numeric information, etc. that further 
may be encoded using various encoding techniques as 
understood by a person of skill in the art. The data stored in 
input dataset 124 may be captured at different time points 
periodically, intermittently, when an event occurs, etc. One 
or more variables of input dataset 124 may include a time 
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and/or a date value. Input dataset 124 may include data 
captured under normal and/or abnormal operating condi­
tions of the physical object. 

[0043] Input dataset 124 may be stored on computer­
readable medium 108 and/or on one or more computer­
readable media of distributed computing system 132 and 
accessed by model training device 100 using communication 
interface 106, input interface 102, and/or output interface 
104. The data may be organized using delimited fields, such 
as comma or space separated fields, fixed width fields, etc. 

[0044] Input dataset 124 may be stored using various data 
structures as known to those skilled in the art including one 
or more files of a file system, a relational database, one or 
more tables of a system of tables, a structured query lan­
guage database, etc. on model training device 100 and/or on 
distributed computing system 132 that may be the same or 
different. Model training device 100 may coordinate access 
to input dataset 124 that are distributed across distributed 
computing system 132 that may include one or more com­
puting devices. For example, input dataset 124 may be 
stored in cubes distributed across a grid of computers as 
understood by a person of skill in the art. As another 
example, input dataset 124 may be stored in a multi-node 
Hadoop® cluster. As another example, input dataset 124 
may be stored in a cloud of computers and accessed using 
cloud computing technologies, as understood by a person of 
skill in the art. 

[0045] Referring to FIGS. 2A and 2B, example operations 
associated with training application 122 are described. For 
example, training application 122 may be used to create 
predictive model description 128 and domain model descrip­
tion 130 from input dataset 124. Additional, fewer, or 
different operations may be performed depending on the 
embodiment of training application 122. The order of pre­
sentation of the operations of FIGS. 2A and 2B is not 
intended to be limiting. Although some of the operational 
flows are presented in sequence, the various operations may 
be performed in various repetitions, concurrently (in paral­
lel, for example, using threads and/or distributed computing 
system 132), and/or in other orders than those that are 
illustrated. For example, a user may execute training appli­
cation 122, which causes presentation of a first user interface 
window, which may include a plurality of menus and 
selectors such as drop down menus, buttons, text boxes, 
hyperlinks, etc. associated with training application 122 as 
understood by a person of skill in the art. The plurality of 
menus and selectors may be accessed in various orders. An 
indicator may indicate one or more user selections from a 
user interface, one or more data entries into a data field of 
the user interface, one or more data items read from com­
puter-readable medium 108 or otherwise defined with one or 
more default values, etc. that are received as an input by 
training application 122. 

[0046] Referring to FIG. 2A, in an operation 200, a first 
indicator may be received that indicates input dataset 124. 
For example, the first indicator indicates a location and a 
name of input dataset 124. As an example, the first indicator 
may be received by training application 122 after selection 
from a user interface window or after entry by a user into a 
user interface window. In an alternative embodiment, input 
dataset 124 may not be selectable. For example, a most 
recently created dataset may be used automatically. For 
example, a grid, a cube, a cloud, a Hadoop® cluster, a 
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relational database, a file system, etc. location may be used 
automatically as a location/name of input dataset 124. 
[0047] In an operation 202, a second indicator may be 
received that indicates validation parameters used to define 
a validation dataset and a training dataset. For example, the 
second indicator indicates a number of splits F, a number of 
training/validating iterations, a sampling percentage, and/or 
a sampling type, used to define how the training dataset and 
the validation dataset are created from input dataset 124. For 
example, the second indicator may include the sampling 
percentage for a fraction of input dataset 124 to be used for 
training with a remainder to be used for validation. In an 
alternative embodiment, the second indicator may not be 
received. For example, a default value may be stored, for 
example, in computer-readable medium 108 and used auto­
matically. The splits can be created in multiple manners, 
e.g., with random selection, stratified, or based on properties 
of the data in input dataset 124. 
[0048] In an operation 204, a third indicator may be 
received that indicates a plurality of variables v, also referred 
to as features associated with each observation vector 
included in input dataset 124 to define each observation 
vector x,, where i=l, ... , N r for input dataset 124. The third 
indicator may indicate that all or only a subset of the 
variables stored in input dataset 124 be used to train models 
stored in predictive model description 128 and domain 
model description 130. For example, the third indicator 
indicates a list of variables to use by name, colunm number, 
etc. In an alternative embodiment, the third indicator may 
not be received. For example, all of the variables except the 
last variable may be used automatically. 
[0049] In an operation 206, a fourth indicator may be 
received that indicates a target variable associated with input 
dataset 124 to define the target variable vector y,, where i= 1, 
... , Nr for input dataset 124. A target variable value may 
represent or be a label or other value that is considered to 
result from the associated observation vector values such as 
a characteristic associated with the observation vector val­
ues. For example, the fourth indicator indicates a target 
variable to use by name, colunm number, etc. In an alter­
native embodiment, the fourth indicator may not be 
received. For example, the last variable in input dataset 124 
may be used automatically. 
[0050] In an operation 208, a fifth indicator of a domain 
model type to train may be received. For example, the fifth 
indicator may indicate a name of a domain model type. The 
fifth indicator may be received by training application 122 
after selection from a user interface window or after entry by 
a user into a user interface window. As an example, the 
domain model type may be selected from "Gaussian Process 
Regression", "Kernel Ridge Regression", "Random Forest", 
"Gradient Boosting Tree", "Linear regression", "Neural 
Network", "Support Vector Machine", etc. Of course, the 
domain model type may be labeled or selected in a variety 
of different manners by the user as understood by a person 
of skill in the art. In an alternative embodiment, the model 
type may not be selectable, and a single model type is 
implemented in training application 122. For example, the 
Gaussian Process Regression domain model type may be 
used by default or without allowing a user selection. 
[0051] In an operation 210, a sixth indicator of hyperpa­
rameters value for the domain model type may be received. 
For example, the sixth indicator may indicate values for one 
or more domain model hyperparameters based on the 
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domain model type indicated. In an alternative embodiment, 
the sixth indicator may not be received. For example, default 
value(s) may be stored, for example, in computer-readable 
medium 108 and used automatically as the domain model 
hyperparameters. Though not described herein, a tuning 
process may be used to select optimal values for the domain 
model hyperparameters. The sixth indicator may further 
indicate values for one or more optimization parameters to 
indicate when training is complete for the domain model 
type such as a maximum number of configuration evalua­
tions, a maximum number of iterations, a maximum time, 
etc. 
[0052] For example, a kernel function may be selectable 
for the Gaussian Process Regression domain model type in 
addition to one or more hyperparameters associated with 
kernel function selected. As an example, a kernel function 
may be selected from "Gaussian", "Exponential", "Linear", 
"Polynomial", "Sigmoid", "Radial Basis", etc. Kernel func­
tions may be used in combination, for example, a Gaussian 
Kernel multiplied by a constant kernel with a white noise 
kernel added to it. For example, a default kernel function 
may be the Gaussian kernel function though any positive 
definite kernel function may be used. Of course, the kernel 
function may be labeled or selected in a variety of different 
manners by the user as understood by a person of skill in the 
art. In an alternative embodiment, the kernel function may 
not be selectable, and a single kernel function is imple­
mented in training application 122. For example, the Gauss­
ian kernel function may be used by default or without 
allowing a selection. The Gaussian kernel function may be 
defined as: 

where s is a kernel hyperparameter that is termed a Gaussian 
bandwidth parameter. 
[0053] In an operation 212, a seventh indicator of a 
predictive model type to train may be received. For example, 
the seventh indicator may indicate a name of a predictive 
model type. The seventh indicator may be received by 
training application 122 after selection from a user interface 
window or after entry by a user into a user interface window. 
As an example, a predictive model type may be selected 
from "Random Forest", "Gradient Boosting Tree", "Neural 
Network", "Support Vector Machine", "Gaussian Process 
Regression", "Kernel Ridge Regression", etc. Of course, the 
model type may be labeled or selected in a variety of 
different manners by the user as understood by a person of 
skill in the art. In an alternative embodiment, the model type 
may not be selectable, and a single model type is imple­
mented in training application 122. For example, the Ran­
dom Forest predictive model type may be used by default or 
without allowing a user selection. 
[0054] In an operation 214, an eighth indicator of hyper­
parameter values for the predictive model type may be 
received. For example, the eighth indicator may indicate 
values for one or more predictive model hyperparameters 
based on the predictive model type indicated. In an alterna­
tive embodiment, the eighth indicator may not be received. 
For example, default value(s) may be stored, for example, in 
computer-readable medium 108 and used automatically as 
the predictive model hyperparameters. Though not 
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described herein, a tuning process may be used to select 
optimal values for the predictive model hyperparameters. 
The eighth indicator may further indicate values for one or 
more optimization parameters to indicate when training is 
complete for the predictive model type such as a maximum 
number of configuration evaluations, a maximum number of 
iterations, a maximum time, etc. 

[0055] In an operation 216, a ninth indicator of an error 
function for the predictive model type may be received. The 
error function specifies a measure of model error to be used. 
The error may be computed from the predictive model by 
various methods. For example, if the predictive model yields 
a distribution of values and the error function is the square 
root of the average of the squared error (RASE) then the 
error function can be computed from the standard deviation 
of the distribution. This distribution might come from many 
sources, for example, the model having an ensemble of 
learners, whose predictions yield a distribution, or from the 
model being a Bayesian approach, where the result is a 
posterior distribution. A default value for the error function 
may further be stored, for example, in computer-readable 
medium 108. As an example, an error function may be 
selected from "ASE", "MAE", "MSE", "MSLE", "RASE", 
"RMAE", "RMSLE", "RSQ", "RSQRED", etc.ASE uses an 
average squared error as the error function; MAE uses a 
mean absolute error as the error function; MSE uses a mean 
squared error as the error function; MSLE uses a mean 
squared logarithmic error as the error function; RASE uses 
a root average squared error as the error function; RMAE 
uses a root mean absolute error as the error; RMSLE uses a 
root mean squared logarithmic error as the error function; 
RSQ uses a fraction of variance of the true value that is 
predictable from the predicted values as the error function; 
RSQRED uses a reduced squared error as the error function. 
Of course, the error function may be labeled or selected in 
a variety of different manners by the user as understood by 
a person of skill in the art. In an alternative embodiment, the 
error function may not be selectable, and a single error 
function is implemented in training application 122. For 
example, the "RASE" error function may be used by default 
or without allowing a selection. 

[0056] Illustrative error functions may be defined as: 

) NT 

ASE= N ~ (y; -
T i=l 

RASE= ✓ASE, 

) NT 

MSLE = N ~ (log(y; + 1)-log(y; + 1JJ2, 
T i=l 

RMSLE = ✓ MSLE, 

) NT 

MAE= - ~ IY; -.Y;I, 
Nr i=l 

RMAE= ✓MAE, 

RSQRED = 1 - [(l - RSQ)(NT - l)/(NT - N, - l)], 
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where y, is a predicted target variable value of observation 
i, µx is a mean vector computed from the observation 
vectors, µY is a mean target variable vector computed from 
the target variable vectors, ax is a standard deviation com­
puted from the observation vectors, and aY is a standard 
deviation computed from the target variable vectors. 
[0057] In an operation 218, input dataset 124 is split into 
a training dataset and a validation dataset based on the 
indicators provided in operation 202. 

[0058] In an operation 220, a domain model of the domain 
model type indicated in operation 208 is trained using each 
observation vector read from the training dataset. 
[0059] In an operation 222, the trained domain model is 
validated by executing the trained domain model with each 
observation vector read from the validation dataset. A 
domain model error value is computed for each observation 
vector included in the validation dataset. 
[0060] In an operation 224, a predictive model of the 
predictive model type indicated in operation 212 is trained 
using each observation vector read from the training dataset. 

[0061] In an operation 226, the trained predictive model is 
validated by executing the trained predictive model with 
each observation vector read from the validation dataset to 
predict a target variable value for each observation vector. A 
prediction error value is computed for each observation 
vector included in the validation dataset using the error 
function indicated in operation 216. A residual value is also 
computed for each observation vector included in the vali­
dation dataset. The residual value may be computed as 
R(x,)==y,-y,, where x, is the observation vector, y, is the true 
target variable value, and y, is the predicted target variable 
value, and i is the observation index based, for example, on 
a row on which a respective observation vector is stored in 
input dataset 124. 

[0062] In an operation 228, the prediction error value, the 
residual value, and the domain model error value computed 
for each observation vector included in the validation dataset 
are stored to output data 134. An iteration counter and/or a 
split counter also may be stored to output data 134. 

[0063] In operation 230, a determination is made concern­
ing whether or not there is another iteration of the number 
of training/validating model iterations. When there is 
another iteration, processing continues in operation 218. 
When there is not another iteration, processing continues in 
an operation 232. 

[0064] In operation 232, a domain threshold value T is 
computed, and processing continues in an operation 246 
shown referring to FIG. 2B. Domain threshold value T can 
be computed using any aspect of the domain model or both 
the domain and prediction models. Domain threshold value 
T can also be a function of the features used in the prediction 
model. In an alternative embodiment, domain threshold 
value T may be computed as a predefined percentage of a 
summed domain model error value computed from the 
domain model error values stored to output data 134 in 
operation 228. 

[0065] Referring to FIG. 2B, in operation 246, a next set 
of values is selected from output data 134. For example, on 
a first iteration of operation 246, a first set of values is 
selected from a first row of output data 134; on a second 
iteration of operation 246, a second observation having an 
observation index of two is selected from a second row of 
output data 134; and so on. 
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[0066] In an operation 248, a determination is made con­
cerning whether the average domain model error included in 
the next set of values is greater than the computed domain 
threshold value T. When the average domain model error is 
greater than T, processing continues in an operation 252 to 
skip the set of values as out-of-domain. When the average 
domain model error is less than or equal to T, processing 
continues in an operation 250. 
[0067] In operation 250, the prediction error value and the 
residual value included in the next set of values are stored to 
in-domain output data 136. 
[0068] In operation 252, a determination is made concern­
ing whether there is another set of values included in output 
data 134. When there is another set of values, processing 
continues in operation 246 to select a next set of values. 
When there is not another set of values, processing continues 
in an operation 254. 
[0069] In operation 254, a standard deviation value is 
computed between a mean value computed from a total 
prediction error value computed from each prediction error 
value stored in in-domain output data 136 and each predic­
tion error value stored in in-domain output data 136. 
[0070] In an operation 256, each prediction error value 
stored in in-domain output data 136 is divided by the 
computed standard deviation value to scale the prediction 
error values. 
[0071] In an operation 258, each residual value stored in 
in-domain output data 136 is divided by the computed 
standard deviation value to scale the residual values. 
[0072] In an operation 260, curve descriptive values are 
computed based on a type of curve to define a relationship 
between the residual values as a function of the prediction 
error values for the in-domain data. For example, in an 
illustrative embodiment, the type of curve is a line, and the 
curve descriptive values are a slope value and a y-intercept 
value. In another illustrative embodiment, the type of curve 
is a polynomial of a defined degree, and the curve descrip­
tive values are coefficients of the polynomial. 
[0073] In an illustrative embodiment, the curve descriptive 
values are computed using binned error values and bin count 
values computed from the scaled prediction error values, and 
binned residual values are computed from the scaled 
residual values. For example, a predefined number of bins, 
a maximum prediction error value computed from the scaled 
prediction error values, and a minimum prediction error 
value computed from the scaled prediction error values may 
be used to define a bin minimum value and a bin maximum 
value for each bin of a plurality of bins. A number of the 
plurality of bins is the predefined number of bins. The bin 
count values are a count of a number of prediction error 
values stored in in-domain output data 136 that have scaled 
prediction error values that fall within the bin minimum 
value and the bin maximum value of each respective bin. 
The binned error values are the scaled prediction error 
values for the prediction error values stored in in-domain 
output data 136 that have scaled prediction error values that 
fall within the bin minimum value and the bin maximum 
value of each bin. The binned residual values are a root mean 
squared of the scaled residual values for residual values 
stored in in-domain output data 136 that have scaled pre­
diction error values that fall within the bin minimum value 
and the bin maximum value of each respective bin. A curve 
is fit to the binned residual values as a function of the binned 
error values to define curve descriptive values based on the 
type of curve. For a line curve type, the linear fit may be 
weighted by the number of points in each bin. 
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[0074] In another illustrative embodiment, values of the 
curve descriptive values such as the slope value and the 
y-intercept value for the line that optimize the mean and 
standard deviation of the r-statistic distribution for the scaled 
residual values and scaled prediction errors are found 
directly so that they are close to 0 and 1, respectively. The 
r-statistic is a ratio of scaled residual values to the scaled 
prediction error values. A predefined objective function such 
as F(a, b)=µ2 +(a-1)2 is optimized, whereµ and a are the 
mean and standard deviation of the distribution ofr/(a*e+b) 
for the prediction error values stored in in-domain output 
data 136, where a is the slope value, b is the y-intercept 
value, r is the scaled residual value, and e is the scaled 
prediction error value. Using a standard optimization algo­
rithm, such as the Nelder-Mead algorithm, the values of a 
and b that minimize F can be determined. The initial values 
of 1.0 and 0.0 for a and b may be used as input to the 
algorithm. 

[0075] In yet another illustrative embodiment, values of 
the curve descriptive values such as the slope value and the 
y-intercept value for the line that optimize the mean and 
standard deviation for the scaled error estimates are found 
directly so that they are close to 0 and 1, respectively, using 
a log-likelihood function. The values of the slope value a and 
they-intercept value b can be found by minimizing a sum of 
the negative log likelihoods that each residual R(x,)==yz-y,, 
i= 1, ... , N, where N is a number of prediction error values 
stored in in-domain output data 136, was drawn from a 
normal distribution with a mean of 0 and a standard devia­
tion of acaz=aauc+b, where auc is an uncalibrated predicted 
error, and acal ii a calibrated predicted error. For a single 
point, this leads to a probability density function of the 
normal distribution: 

[0076] Multiplying these together for all x,, the likelihood 
function is: 

nN 1 _!( R_hl_l2 
---~=e 2 acruci+b . 

i=l (acruci + b)& 

[0077] To find a maximum of the above function, the 
natural log can be taken to yield the log-likelihood function. 
Maximizing the log-likelihood function is equivalent to 
maximizing the likelihood function, but is computationally 
much more feasible since it involves a sum instead of a 
product: 
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[0078] Simplifying this expression, multiplying by 2, and 
flipping the sign for clarity, a simplified expression for the 
negative log-likelihood is: 

N 2 R(x)2 
~ ln 2n: + ln(aCTuc + b) + 2 • 
i=l ' (acruci+b) 

[0079] Using this, the maximum likelihood estimate for a 
and b can be obtained by minimizing the negative log­
likelihood. That is, letting Dev be the residual values stored 
in in-domain output data 136, the optimization problem 

. ~ ,, , 2 R(x)2 
a, b = argnunm b, ln 2n: + ln(a CTu,(x) + b) + 

2 · (a'cru,(x) + b') 
x,yEDcv 

is solved, for example, using the Nelder-Mead optimization 
algorithm. 
[0080] In an operation 262, a domain model of the domain 
model type indicated in operation 208 is trained using each 
observation vector included in input dataset 124. 
[0081] In an operation 264, the parameters that describe 
the trained domain model may be stored in computer­
readable medium 108. For example, the parameters may be 
stored in domain model description 130. The domain thresh­
old value T computed in operation 232 also may be stored 
in domain model description 130. 
[0082] In an operation 266, a predictive model of the 
predictive model type indicated in operation 212 is trained 
using each observation vector included in input dataset 124. 
[0083] In an operation 268, the parameters that describe 
the trained predictive model may be stored in computer­
readable medium 108 with the curve descriptive values. For 
example, the parameters may be stored in predictive model 
description 128. The type of curve and the values associated 
with the type of curve are stored as the curve descriptive 
values. 
[0084] Referring to FIG. 3, a block diagram of a prediction 
device 300 is shown in accordance with an illustrative 
embodiment. Prediction device 300 may include a second 
input interface 302, a second output interface 304, a second 
communication interface 306, a second non-transitory com­
puter-readable medium 308, a second processor 310, a 
prediction application 322, predictive model description 
128, domain model description 130, second dataset 324, and 
predicted dataset 326. Fewer, different, and/or additional 
components may be incorporated into prediction device 300. 
Prediction device 300 and model training device 100 may be 
the same or different devices. 
[0085] Second input interface 302 provides the same or 
similar functionality as that described with reference to input 
interface 102 of model training device 100 though referring 
to prediction device 300. Second output interface 304 pro­
vides the same or similar functionality as that described with 
reference to output interface 104 of model training device 
100 though referring to prediction device 300. Second 
communication interface 306 provides the same or similar 
functionality as that described with reference to communi­
cation interface 106 of model training device 100 though 
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referring to prediction device 300. Data and messages may 
be transferred between prediction device 300 and distributed 
computing system 132 using second communication inter­
face 306. Second computer-readable medium 308 provides 
the same or similar functionality as that described with 
reference to computer-readable medium 108 of model train­
ing device 100 though referring to prediction device 300. 
Second processor 310 provides the same or similar func­
tionality as that described with reference to processor 110 of 
model training device 100 though referring to prediction 
device 300. 

[0086] Prediction application 322 performs operations 
associated with classifying or predicting a characteristic 
from data stored in second dataset 324 that may be stored in 
predicted dataset 326 to support various data analysis func­
tions as well as provide alert/messaging related to the 
classified/predicted data. Dependent on the type of data 
stored in input dataset 124 and in second dataset 324, 
prediction application 322 may identify anomalies as part of 
process control, for example, of a manufacturing process, for 
machine condition monitoring, for example, an electro­
cardiogram device, for image classification, for intrusion 
detection, for fraud detection, for materials property identi­
fication, etc. Some or all of the operations described herein 
may be embodied in prediction application 322. The opera­
tions may be implemented using hardware, firmware, soft­
ware, or any combination of these methods. 

[0087] Prediction application 322 may be integrated with 
other system processing tools to automatically process data 
generated as part of operation of an enterprise, device, 
system, facility, etc., to identify any outliers (out-of-domain 
observation vectors) in the processed data, to monitor 
changes in the data, and to provide a warning or alert 
associated with the monitored data using second input 
interface 302, second output interface 304, and/or second 
communication interface 306 so that appropriate action can 
be initiated in response to changes in the monitored data. For 
example, a warning or an alert may be presented using a 
second display 316, a second speaker 318, a second printer 
320, etc. or sent to one or more computer-readable media, 
display, speaker, printer, etc. of distributed computing sys­
tem 132. 

[0088] Referring to the example embodiment of FIG. 3, 
prediction application 322 is implemented in software ( com­
prised of computer-readable and/or computer-executable 
instructions) stored in second computer-readable medium 
308 and accessible by second processor 310 for execution of 
the instructions that embody the operations of prediction 
application 322. Prediction application 322 may be written 
using one or more programming languages, assembly lan­
guages, scripting languages, etc. Prediction application 322 
may be integrated with other analytic tools including train­
ing application 122. Prediction application 322 may be 
implemented as a Web application. 

[0089] Input dataset 124 and second dataset 324 may be 
generated, stored, and accessed using the same or different 
mechanisms. Similar to input dataset 124, second dataset 
324 may include a plurality of rows and a plurality of 
colunms with the plurality of rows referred to as observa­
tions or records, and the colunms referred to as variables that 
are associated with an observation. Second dataset 324 may 
be transposed. Unlike input dataset 124, second dataset 324 
does not include a target variable value. Instead, prediction 
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application 322 predicts a value for the target variable value 
using the trained predictive model stored in predictive model 
description 128. 
[0090] Similar to input dataset 124, second dataset 324 
may be stored on second computer-readable medium 308 or 
on one or more computer-readable media of distributed 
computing system 132 and accessed by prediction device 
300 using second communication interface 306. Data stored 
in second dataset 324 may be a sensor measurement or a data 
communication value, for example, from a sensor 315, may 
be generated or captured in response to occurrence of an 
event or a transaction, generated by a device such as in 
response to an interaction by a user with the device, for 
example, from a second keyboard 312, a second microphone 
313, or a second mouse 314, etc. 
[0091] The data stored in second dataset 324 may include 
any type of content represented in any computer-readable 
format such as binary, alphanumeric, numeric, string, 
markup language, etc. The content may include textual 
information, graphical information, image information, 
audio information, numeric information, etc. that further 
may be encoded using various encoding techniques as 
understood by a person of skill in the art. The data stored in 
second dataset 324 may be captured at different time points 
periodically, intermittently, when an event occurs, etc. One 
or more colunms may include a time value. 
[0092] Similar to input dataset 124, second dataset 324 
may be stored using various structures as known to those 
skilled in the art including a file system, a relational data­
base, a system of tables, a structured query language data­
base, etc. on prediction device 300 and/or on distributed 
computing system 132. Prediction device 300 and/or dis­
tributed computing system 132 may coordinate access to 
second dataset 324 that is distributed across a plurality of 
computing devices that make up distributed computing 
system 132. For example, second dataset 324 may be stored 
in a cube distributed across a grid of computers as under­
stood by a person of skill in the art. As another example, 
second dataset 324 may be stored in a multi-node Hadoop 
cluster. As another example, second dataset 324 may be 
stored in a cloud of computers and accessed using cloud 
computing technologies, as understood by a person of skill 
in the art. 
[0093] Referring to FIG. 4, example operations of predic­
tion application 322 are described. Additional, fewer, or 
different operations may be performed depending on the 
embodiment of prediction application 322. The order of 
presentation of the operations of FIG. 4 is not intended to be 
limiting. Although some of the operational flows are pre­
sented in sequence, the various operations may be per­
formed in various repetitions, concurrently (in parallel, for 
example, using threads and/or a distributed computing sys­
tem), and/or in other orders than those that are illustrated. 
[0094] In an operation 400, a tenth indicator may be 
received that indicates second dataset 324. For example, the 
tenth indicator indicates a location and a name of second 
dataset 324. As an example, the tenth indicator may be 
received by prediction application 322 after selection from 
a user interface window or after entry by a user into a user 
interface window. In an alternative embodiment, second 
dataset 324 may not be selectable. For example, a most 
recently created dataset may be used automatically. 
[0095] In an operation 402, an eleventh indicator may be 
received that indicates domain model description 130. For 
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example, the eleventh indicator indicates a location and a 
name of domain model description 130. As an example, the 
eleventh indicator may be received by prediction application 
322 after selection from a user interface window or after 
entry by a user into a user interface window. In an alternative 
embodiment, domain model description 130 may not be 
selectable. For example, a most recently created model 
description may be used automatically. As another example, 
domain model description 130 may be provided automati­
cally as part of integration with training application 122. 
[0096] In an operation 404, the parameters that describe 
the trained domain model based on the model type are read 
from domain model description 130 including an indication 
of which variables of second dataset 324 to input to the 
model and the hyperparameter values to use. The domain 
threshold value T further may be read from domain model 
description 130 or otherwise provided as an input value to 
prediction application 322. 
[0097] In an operation 406, a domain model is instantiated 
using the read domain model description. 
[0098] In an operation 408, a twelfth indicator may be 
received that indicates predictive model description 128. For 
example, the twelfth indicator indicates a location and a 
name of predictive model description 128. As an example, 
the twelfth indicator may be received by prediction appli­
cation 322 after selection from a user interface window or 
after entry by a user into a user interface window. In an 
alternative embodiment, predictive model description 128 
may not be selectable. For example, a most recently created 
model description may be used automatically. As another 
example, predictive model description 128 may be provided 
automatically as part of integration with training application 
122. 
[0099] In an operation 410, the parameters that describe 
the trained predictive model based on the model type are 
read from predictive model description 128 including an 
indication of which variables of second dataset 324 to input 
to the model and the hyperparameter values to use. The 
curve descriptive values that include the type of curve and 
its associated parameters, such as the slope value and the 
y-intercept value for a line curve type or the polynomial 
coefficients for a polynomial curve type, further may be read 
from predictive model description 128 or otherwise pro­
vided as input values to prediction application 322. 
[0100] In an operation 412, a predictive model is instan­
tiated using the read predictive model description. 
[0101] In an operation 414, an observation vector is read 
from second dataset 324. 
[0102] In an operation 416, the observation vector is input 
to the instantiated domain model. 
[0103] In an operation 418, a predicted domain error value 
computed by the instantiated domain model is received. 

[0104] In an operation 420, a determination is made con­
cerning whether the computed predicted domain error value 
is greater than the domain threshold value T. When the 
average domain model error is greater than T, processing 
continues in an operation 422. When the average domain 
model error is less than or equal to T, processing continues 
in an operation 424. 
[0105] In operation 422, an out-of-domain or an outlier 
indicator may be output to predicted dataset 326, presented 
on second display 316, etc. to notify the user of the occur­
rence of the outlier, and processing continues in operation 
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414. In alternative embodiments, processing continues m 
operation 414 with no indicator output. 
[0106] In operation 424, the observation vector is input to 
the instantiated predictive model. 
[0107] In an operation 426, a predicted characteristic 
computed by the instantiated predictive model and a pre­
dicted error value associated with the predicted character­
istic is received. The predicted error value is computed 
based on the error function indicated in operation 216. 
[0108] In an operation 428, a corrected error value is 
computed using the curve descriptive values. For example, 
the corrected error value is computed by multiplying the 
computed predicted error value by the slope value and 
adding they-intercept value for a line curve type. As another 
example, the corrected error value is computed using an 
equation defined by the polynomial coefficients defined for 
a polynomial curve type. 
[0109] In an operation 430, the predicted characteristic 
and the corrected error value may be output, for example, by 
storing the predicted characteristic and the corrected error 
value with the observation vector to predicted dataset 326. 
In addition, or in the alternative, the predicted characteristic 
and the corrected error value may be presented on second 
display 316, printed on second printer 320, sent to another 
computing device using second communication interface 
306, an alarm or other alert signal may be sounded through 
second speaker 318, etc. 
[0110] In an operation 432, a determination is made con­
cerning whether or not second dataset 324 includes another 
observation vector. When second dataset 324 includes 
another observation vector, processing continues in opera­
tion 414. When second dataset 324 does not include another 
observation vector, processing continues in an operation 
434. 
[0111] In operation 434, processing stops and cleanup is 
performed as needed. 
[0112] Referring to FIG. 5, a graph of a predictive model 
residual as a function of a predictive model error for a first 
dataset is shown in accordance with an illustrative embodi­
ment. The first dataset was generated by a function, y=30 sin 
(4itx0x 1)+20(x2 -0.5)2+10x3 +5x4 . All x-values were drawn 
uniformly at random from the range [0,0.5]. The predictions 
y were made using 5-split 80/20 cross-validation splits, 
repeated 100 times to give a total of 20,000 predictions. 
Referring to FIG. 6, a residual histogram of the predictive 
model residuals for a random forest machine learning model 
corresponding to uncertainty estimates between 0.29 and 
0.31 are shown for the first dataset in accordance with an 
illustrative embodiment. For the slice of predictions indi­
cated by the vertical lines in FIG. 5, the distribution of 
residuals is expected to have a standard deviation of roughly 
0.3 because the error estimates for that slice are all close to 
0.3. However, the actual standard deviation was only 0.17 
indicating a scaling error in the error estimates. The predic­
tive model residuals were scaled with the standard deviation. 
Referring to FIG. 7, a model error histogram of the predic­
tive model error for the random forest machine learning 
model are shown for the first dataset in accordance with an 
illustrative embodiment. The predictive model residuals 
were scaled with the standard deviation. 20 bins were used 
to create the histogram in FIG. 6. 15 bins were used to create 
the histogram in FIG. 7. 
[0113] Referring to FIG. 8, a scatter plot of a root mean 
squared predictive model residual as a function of a binned 
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predictive model error for the first dataset is shown with a 
line fit to the scatter plot values in accordance with an 
illustrative embodiment. The fit was weighted by the number 
of points in each bin. A slope value of0.615307, a y-inter­
cept value of 0.009809, and an r2 value of 0.844918 was 
computed for a first fit line 800. No correction was per­
formed and no out-of-domain observations were removed. 
[0114] Referring to FIG. 9, a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for the first dataset and the line fit to 
the scatter plot values of FIG. 8 after removing out of 
domain observation vectors are shown in accordance with an 
illustrative embodiment. The fit was weighted by the number 
of points in each bin. A slope value of 0.407601, a y-inter­
cept value of 0.054847, and an r2 value of 0.884212 was 
computed for a second fit line 900. 
[0115] Referring to FIG. 10, a first histogram of an r-sta­
tistic for the first dataset is shown in accordance with an 
illustrative embodiment. The r-statistic is a ratio of the 
predictive model residuals to the predictive model error 
values. If the predictive model error values truly represent a 
standard deviation, for an unbiased model, the r-statistic 
distribution should be normally distributed with mean 0 and 
standard deviation 1. A first probability distribution function 
(PDF) curve 1100 was fit to the first histogram. The predic­
tive model error resulted in a mean value of -0.021457 and 
a standard deviation value of 0.623666. 
[0116] Referring to FIG. 11, a second histogram of the 
r-statistic of FIG. llA after correcting the predictive model 
error is shown in accordance with an illustrative embodi­
ment. A second PDF curve 1102 was fit to the second 
histogram. Correcting the predictive model error resulted in 
a mean value of -0.036254 and a standard deviation value 
of0.995495. The standard deviation value was closer to one. 
[0117] Referring to FIG. 12, a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for a second dataset and the line fit to 
the scatter plot values after correcting the predictive model 
error in accordance with an illustrative embodiment. The 
second dataset is described in Lu, H.J., Zou, N., Jacobs, R., 
Afllerbach, B., Lu, X. G. & Morgan, D., Error assessment 
and optimal cross-validation approaches in machine learn­
ing applied to impurity diffusion Computational Materials 
Science 169, 109075 (2019). DOI: 10.1016/j.commatsci. 
2019.06.010. The fit was weighted by the number of points 
in each bin. A slope value of 0.884347, a y-intercept value 
of-0.012532, and anr2 value of0.989622 was computed for 
a fourth fit line 1200. 
[0118] Referring to FIG. 13A depicts a third histogram of 
an r-statistic for the second dataset in accordance with an 
illustrative embodiment. A third PDF curve 1300 was fit to 
the third histogram. The predictive model error resulted in a 
mean value of -0.02609 and a standard deviation value of 
0.817023. 
[0119] Referring to FIG. 13B depicts a fourth histogram of 
the r-statistic of FIG. 13A after correcting the predictive 
model error in accordance with an illustrative embodiment. 
A fourth PDF curve 1302 was fit to the fourth histogram. The 
predictive model error resulted in a mean value of 
-0.030861 and a standard deviation value of 0.938582. 
[0120] Referring to FIG. 14, a scatter plot of the root mean 
squared predictive model residual as a function of the binned 
predictive model error for a third dataset and the line fit to 
the scatter plot values after correcting the predictive model 
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error are shown in accordance with an illustrative embodi­
ment. The third dataset is described in Li, W., Jacobs, R. & 
Morgan, D., Predicting the thermodynamic stability of per­
ovskite oxides using machine learning models, Computa­
tional Materials Science 150, 454-463 (2018). DOI: 
10.1016/j.commatsci.2018.04.033. The fit was weighted by 
the number of points in each bin. A slope value of0.612589, 
a y-intercept value of0.040965, and an r2 value of0.964062 
was computed for a fifth fit line 1400. 
[0121] Referring to FIG. 15A, a fifth histogram of an 
r-statistic for the third dataset is shown in accordance with 
an illustrative embodiment. A fifth PDF curve 1500 was fit 
to the fifth histogram. The predictive model error resulted in 
a mean value of -0.005023 and a standard deviation value 
of 0.977498. 
[0122] Referring to FIG. 15B, a sixth histogram of the 
r-statistic of FIG. 15A after correcting the predictive model 
error is shown in accordance with an illustrative embodi­
ment. A sixth PDF curve 1502 was fit to the sixth histogram. 
The predictive model error resulted in a mean value of 
-0.005023 and a standard deviation value of 0.977498. 
[0123] Table 1 below further shows that combining this 
domain cutoff process with the scaling method from Section 
2 consistently results in an in-domain r-statistic distribution 
with a standard deviation of roughly 1, and an out-of-domain 
r-statistic with a standard deviation greater than 1. For the 
first dataset, training set sizes of ntrain equal to 100, 500, and 
1000, with all x-values drawn uniformly at random from the 
[0,0.5] hypercube and with x0 drawn from [0,1], and the 
remaining x-values drawn from [0,0.5] as summarized in 
Table 1. For the first dataset, a first test of 10,000 observa­
tions with all x-values drawn uniformly at random from the 
[0,0.5] hypercube and a second test of 10,000 observations 
with x0 drawn from [0,1], and the remaining x-values drawn 
from [0,0.5] are summarized in Table 1. 

TABLE 1 

In-domain Out-domain 
stdev of stdev of In-domain Out-domain 

r-stat r-stat number of number of 
Dataset distribution distribution points points 

First, 0.85 1.08 7649 2351 
ntrain - 100 
test x0 in 
[0, 0.5] 
First, 0.99 4.7 4239 5761 
ntrain - 100 
test x0 in 
[0, 1] 
First, 1.0 1.27 7845 2155 
ntrain - 500 
test x0 in 
[0, 0.5] 
First, 1.0 4.94 4120 5880 
ntrain - 500 
test x0 in 
[0, 1] 
First, 0.89 1.17 8168 1832 
ntrain - 1000 
test x0 in 
[0, 0.5] 
First, 0.90 6.1 4114 5886 
ntrain - 1000 
test x0 in 
[0, 1] 
Second 1.08 1.20 2246 1590 
Third 0.93 1.15 557 259 
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[0124] The results in Table 1 indicate that training appli­
cation 122 successfully indicates data as out-of-domain. As 
expected, training application 122 further computes cor­
rected error estimates that perform poorly, for example, 
when x0 is in [0,1] that is outside the training range of 
[0,0.5]). Further, using only "in-domain" data to obtain the 
curve descriptive values can result in smaller, but still 
accurate error estimates for the same test point, assuming the 
test point was indicated as in-domain. For example, as 
shown in FIG. 9, the slope is smaller resulting in smaller 
error estimates because the computations were performed on 
data that did not include the out-of-domain observation 
vectors skipped in operation 234. 
[0125] Table 2 below further shows that combining the 
domain cutoff process with the log likelihood optimization 
method to compute the curve descriptive values for scaling 
consistently results in an in-domain r-statistic distribution 
with a standard deviation of roughly one, and an out-of­
domain r-statistic distribution with a standard deviation 
typically farther from one than for the in-domain data, often 
significantly greater than one as shown in columns two and 
three, respectively. 

TABLE 2 

In- Out- In- Out- In- Out-
domain domain domain domain domain domain 

Dataset 1 1 2 2 points points 

First, 1.014 1.234 0.841 0.988 7082 2918 
ntrain - 100 
test x 0 in 
[0, 0.5] 
First, 1.033 4.699 0.849 3.552 3710 6290 
ntrain - 100 
test x 0 in 
[0, 1] 
First, 1.067 1.303 0.882 1.076 7677 2323 
ntrain - 500 
test x 0 in 
[0, 0.5] 
First, 1.070 6.809 0.885 5.585 3852 6148 
ntrain - 500 
test x 0 in 
[0, 1] 
First, 0.999 1.428 0.878 1.229 7875 2125 
ntrain - 1000 
test x 0 in 
[0, 0.5] 
First, 1.002 6.436 0.878 5.095 4079 5921 
ntrain - 1000 
test x 0 in 
[0, 1] 
Second 0.992 1.300 0.867 1.136 2458 1378 
Third 0.939 1.295 0.892 1.231 579 237 

[0126] Colunms four and five show the in-domain r-sta­
tistic distribution and the out-of-domain r-statistic distribu­
tion, respectively, computed using the log likelihood scaling 
method without using the domain cutoff process of opera­
tions 242 through 254 to compute the curve descriptive 
values for scaling. Using the log likelihood scaling method 
without using the domain cutoff process to compute the 
curve descriptive values is based on an existing method 
described in a paper by Hirschfeld, L., Swanson, K., Yang, 
K., Barzilay, R. & Coley, C. W., Uncertainty Quantification 
Using Neural Networks for Molecular Property Prediction, 
J. Chem. Inf. Model. 60, (2020) except assuming that the 
estimated standard deviation is linearly related to the true 
standard deviation, rather than the variances being linearly 
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related. The number of in-domain data points is different 
between Tables 1 and 2 due to random variation. The 
calibration using only in-domain cross-validation data is 
substantially more accurate than the calibration using all 
cross-validation data because the values in colunm one are 
very close to one, while the values in colunm three are 
consistently less than one. 
[0127] FIGS. 16-23 depict a "complete" set of results for 
a single synthetic set with a training set size of 500. 
Correction factors were obtained through cross-validation 
and results were computed by predicting on a test set of size 
n=l0,000. For all results, both test and training data was 
generated with the function y=30 sin (4itx0x 1)+20(x2 -0.5) 
2 +10x3 +5x4 , with features generated uniformly at random 
from the range [0,0.5]. 
[0128] FIGS. 16 and 17 show predictions with uncorrected 
error estimates for predictions on the entire test set. 
[0129] FIGS. 18 and 19 show predictions with corrected 
error estimates for predictions on entire test set. Scale factors 
obtained in cross-validation and applied here: slope=0. 
783457, intercept=-0.0211046. (i.e., all initial model errors 
here were multiplied by 0.783457 and then added to 
-0.0211046.) 
[0130] FIGS. 20 and 21 show predictions with corrected 
error estimates only for in-domain test data. scale factors 
obtained using in-domain cross-validation data and applied 
here: slope=0.6233448, intercept=0.00121021. (i.e., all ini­
tial model errors here were multiplied by 0.6233448 and 
then added to 0.00121021.) The cutoff for being in-domain 
was a GPR error estimate of 0.01025748. 
[0131] FIGS. 22 and 23 show predictions with corrected 
error estimates only for out-of-domain test data. Scale 
factors obtained using in-domain cross-validation data and 
applied here: slope=0.6233448, intercept=0.00121021. (i.e., 
all initial model errors here were multiplied by 0.6233448 
and then added to 0.00121021.) The cutoff for being in­
domain was a GPR error estimate of 0.01025748. 
[0132] FIGS. 24 and 25 show predictions with uncorrected 
error estimates for predictions on the entire test set using a 
training set of 2000 points. 
[0133] FIGS. 26 and 27 show predictions with corrected 
error estimates for predictions on entire test set using a 
training set of 2000 points. Scale factors obtained in cross­
validation and applied here: slope=0.4651939, intercept=0. 
0302558. (i.e., all initial model errors here were multiplied 
by 0.4651939 and then added to 0.0302558.) 
[0134] The word "illustrative" is used herein to mean 
serving as an example, instance, or illustration. Any aspect 
or design described herein as "illustrative" is not necessarily 
to be construed as preferred or advantageous over other 
aspects or designs. Further, for the purposes of this disclo­
sure and unless otherwise specified, "a" or "an" means "one 
or more". Still further, using "and" or "or" in the detailed 
description is intended to include "and/or" unless specifi­
cally indicated otherwise. 
[0135] The foregoing description of illustrative embodi­
ments of the disclosed subject matter has been presented for 
purposes of illustration and of description. It is not intended 
to be exhaustive or to limit the disclosed subject matter to 
the precise form disclosed, and modifications and variations 
are possible in light of the above teachings or may be 
acquired from practice of the disclosed subject matter. The 
embodiments were chosen and described in order to explain 
the principles of the disclosed subject matter and as practical 
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applications of the disclosed subject matter to enable one 
skilled in the art to utilize the disclosed subject matter in 
various embodiments and with various modifications as 
suited to the particular use contemplated. 

What is claimed is: 
1. A non-transitory computer-readable medium having 

stored thereon computer-readable instructions that when 
executed by a computing device cause the computing device 
to: 

(A) split an input dataset into a training dataset and a 
validation dataset, wherein the input dataset includes a 
plurality of observation vectors; 

(B) train a predictive model with the training dataset; 
(C) train a domain model with the training dataset; 
(D) validate the trained predictive model with the vali­

dation dataset; 
(E) validate the trained domain model with the validation 

dataset; 
(F) compute a predictive error value and a residual value 

from the validated predictive model for each observa­
tion vector of the plurality of observation vectors 
included in the validation dataset; 

(G) compute a domain error value from the validated 
domain model for each observation vector of the plu­
rality of observation vectors included in the validation 
dataset; 

(H) store the computed predictive error value, the com­
puted residual value, and the computed domain error 
value in output data for each observation vector of the 
plurality of observation vectors included in the valida­
tion dataset; 

(I) repeat (A) through (H) a predefined number of times; 
(J) compute a domain threshold value using the stored 

domain error values; 
(K) store each predictive error value and each residual 

value stored in the output data in in-domain output data 
when a respective stored domain error value is less than 
or equal to the computed domain threshold value; 

(L) compute curve descriptive values based on a type of 
curve, wherein the curve describes a relationship 
between the residual values stored in the in-domain 
output data as a function of the prediction error values 
stored in the in-domain output data; and 

(M) output the curve descriptive values to correct an error 
estimate value of a predicted value of a new observa­
tion vector. 

2. The non-transitory computer-readable medium of claim 
1, wherein after (K) and before (L), the computer-readable 
instructions further cause the computing device to: 

compute a standard deviation value from a total predictive 
error value and each predictive error values stored in 
the in-domain output data; 

divide each predictive error value stored in the in-domain 
output data by the computed standard deviation value 
to compute a scaled, predictive error value, wherein the 
predictive error value in (L) is the scaled, predictive 
error value; and 

divide each residual value stored in the in-domain output 
data by the computed standard deviation value to 
compute a scaled, residual value, wherein the residual 
value in (L) is the scaled, residual value. 

3. The non-transitory computer-readable medium of claim 
2, wherein the computer-readable instructions further cause 
the computing device to: 
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(N) train a second predictive model using the plurality of 
observation vectors included in the input dataset; 

(0) train a second domain model using the plurality of 
observation vectors included in the input dataset; 

output a first description of the trained second predictive 
model; and 

output a second description of the trained second domain 
model. 

4. The non-transitory computer-readable medium of claim 
3, wherein an average domain threshold value is computed 
from each domain threshold value computed in (I). 

5. The non-transitory computer-readable medium of claim 
4, wherein after (N), the computer-readable instructions 
further cause the computing device to: 

compute a predicted domain error value for a new obser­
vation vector using the trained second domain model, 
wherein the new observation vector is not included in 
the input dataset; and 

when the computed predicted domain error value is less 
than the computed domain threshold value, 
compute a predicted value of the new observation 

vector and an error estimate value associated with 
the computed predicted value using the trained sec­
ond predictive model; and 

correct the error estimate value of the computed pre­
dicted value using the computed curve descriptive 
values; and 

output the computed predicted value and the corrected 
error estimate value of the new observation vector. 

6. The non-transitory computer-readable medium of claim 
5, wherein, when the computed predicted domain error value 
is greater than the computed domain threshold value, the 
computer-readable instructions further cause the computing 
device to output an out of domain indicator for the new 
observation vector. 

7. The non-transitory computer-readable medium of claim 
1, wherein the computer-readable instructions further cause 
the computing device to: 

(N) train a second predictive model using the plurality of 
observation vectors included in the input dataset; and 

(0) output a description of the trained second predictive 
model. 

8. The non-transitory computer-readable medium of claim 
7, wherein after (N), the computer-readable instructions 
further cause the computing device to: 

compute a predicted value of a new observation vector 
and an error estimate value associated with the com­
puted predicted value using the trained second predic­
tive model, wherein the new observation vector is not 
included in the input dataset; 

correct the error estimate value of the computed predicted 
value using the computed curve descriptive values; and 

output the computed predicted value and the corrected 
error estimate value of the new observation vector. 

9. The non-transitory computer-readable medium of claim 
1, wherein the computer-readable instructions further cause 
the computing device to: 

(N) train a second predictive model using the plurality of 
observation vectors included in the input dataset; 

(0) train a second domain model using the plurality of 
observation vectors included in the input dataset; 

output a first description of the trained second predictive 
model; and 
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output a second description of the trained second domain 
model. 

10. The non-transitory computer-readable medium of 
claim 9, wherein an average domain threshold value is 
computed from each domain threshold value computed in 
(I). 

11. The non-transitory computer-readable medium of 
claim 10, wherein after (N), the computer-readable instruc­
tions further cause the computing device to: 

compute a predicted domain error value for a new obser­
vation vector using the trained second domain model, 
wherein the new observation vector is not included in 
the input dataset; and 

when the computed predicted domain error value is less 
than the computed domain threshold value, 
compute a predicted value of the new observation 

vector and an error estimate value associated with 
the computed predicted value using the trained sec­
ond predictive model; and 

correct the error estimate value of the computed pre­
dicted value using the computed curve descriptive 
values; and 

output the computed predicted value and the corrected 
error estimate value of the new observation vector. 

12. The non-transitory computer-readable medium of 
claim 11, wherein, when the computed predicted domain 
error value is greater than the computed domain threshold 
value, the computer-readable instructions further cause the 
computing device to output an out of domain indicator for 
the new observation vector. 

13. The non-transitory computer-readable medium of 
claim 1, wherein the computed curve descriptive values 
include a slope and a y-intercept value. 

14. The non-transitory computer-readable medium of 
claim 1, wherein the computed curve descriptive values 
include a plurality of polynomial coefficients. 

15. The non-transitory computer-readable medium of 
claim 1, wherein the domain threshold value is a mean value 
computed from each domain error value stored in the output 
data. 

16. The non-transitory computer-readable medium of 
claim 1, wherein the domain threshold value is a predefined 
percentage value computed from each domain error value 
stored in the output data. 

17. The non-transitory computer-readable medium of 
claim 1, wherein a model type of the domain model is a 
Gaussian process regression model type. 

18. The non-transitory computer-readable medium of 
claim 1, wherein the domain error value is a distance value 
computed between observation vectors included in the vali­
dation dataset. 

19. A computing device comprising: 
a processor; and 
a non-transitory computer-readable medium operably 

coupled to the processor, the computer-readable 
medium having computer-readable instructions stored 
thereon that, when executed by the processor, cause the 
computing device to 
(A) split an input dataset into a training dataset and a 

validation dataset, wherein the input dataset includes 
a plurality of observation vectors; 

(B) train a predictive model with the training dataset; 
(C) train a domain model with the training dataset; 
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(D) validate the trained predictive model with the 
validation dataset; 

(E) validate the trained domain model with the valida­
tion dataset; 

(F) compute a predictive error value and a residual 
value from the validated predictive model for each 
observation vector of the plurality of observation 
vectors included in the validation dataset; 

(G) compute a domain error value from the validated 
domain model for each observation vector of the 
plurality of observation vectors included in the vali­
dation dataset; 

(H) store the computed predictive error value, the 
computed residual value, and the computed domain 
error value in output data for each observation vector 
of the plurality of observation vectors included in the 
validation dataset; 

(I) repeat (A) through (H) a predefined number of 
times; 

(J) compute a domain threshold value using the stored 
domain error values; 

(K) store each predictive error value and each residual 
value stored in the output data in in-domain output 
data when a respective stored domain error value is 
less than or equal to the computed domain threshold 
value; 

(L) compute curve descriptive values based on a type of 
curve, wherein the curve describes a relationship 
between the residual values stored in the in-domain 
output data as a function of the prediction error 
values stored in the in-domain output data; and 

(M) output the curve descriptive values to correct an 
error estimate value of a predicted value of a new 
observation vector, 

20. A method of computing an error estimate correction 
for a machine learning model, the method comprising: 

(A) splitting, by a computing device, an input dataset into 
a training dataset and a validation dataset, wherein the 
input dataset includes a plurality of observation vec­
tors; 

(B) training, by the computing device, a predictive model 
with the training dataset; 

(C) training, by the computing device, a domain model 
with the training dataset; 

(D) validating, by the computing device, the trained 
predictive model with the validation dataset; 

(E) validating, by the computing device, the trained 
domain model with the validation dataset; 

(F) computing, by the computing device, a predictive 
error value and a residual value from the validated 
predictive model for each observation vector of the 
plurality of observation vectors included in the valida­
tion dataset; 

(G) computing, by the computing device, a domain error 
value from the validated domain model for each obser­
vation vector of the plurality of observation vectors 
included in the validation dataset; 

(H) storing, by the computing device, the computed 
predictive error value, the computed residual value, and 
the computed domain error value in output data for 
each observation vector of the plurality of observation 
vectors included in the validation dataset; 

(I) repeating, by the computing device, (A) through (H) a 
predefined number of times; 
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(J) computing, by the computing device, a domain thresh­
old value using the stored domain error values; 

(K) storing, by the computing device, each predictive 
error value and each residual value stored in the output 
data in in-domain output data when a respective stored 
domain error value is less than or equal to the computed 
domain threshold value; 

(L) computing, by the computing device, curve descrip­
tive values based on a type of curve, wherein the curve 
describes a relationship between the residual values 
stored in the in-domain output data as a function of the 
prediction error values stored in the in-domain output 
data; and 

(M) outputting, by the computing device, the curve 
descriptive values to correct an error estimate value of 
a predicted value of a new observation vector. 

* * * * * 
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