United States

(12) Patent Application Publication Bruce et al.
(10)

Pub. No.: US 2023/0203461 A1
(43)

Pub. Date:
Jun. 29, 2023
(54) BETA-ETHERASES FOR LIGNIN DEPOLYMERISATION
(71) Applicants:The University of York, York (GB); Wisconsin Alumni Research Foundation, Madison, WI (US)
(72) Inventors: Neil Bruce, York (GB); Nicola Oates,

York (GB); John Ralph, Madison, WI (US)
(73) Assignees: The University of York, York (GB);

Wisconsin Alumni Research
Foundation, Madison, WI (US)
(21) Appl. No.: $\quad 17 / 791,144$
(22) PCT Filed:

Jan. 9, 2021
(86) PCT No.:

PCT/EP2021/050317
§ 371 (c)(1), (2) Date:

Jul. 6, 2022
(30) Foreign Application Priority Data

Jan. 10, 2020 (GB) \qquad 2000378.6

Publication Classification
(51) Int. Cl.

C12N 9/14
C12N 15/80
(52) U.S. CI.

CPC
C12N 9/14 (2013.01); C12N 15/80
(2013.01); C12Y 303/00 (2013.01)

ABSTRACT
The present application relates to nucleic acids encoding polypeptides with β-etherase activity; polypeptides with β etherase activity; vectors comprising said nucleic acids for the production of recombinant β-etherase; cells, for example microbial cells transformed with nucleic acids encoding β etherase activity and vectors, including nucleic acids encoding β-etherases; a composition comprising β-etherases suitable for processing lignocellulose and a method that uses β etherases or compositions comprising β-etherases in the processing of lignocellulose and related polysaccharides.

Specification includes a Sequence Listing.

FIG. 1A

FIG. 1B

FIG. 3

FIG. 4A

FIG. 4B
FIG. 5

o Tyrosinase

FIG. 6A

FIG. 6B

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7 D

FIG. 8A

FIG. 8B

FIG. 9

FIG. 10A
Glucose . Wheat Straw

Length of Incubation (days)

FIG. 10B

FIG. 11

CLUSTAL $O(1.2 .4)$ multiple sequence alignment

249W		0
2P3X	-APIQAPDISKCGTATVPDGVTPT-NCCPPV	29
c2092	MPSAKRLLGLLLAATAAVGVAAQEPALTEDDESTPEI---EGGDALAQLAQLAADS	53
4, 3P	MVALQALSLGLLASQALAFPAASQQAA---TATLPTTASSSTAVASSQLDQLANFAYNV	56
$1 \mathrm{WX2}$		0
4.56 V		0
2Y9W	-----SDKKSLMPLVGIPGEIKNRLNTLDEVKNDKEETLYVRALQVLOARDOSDYSSFE	54
2P3X	T-...-TKITDFQLPSSGSEMRTRPAAHLYSKE--YLAKYKKAIELQKALPDDDPRSFK	81
c2092	SQETALRMAKRGLNSGCSPSQLKYRREWRTLTSA--QRKQYIASVKCLQTKPSEEDPNIT	111
4.53 P	TT-DSVAGGSESKRGGCTLQNLRYRRDWRAFSKT--QKKDYINSVLCLQKLPSRTPAHLA	113
$1 W \times 2$	\cdots -	27
4 T 6 V		31
2Y9W	QLGGLHGL---EYTEWA---KAQPQ--LHLYKANYCTHGTVLEPTWYRAYESTWEQTLW	105
2P3X	QQANVHCTYCQGAYDQVGYTD--------LELQVMASWLELEFURYYLYENERILA	129
c2092	P-----AAKSLFDDFVGVUVE-------TGSIULTATFLTWURYFVYTYETKLR	154
403 P		156
1 WX2		75
4 J 6 V	-KGIYDRYIAWHGAAGKFHTPPGSDRNAAMMSSAFLEWHREYLERFERDLQ	81
2Y9W	EAAGTVAQRFTISDQAEWIQAAKDIRQPEWDWGYWPNDP---DEIGLPDQVIRDKQVE-	160
2P3X	KLI-----------DDPTEALPYWAWDNPDGMYMPT-IYASSPSSLYDEKRNA-	170
c2092		195
$4{ }^{4} 3 \mathrm{P}$		197
1 WX 2	S-V----------D-SSVTLPYWDWSADRTV----RASLWAPDFLGGTGRSTD	112
$4{ }^{4} 6 \mathrm{~V}$	$\begin{array}{cc} S-1-N-P E V T L P Y W E W E T D A Q M Q D P S Q S Q I W S A D F M G G N G N P I K ~ \\ * & : * \end{array}$	122
249W	--ITDYNGTKI--------EVENPI--LHYKFHPIEPTEEGDFAQW--QT	196
2P3X		197
c2092	--AHEGIQMVQPINGNILKLPPGNGGGCVTKGPFKDMKVHFGTI LLPVYGQPILSGVEN	252
4J3P	---PNQGDIKLELGNYPA IDLPPGSGGGCVTSGPFKDYKLNLGPAALSLPGGNM-TAAAN	253
$1 \mathrm{WX2}$	GRVM-DGPFAASTGNWPIN-VRVDSRTY-------LRRSLGG---SVAFLPTRAEVES	158
406 V	DFIVDTGPFAA--GRWTITDEQGNPSGG---m----LKRNEGATK-EAPTLETRDDVLN	170
249W	TMRY-PDVQKQENIEGMTAGIKAAAPGERENTFMMETKNYTWELFSNHGAVVGAHANSLE	255
2P3X	---NLATMYKQ------IVSGATTPKLFLG-YPYRAGD------AIDPGAGTLFH	236
c2092	PTADNERCLKRD---LNAGIAKRETSELNSTS-VILKNNNTEMEQAHLQGDDRYVLNQL	307
AJ3P	PLTYNPRCMKRS---LTTEILORYNTEPKIVE-LILDSDDIWDEQMTMQGVPG--SGSI	306
$1 \mathrm{WXC}^{\text {d }}$	VLA $-\cdots-\cdots$ -	187
4 J 6 V		201
2Y9W		314
2P3X	APMNEVMKWTGLAD - --KPSEDMG-NEYTAGRDPIEFGMHANVDRMNNIWKTIGGKNRK	291
c2092	GVAGGGMYTIG--------GDPGGDPFISPGDPAEYLMIAQIDRIYWIWQMLDFKNRQ	357
AJ3P	GVMGGGMYSMG--------GDPGRDVYVSPGDTAEWLHMGMTDRVWWIWQNLDLRKRQ	356
10×2	NLMIRVVVWVG-------GQMA-T-GVSPNDPVEWLUHAYVDKLWAEWQREHPDSAY	235
4.56 V	$\begin{aligned} & \text { QLADRV/RRWVG---------GQMG-VVPMAPNDPVEELMHANVDRIWAVWQIIHRNQNY } \\ & *: ~ * ~ * ~ \end{aligned}$	250
2Y9W	SEGMNREATMGLIPGQVLTEDSPLEP---EYTKNQDEWQSDDLEDWETLGESYPDFDPV	370
2P3X		315
c2092		389
4.35		390
1 WX2		259
4.56		274

FIG. 12

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 14A

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 16

FIG. 17A
FIG. 17B

Patent Application Publication Jun. 29, 2023 Sheet 21 of 22 US 2023/0203461 A1

FIG. 18

BETA-ETHERASES FOR LIGNIN DEPOLYMERISATION

FIELD OF THE DISCLOSURE

[0001] The present application relates to nucleic acids encoding polypeptides with β-etherase activity; polypeptides with β-etherase activity; vectors comprising said nucleic acids for the production of recombinant β-etherase; cells, for example microbial cells, transformed with nucleic acids encoding β-etherase activity and vectors including nucleic acids encoding β-etherases; a composition comprising β-etherases suitable for processing lignocellulose; and a method that uses β-etherases or compositions comprising β etherases in the processing of lignocellulose and related polysaccharides.

GOVERNMENT RIGHTS

[0002] This invention was made with government support under DE-SC0018409 awarded by the US Department of Energy. The government has certain rights in the invention.

BACKGROUND TO THE DISCLOSURE

[0003] The plant cell wall is composed of cellulose, hemicelluloses, pectic polysaccharides, and lignin, and is collectively termed lignocellulose. Photosynthetically fixed carbon in lignocellulose is produced in vast quantities on the Earth's surface. Its conversion into liquid transportation fuel represents a potential source of renewable energy with diverse feedstocks, including agricultural residues, municipal waste, and dedicated low-input crops. Effective utilization of lignocellulose, nevertheless, remains a challenge, as the extraction of fermentable sugars for biofuel production requires intensive physico-chemical pretreatments and high loadings of enzyme cocktails. A key factor of this recalcitrance to degradation is the presence of lignin, a heterogeneous, hydrophobic aromatic polymer that encases the cellulose and hemicellulose, blocking enzyme accessibility and impeding cellulase activity.
[0004] Lignin is synthesised by plants through the oxidative coupling of three hydroxycinnamyl alcohols: coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol, generating $\beta-0-4,4-\mathrm{O}-5, \beta-5, \beta-1,5-5$ and $\beta-\beta$ inter-unit linkages in β-ether, biphenyl ether, phenylcoumaran, spirodienone, biphenyl, and resinol units, respectively. Lignin requires a high redox potential to be oxidatively attacked. Recalcitrance to degradation is further enhanced as lignin has no defined repeat structure. The $\beta-\mathrm{O}-4$ (or β-aryl) ether linkage is the most abundant linkage in the lignin macromolecule; its cleavage results in substantial lignin depolymerization.
[0005] Enzymes for depolymerising lignin are known and disclosed in US2019/048329 and include dehydrogenases, glutathione lyases and β-etherases which attack β-O-4 ether linkages. The β-etherase activity disclosed in US2019/048329 requires the co-substrates NAD^{+}and glutathione.
[0006] Tricin,
[5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], an O-methylated flavone, forms part of the structure of lignin from monocot plants including wheat, rice, sugar cane, and palms. Tricin has only been observed incorporated into the lignin structure via $4-\mathrm{O}-\beta$ linkages, having arisen from the radical cou-
pling of the flavone at its 4 '- O -position with the monolignol at its β-position.
[0007] Tricin is recognized as a valuable human health compound due to its antioxidant, anti-aging, anti-cancer, and cardio-protective potential. Tricin may be present as its parent compound that may be released by solvent extraction from a variety of monocotyledons such as wheat (Triticum aestivum), oat bran (Avena sativa), bamboo (Leleba oldhami), sugarcane (Saccharum officinarum), and maize (Zea mays), and has been observed in quantities of up to 3.3% wt of lignin from wheat straw.
[0008] This disclosure characterises a copper-containing β-etherase that can cleave the β-aryl ether linkage of lignin and which is secreted from the fungus Parascedosporium when growing on wheat straw. The disclosed β-etherase has no requirement for NAD^{+}and/or glutathione and was found to readily cleave tricin from wheat straw, also enhancing the saccharification of lignocellulosic biomass when used in combination with cellulolytic enzymes.

STATEMENTS OF THE INVENTION

[0009] According to an aspect of the invention there is provided an isolated nucleic acid molecule encoding a β etherase polypeptide wherein said polypeptide comprises copper and further wherein the activity of said polypeptide is independent of NAD^{+}and/or glutathione.
[0010] Lignin, the major component of lignocellulosic plant biomass, is an organic heterologous polymer comprising covalently linked phenylpropanoid units and consist essentially of crosslinked methoxylated derivatives of benzene such as p-coumaryl, coniferyl, and sinapyl alcohols. Exemplary phenylpropanoid units derived from the alcohols are p-hydroxyphenyl, guaiacyl, and syringyl units respectively. The phenylpropanoid units can be linked to other phenylpropanoid units through bonds such as $\beta-\mathrm{O}-4,4$ $-\mathrm{O}-5, \beta-5, \beta-1,5-5$ and $\beta-\beta$ inter-unit linkages. $\beta-\mathrm{O}$ - 4 ether bonds account for $45-60 \%$ of linkages present in lignin. Flavonoid units such as tricin can be incorporated into lignin via $4-\mathrm{O}-\beta$ ether bonds.
[0011] β-etherase activity in the context of this application refers to the capability to cleave β-aryl ether ($\beta-\mathrm{O}-4$) bonds in lignin that link one phenylpropanoid unit to another phenylpropanoid unit or to flavonoid units such as tricin.
[0012] In order to optimize expression levels in recombinant host cells, codon optimisation of the nucleic acid sequence to be expressed may be required to convert a natural sequence to a non-natural sequence that encodes substantially the same polypeptide and would be optimally expressed in a heterologous host cell. Codon optimisation is known in the art and increases translational efficiency in the desired host organism and replace codons of low frequency with codons of high frequency.
[0013] In a preferred embodiment of the invention, the said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0014] i) a nucleotide sequence as set forth in SEQ ID NO: 1;
[0015] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0016] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which
hybridizes under stringent hybridisation conditions to sequence set forth in SEQ ID NO 1;
[0017] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 9;
[0018] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0019] Hybridization of a nucleic acid molecule occurs when two complementary nucleic acid molecules undergo an amount of hydrogen bonding to each other. The stringency of hybridization can vary according to the environmental conditions surrounding the nucleic acids, the nature of the hybridization method, and the composition and length of the nucleic acid molecules used. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed in Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001); and Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes Part I, Chapter 2 (Elsevier, New York, 1993). The T_{m} is the temperature at which 50% of a given strand of a nucleic acid molecule is hybridized to its complementary strand. The following is an exemplary set of hybridization conditions and is not limiting:
[0020] Very High Stringency (allows sequences that share at least 90% or 95% identity to hybridize)
[0021] Hybridization: 5 xSSC at $65^{\circ} \mathrm{C}$. for 16 hours [0022] Wash twice: 2 x SSC at room temperature (RT) for 15 minutes each
[0023] Wash twice: 0.5 x SSC at $65^{\circ} \mathrm{C}$. for 20 minutes each
[0024] High Stringency (allows sequences that share at least 80% identity to hybridize)
[0025] Hybridization: $5 \mathrm{x}-6 \mathrm{x}$ SSC at $65-70^{\circ} \mathrm{C}$. for $16-$ 20 hours
[0026] Wash twice: 2x SSC at RT for 5-20 minutes each
[0027] Wash twice: 1 x SSC at $55-70^{\circ} \mathrm{C}$. for $30 \mathrm{~min}-$ utes each
[0028] Low Stringency (allows sequences that share at least 50% identity to hybridize)
[0029] Hybridization: $6 x$ SSC at RT to $55^{\circ} \mathrm{C}$. for 1620 hours
[0030] Wash at least twice: $2 \mathrm{x}-3 \mathrm{x}$ SSC at RT to $55^{\circ} \mathrm{C}$. for 20-30 minutes each.
[0031] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0032] i) a nucleotide sequence as set forth in SEQ ID NO: 2;
[0033] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0034] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 2;
[0035] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO: 10;
[0036] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0037] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0038] i) a nucleotide sequence set forth in SEQ ID NO: 3;
[0039] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0040] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 3;
[0041] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO 11;
[0042] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0043] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0044] i) a nucleotide sequence as set forth in SEQ ID NO 4;
[0045] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0046] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 4;
[0047] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO 12:
[0048] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0049] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0050] i) a nucleotide sequence as set forth in SEQ ID NO 5:
[0051] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0052] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 5;
[0053] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as represented in SEQ ID NO 13;
[0054] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion
or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0055] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0056] i) a nucleic acid sequences as set forth in SEQ ID NO 6;
[0057] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0058] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 6;
[0059] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as set forth in SEQ ID NO 14;
[0060] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0061] In a preferred embodiment of the invention said isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
[0062] i) a nucleotide sequence as set forth in SEQ ID NO: 7 ;
[0063] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0064] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions set forth in SEQ ID NO 7;
[0065] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence as set forth SEQ ID NO 15;
[0066] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0067] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0068] i) a nucleotide sequence as set forth in SEQ ID NO 8 ;
[0069] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0070] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 8;
[0071] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 16;
[0072] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0073] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0074] i) a nucleotide sequence as set forth in SEQ ID NO 18 or 17 ;
[0075] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0076] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 18 or 17 ;
[0077] iv) a nucleotide sequence that encodes a polypeptide comprising the amino acid sequence set forth in SEQ ID NO 26;
[0078] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0079] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0080] i) a nucleotide sequence as set forth in SEQ ID NO 19
[0081] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0082] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 19;
[0083] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 27;
[0084] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0085] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0086] i) a nucleotide sequence as set forth in SEQ ID NO 20;
[0087] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0088] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 20;
[0089] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 28;
[0090] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0091] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0092] i) a nucleotide sequence as set forth in SEQ ID NO 21;
[0093] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0094] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 21;
[0095] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 29;
[0096] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0097] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0098] i) a nucleotide sequence as set forth in SEQ ID NO 22;
[0099] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0100] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 22;
[0101] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 30;
[0102] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0103] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0104] i) a nucleotide sequence as set forth in SEQ ID NO 23;
[0105] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0106] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 23;
[0107] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 31;
[0108] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0109] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0110] i) a nucleotide sequence as set forth in SEQ ID NO 24;
[0111] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0112] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 24;
[0113] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 32;
[0114] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0115] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0116] i) a nucleotide sequence as set forth in SEQ ID NO 24;
[0117] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0118] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 24;
[0119] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 32;
[0120] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0121] In a preferred embodiment of the invention said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
[0122] i) a nucleotide sequence as set forth in SEQ ID NO 25 ;
[0123] ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
[0124] iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to the sequence set forth in SEQ ID NO 25 ;
[0125] iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO 33;
[0126] v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
[0127] The presence of a peptide signal sequence encoded by part of the nucleic acid sequence set forth in SEQ ID NO $1-8$ which is located at the N-terminus of the amino acid sequences set forth in SEQ ID NO 9-16, may result in inefficient expression of the protein in an alternative expression host cell. Therefore, typically, the endogenous host specific signal sequence is either replaced with the expression host specific peptide signal sequence or with an ATG codon. The nucleotide sequences set forth in sequence IDs 17-25 represent the nucleotide sequence lacking the signal sequence or an ATG start codon at the 5 -end of the nucleotide sequence and correspondingly, the amino acid sequences set forth in SEQ IDs No 26-33 are lacking the N -terminal signal sequence or a methionine as the first amino acid at the N terminus of the amino acid sequence. Thus, nucleotide sequences set forth in SEQ ID NO 17-25 comprising an

ATG as the first codon at the 5^{\prime}-end or amino acid sequences set forth in SEQ ID NO 26-33 comprising a methionine as the first amino acid of the N-terminus are also claimed.
[0128] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 1 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0129] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 2 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0130] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 3 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0131] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 4 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity
[0132] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 5 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0133] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 6 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0134] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 7 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0135] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 8 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0136] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 17 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0137] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 18 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0138] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 19 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0139] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 20 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0140] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 21 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0141] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 22 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0142] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 23 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0143] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 24 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0144] In a preferred embodiment of the invention said nucleic acid molecule comprises or consists of a nucleotide sequence as set forth in SEQ ID NO: 25 wherein said nucleic acid molecule encodes a polypeptide with β-etherase activity.
[0145] According to a further aspect of the invention there is provided an isolated β-etherase polypeptide wherein said polypeptide comprises copper and further wherein the activity of said polypeptide is independent of NAD^{+}and/or glutathione.
[0146] In a preferred embodiment of the invention said β etherase polypeptide comprises two copper binding sites comprising the motif:
[0147] Copper binding site No 1: $\mathrm{H}-\mathrm{X}(1-7)-\mathrm{H}$ $-\mathrm{X}(1-8)-\mathrm{H}$ and site No $2: \mathrm{H}-\mathrm{X}(1-3)-\mathrm{H}-\mathrm{X}(22-$ 25)- H ;
[0148] wherein X is any amino acid and H is histidine. The numerical range $\mathrm{X}(1-7), \mathrm{X}(1-8), \mathrm{X}(1-3)$ and X (22-25) denotes the number of amino acid residues between the histidines e.g., $\mathrm{H}-\mathrm{X}(1-3)-\mathrm{H}$ contains three amino acid residues between the two histidines. Variations to this motif are shown in FIG. 11.
[0149] In a preferred embodiment of the invention said polypeptide has β-etherase activity in the absence of NAD ${ }^{+}$and glutathione.
[0150] In a further preferred embodiment of the invention said isolated β-etherase polypeptides share at least 23% sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26
[0151] In a further preferred embodiment of the invention said isolated β-etherase polypeptides share between 23-45\% sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26.
[0152] In a further preferred embodiment of the invention said isolated β-etherase polypeptides share at least 23%, $24 \%, 25 \%, 30 \%, 35 \%, 37 \%, 38 \%, 39 \%, 40 \%, 41 \%, 44 \%$ and 45% sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26.
[0153] In an alternative further preferred embodiment of the invention said isolated β-etherase polypeptides share at least 50% sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26.
[0154] In an alternative further preferred embodiment of the invention said isolated β-etherase polypeptides share
between $50-88 \%$ sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26.
[0155] In an alternative further preferred embodiment of the invention said isolated β-etherase polypeptides share at least $50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%, 85 \%, 86 \%$, $87 \%, 88 \%, 89 \%, 90 \%, 91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%$, $97 \%, 98 \%$ and 99% sequence identity over the full-length sequence set forth in SEQ ID NO 9 or 26.
[0156] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0157] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 9 or 26;
[0158] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 9 or 26 and which has β-etherase activity.
[0159] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0160] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 10 or 27 ;
[0161] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 10 or 27 and which has β etherase activity.
[0162] According to an aspect of the invention there is provided an isolated polypeptide selected from the group consisting of:
[0163] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 11 or 28;
[0164] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 11 or 28 and which has β etherase activity.
[0165] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0166] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 12 or 29 .
[0167] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 12 or 29 and which has β etherase activity.
[0168] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0169] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 13 or 30;
[0170] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said
polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 13 or 30 and which has β etherase activity
[0171] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0172] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 14 or 31:
[0173] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 14 or 31 and which has β etherase activity.
[0174] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0175] i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 15 or 32;
[0176] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 15 or 32 and which has β etherase activity.
[0177] In a preferred embodiment of the invention said isolated polypeptide is selected from the group consisting of:
[0178] i) a polypeptide comprising or consisting of an amino acid sequence set forth in SEQ ID NO: 16 or 33
[0179] ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 16 or 33 and which has β etherase activity.
[0180] A modified polypeptide as herein disclosed may differ in amino acid sequence by one or more substitutions, additions, deletions, truncations that may be present in any combination. Among preferred variants are those that vary from a reference polypeptide by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid by another amino acid of like characteristics. The following non-limiting list of amino acids are considered conservative replacements (similar): a) alanine, serine, and threonine; b) glutamic acid and aspartic acid; c) asparagine and glutamine d) arginine and lysine; e) isoleucine, leucine, methionine and valine and f) phenylalanine, tyrosine and tryptophan. Most highly preferred are variants that retain the same biological function and activity as the reference polypeptide from which it varies.
[0181] In a preferred embodiment of the invention the modified polypeptides have at least $23 \%, 24 \%, 25 \%, 30 \%$, $35 \%, 40 \%, 45 \%, 50 \%, 55 \%, 60 \%, 65 \%, 70 \%, 75 \%, 80 \%$, $81 \%, 82 \%, 83 \%, 84 \%, 85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%$, $91 \%, 92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%$ identity, and at least 99% identity with the full-length amino acid sequence illustrated herein
[0182] In a preferred embodiment of the invention the modified polypeptides have at least 23% identity with the full-length amino acid sequence illustrated herein.
[0183] In a preferred embodiment of the invention the modified polypeptides have at least 88% identity with the full-length amino acid sequence illustrated herein.
[0184] According to a further aspect of the invention there is provided a vector comprising a nucleic acid molecule according to the invention.
[0185] In a preferred embodiment of the invention the vector is an expression vector adapted for expression in a microbial host cell as herein disclosed.
[0186] Preferably the nucleic acid molecule in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell such as a microbial, (e.g., bacterial, yeast), or plant cell. The vector may be a bi-functional expression vector which functions in multiple hosts.
[0187] According to a further aspect of the invention there is provided a host cell transformed or transfected with a nucleic acid molecule or vector according to the invention. In a preferred embodiment of the invention said cell is a heterologous host cell wherein said heterologous host cell does not naturally express a nucleic acid molecule according to the invention or vector comprising a nucleic acid molecule according to the invention.
[0188] In a further preferred embodiment of the invention said cell transformed or transfected with a nucleic acid molecule or vector according to the invention is a recombinant cell.
[0189] In the context of this application a recombinant cell defines a host organism cell comprising DNA from a different species e.g. expression of a nucleotide sequence from Parascedosporium species in an Aspergillus spp cell. In a preferred embodiment of the invention said cell is a microbial cell.
[0190] In a preferred embodiment said cell is selected from the group consisting of bacterial cell, yeast cell, fungal cell, insect cell and plant cell.
[0191] In a preferred embodiment said cell is a bacterial cell.
[0192] In a preferred embodiment of the invention said bacterial cell is an Escherichia coli cell.
[0193] In a preferred embodiment said transgenic is a fungal or yeast cell.
[0194] In a further preferred embodiment of the invention said fungal cell is an Aspergillus sp. cell
[0195] In a further preferred embodiment of the invention said fungal cell is an Aspergillus niger cell.
[0196] In a further preferred embodiment of the invention said fungal cell is not a Parascedosporium sp cell.
[0197] In a preferred embodiment of the invention said yeast cell is selected from the group consisting of Saccharomyces cerevisae, Schizosaccharomyces pombe or Pichia pastoris.
[0198] If microbial cells are used as organisms and in the process according to the invention they are grown or cultured in the manner with which the skilled worker is familiar, depending on the host organism. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulphate, trace elements such as salts of iron, copper, manganese and magnesium and, if appropriate, vitamins, at temperatures of between $0^{\circ} \mathrm{C}$. and $100^{\circ} \mathrm{C}$., preferably between $10^{\circ} \mathrm{C}$. and $60^{\circ} \mathrm{C}$., while gassing in oxygen.
[0199] The pH of the liquid medium can either be kept constant and regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously. Nutrients can be provided at the beginning of the fermentation or fed in semi-continuously or continuously. To this end, the organisms can advantageously be disrupted beforehand. In this process, the pH value is advantageously kept between pH 4 and 12, preferably between pH 6 and 9 , especially preferably between pH 7 and 8 .
[0200] The culture medium to be used must suitably meet the requirements of the strains in question. Descriptions of culture media for various microorganisms can be found in the textbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).
[0201] As described above, these media which can be employed in accordance with the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and/or trace elements.
[0202] Preferred carbon sources are sugars, such as mono, di- or polysaccharides. Examples of carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds such as molasses or other by-products from sugar refining. The addition of mixtures of a variety of carbon sources may also be advantageous. Other possible carbon sources are oils and fats such as, for example, soya oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or linoleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol, and/or organic acids such as, for example, acetic acid and/or lactic acid.
[0203] Nitrogen sources are usually organic or inorganic nitrogen compounds or materials comprising these compounds. Examples of nitrogen sources comprise ammonia in liquid or gaseous form or ammonium salts such as ammonium sulphate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids, or complex nitrogen sources such as cornsteep liquor, soya meal, soya protein, yeast extract, meat extract, and others. The nitrogen sources can be used individually or as a mixture.
[0204] Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulphate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper, and iron.
[0205] Inorganic sulphur-containing compounds such as, for example, sulphates, sulphites, dithionites, tetrathionates, thiosulfates, sulphides, or else organic sulphur compounds such as mercaptans and thiols may be used as sources of sulphur for the production of sulphur-containing fine chemicals and pathway intermediates, in particular of methionine. [0206] Phosphoric acid, potassium dihydrogenphosphate or dipotassium hydrogenphosphate or the corresponding sodium-containing salts may be used as sources of phosphorus.
[0207] Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents comprise dihydroxyphenols such as catechol or protocatechuate and organic acids such as citric acid. [0208] The fermentation media used according to the invention for culturing microorganisms usually also comprise other growth factors such as vitamins or growth pro-
moters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate, and pyridoxine. Growth factors and salts are frequently derived from complex media components such as yeast extract, molasses, cornsteep liquor and the like. It is moreover possible to add suitable precursors to the culture medium. The exact composition of the media compounds heavily depends on the particular experiment and is decided upon individually for each specific case. Information on the optimization of media can be found in the textbook "Applied Microbiol. Physiology, A Practical Approach" (Editors P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 019963577 3). Growth media can also be obtained from commercial suppliers, for example Standard 1 (Merck) or BHI (brain heart infusion, DIFCO) and the like.
[0209] All media components are sterilized, either by heat (20 min at 1.5 bar and $121^{\circ} \mathrm{C}$.) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired.
[0210] The culture temperature is normally between $15^{\circ} \mathrm{C}$. and $45^{\circ} \mathrm{C}$., preferably at from $25^{\circ} \mathrm{C}$. to $40^{\circ} \mathrm{C}$. and may be kept constant or may be altered during the experiment. The pH of the medium should be in the range from 5 to 8.5 , preferably around 7.0 . The pH for cultivation can be controlled during cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia and aqueous ammonia or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing antifoams such as, for example, fatty acid polyglycol esters. To maintain the stability of plasmids it is possible to add to the medium suitable substances having a selective effect, for example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air into the culture. The temperature of the culture is normally $20^{\circ} \mathrm{C}$. to $45^{\circ} \mathrm{C}$. and preferably $25^{\circ} \mathrm{C}$. to $40^{\circ} \mathrm{C}$. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 to 160 hours. [0211] The fermentation broth can then be processed further. The biomass may, according to requirement, be removed completely or partially from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in said broth. It is advantageous to process the biomass after its separation.
[0212] According to an aspect of the invention there is provided a method for the manufacture of a β-etherase polypeptide comprising the following steps:
[0213] i) provide a cell according to the invention and cell culture medium,
[0214] ii) culture the host cell in i) above to express the polypeptide according to the invention; and optionally,
[0215] iii) isolating said polypeptide from the cell or cell culture medium.
[0216] In a preferred method of the invention said cell is a microbial cell.
[0217] Preferably, said microbial cell is a bacterial or fungal host cell.
[0218] Protocols for the manufacture of recombinantly expressed proteins are known to the skilled person. Isolating proteins under denaturing conditions can result in a higher yield of the protein of interest when compared to non-dena-
turing protein purification methods. The purified denatured proteins are subsequently allowed to re-fold into their native structure.
[0219] In a further method said polypeptide isolation is under denaturing conditions.
[0220] According to an aspect of the invention there is provided a composition comprising or consisting of one or more polypeptides according to the invention.
[0221] In a preferred embodiment of the invention said composition comprises at least the polypeptide is set forth in SEQ ID NO:9 or 26
[0222] In a further preferred embodiment of the invention said one more polypeptide is set forth in SEQ ID NO: 9, 10, $11,12,13,14,15$ and 16.
[0223] In a further preferred embodiment of the invention said one more polypeptide is set forth in SEQ ID NO: 26, $27,28,29,30,31,32$ and 33.
[0224] In a further preferred embodiment of the invention said composition further comprises one or more polypeptides for the saccharification of lignocellulose selected from the group consisting of cellulases, lytic polysaccharide monooxygenases, carbohydrate esterases, hemicellulases, glycosylhydrolases, endoglucanases, cellobiohydrolases, beta-glucosidases, xylanases, mannases, cellobiose dehydrogenases, and beta-xylosidases.
[0225] Saccharification is the process of breaking down complex carbohydrates such as cellulose into polysaccharides, disaccharides, and monosaccharides.
[0226] In a further preferred embodiment of the invention said composition comprises a buffer.
[0227] In a preferred embodiment of the invention said composition has a pH between 5 and 12, more preferably between 6 and 11, even more preferably between 7 and 10 .
[0228] In a preferred embodiment of the invention said composition has a pH of 10 .
[0229] In a preferred embodiment of the invention said composition has a pH of 7 .
[0230] According to an aspect of the invention there is provided a method for the modification of plant biomass comprising the following steps:
[0231] I) contacting plant biomass with a composition or cell according to the invention to form a reaction mixture and
[0232] II) incubating said reaction mixture under conditions which cleaves β-ether linkages present the plant biomass to obtain depolymerised lignin units.
[0233] Plant biomass in the context of this application comprises or consist of lignin and/or lignocellulose.
[0234] In a preferred method of the invention said method comprises further step iii) extracting said depolymerised lignin units from the reaction mixture.
[0235] In a preferred method of the invention said depolymerised lignin units are selected from the group consisting of flavones, p-coumaric acid, and ferulic acid.
[0236] In a further preferred method of the invention said depolymerised lignin units are selected from the group consisting of flavones and p-coumaric acid.
[0237] In a further preferred method of the invention said depolymerised lignin units are selected from the group consisting of flavones, monomeric guaiacyl phenylpropanoid units, monomeric syringyl phenylpropanoid units, and monomeric p-hydroxyphenyl phenylpropanoid units.
[0238] In a further preferred method of the invention said flavones are tricin.
[0239] In a further preferred method of the invention said depolymerised lignin units are tricin and/or p-coumaric acid.
[0240] In a further preferred method of the invention said plant biomass is selected from hardwood and softwood or woody biomass.
[0241] In the context of this application woody biomass defines saw mill or paper mill discards.
[0242] In a further preferred method of the invention said plant biomass is selected from grasses, com stover, corncob, corn fiber, wheat straw, sugarcane bagasse, wood pulp, rice straw, and municipal solid waste.
[0243] In a further preferred method of the invention said plant biomass is wheat straw or sugarcane bagasse.
[0244] In a further preferred method of the invention said method comprises further step of contacting the reaction mixture of iii) with a saccharification composition comprising one or more polypeptides for the saccharification of depolymerised lignin units.
[0245] In a preferred further method of the invention said saccharification composition comprises or consist of one or more polypeptides selected from the group consisting of cellulases, lytic polysaccharide monooxygenases, carbohydrate esterases, hemicellulases, glycosylhydrolases, endoglucanases, cellobiohydrolases, beta-glucosidases, xylanases, mannases, cellobiose dehydrogenases, and beta-xylosidases [0246] In an alternative preferred method of the invention said saccharification composition is provided during step i).
[0247] In a preferred method of the invention said method comprises extracting di- and/or monosaccharides.
[0248] In a preferred method of the invention said monosaccharides are selected from the group consisting of glucose, xylose, and arabinose
[0249] According to an aspect of the invention there is provided the use of the polypeptides, cells or composition according to the invention in the hydrolysis of lignocellulose.
[0250] According to a further aspect of the invention there is provided a bioreactor comprising a cell or composition according to the invention.
[0251] In a preferred embodiment of the invention said bioreactor is a fermenter.
[0252] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps. "Consisting essentially" means having the essential integers but including integers which do not materially affect the function of the essential integers.
[0253] Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
[0254] Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with an aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
[0255] An embodiment of the invention will now be described by example only and with reference to the following figures:
[0256] FIG. 1. Composition of prokaryotic and eukaryotic genera during wheat straw degradation. Sequences were generated on an ion torrent platform after amplification of the 16 S and ITS for a) prokaryotic and b) eukaryotic identification, respectively. Operational taxonomic units were identified to genus level $\mathrm{N}=1$;
[0257] FIG. 2. Expression change of contigs between glucose and wheat straw conditions. RNA was extracted and sequenced after a) two, b) four and c) ten days of P. putredinis NO1. incubation on wheat straw and four days of growth on glucose. Points represent the log fold change (FC) and average counts per million (CPM) of contigs, between the wheat straw and glucose conditions. Carbohy-drate-active enzymes were annotated using dbCAN namely auxiliary activities (AA), glycoside hydrolases (GH), polysaccharide lyases (PL), carbohydrate esterases (CE), glycosyltransferases (GT), and non-catalytic carbohydrate-binding modules (CB). Points are the average of three biological replicates;
[0258] FIG. 3. Molar percentages of supernatant (SNT) and biotin-labelled (BF) proteins after four days of incubation on wheat straw. Molar percentages of carbohydrateactive families, GH: Glycoside hydrolase, AA: Auxiliary activity, PL: Polysaccharide lyase, CE: Carbohydrate esterase, and GT glycosyl transferase, were calculated as the sum of contigs annotated and taken as an average for each biological replicate. $\mathrm{N}=3$;
[0259] FIG. 4. Release of compounds after incubation with lignocellulosic biomasses. Biomass was treated for 16 h with our recombinant β-etherase, mushroom tyrosinase, and buffer alone, and reaction products were extracted with ethyl acetate, a) Tricin 1 release from wheat straw was observed and compared to an authentic standard using a High-Performance Liquid-Chromatography (HPLC), and mass was confirmed by time-of-flight mass spectrometry. b) HPLC analysis of enzyme incubations with sugarcane bagasse. Products were identified by mass spectrometry and comparison with authentic standards, as p-hydroxybenzaldehyde 2 , vanillin 3, p-coumaric acid 4;
[0260] FIG. 5. Release of sugars from sugarcane bagasse, wheat straw, and rice straw. Sugarcane bagasse, wheat straw, and rice straw were treated with recombinant β-etherase, commercial mushroom tyrosinase, and buffer only for 16 h prior to the application of Celluclast ${ }^{\circledR}$ commercial saccharification cocktail. Sugar release was calculated from the reaction mixture using High-Performance Anion-Exchange chromatography. Error bars represent the standard deviation of five biological replicates;
[0261] FIG. 6. Optimisation of P. putredinis NO1 growth media. a) A central composite design was used to create a response surface morphology to yeast extract and sodium nitrate concentrations. b) Both cellulase and xylanase production was improved with a high yeast extract and low nitrate concentrations;
[0262] FIG. 7. Growth of P. putredinis NO1 on wheat straw over a period of one month. a) Growth of P. putredinis NO1 on wheat straw estimated by the total protein present in the culture and b) the dried weight of the total biomass within the culture. c) The pH of the culture was also monitored alongside d the release of sugar after 1 h from 10%
supernatant loading on carboxymethylcellulose and beechwood xylan;
[0263] FIG. 8. Proteomics of P. putredinis NOl grown on wheat straw. a) Total proteins recovered from P. putredinis NO1 exoproteome across timepoints. b) Total molar percentage of CAZy class across timepoints in the biotin labelled protein sample and supernatant;
[0264] FIG. 9. GGB4MU β-etherase assay. Under the action of a β-etherase the $4-O-\beta$-ether linkage is cleaved liberating the product MUF. Upon excitement at 372 nm MUF will fluoresce at 445 nm ;
[0265] FIG. 10. c2092_g1_il abundance within the a) transcriptomic and b) proteomic libraries. Circles represent sample values of biological replicates ($\mathrm{N}=3$), and error bars \pm SD of the mean;
[0266] FIG. 11. Alignment of β-etherase amino acid sequence (c2092) with structurally related enzymes. Alignment with 2Y9W; tyrosinase from Agaricus bisporus (common mushroom), 2P3X; Vitis vinifera Polyphenol Oxidase, 4J3P; catechol oxidase Aspergillus oryzae, 1WX2; Streptomyces castaneoglobisporus tyrosinase, 4J6V; Bacillus megaterium N205D tyrosinase. Identical amino acids are indicated by asterisks and amino acids similarity by dots. The conserved N-terminal arginine residue is circled ; cop-per-binding regions are highlighted;
[0267] FIG. 12. Reads per kilobase per million (RPKM) of contigs identified as sharing significant similarity of the putative β-etherase. Reads with a similarity identity of over 30% to c2092 were considered as displaying significant homology. Circles represent sample values of biological replicates ($\mathrm{N}=3$), and error bars \pm SD of the mean;
[0268] FIG. 13. Activity of the putative β-etherase against the synthetic substrate $G G \beta 4 \mathrm{MU}$. a) Fluorescence activity of purified β-etherase against tyrosinase and buffer control reaction. $\mathrm{b}-\mathrm{c}$) optimum temperature and pH for purified β etherase as assessed by GGß4MU assay. Circles represent sample values, and bars sample mean $\pm \mathrm{SD}, \mathrm{N}=3$;
[0269] FIG. 14. UV spectrum showing oxidase activity of β-etherase against tyrosinase substrates. Either was incubated in 50 mM Tris pH 8.5 at room temperature with 1 mM of substrate against enzyme only or substrate only as controls, a) L^{-}-DOPA reaction with tyrosinase, b) L^{-}

DOPA reaction with β-etherase, c) tyrosine reaction with tyrosinase, d) tyrosine reaction with β-etherase;
[0270] FIG. 15. UV spectrum showing oxidase activity of β-etherase against different phenolic compounds. $1 \mathrm{mg} / \mathrm{mL}$ of the enzyme was incubated in 50 mM Tris pH 8.5 at room temperature with 1 mM of either catechin hydrate, pyrogallol, vanillic acid, p-hydroxybenzoic acid or quercetin. UVVis spectra were recorded at regular intervals; and
[0271] FIG. 16. Release of products from lignocellulosic substrates after incubation with β-etherase, mushroom tyrosinase and buffer only. Reactions were performed at physiological $-\mathrm{pH} 8.5 \& 30^{\circ} \mathrm{C}$. prior to the reaction products being extracted from the reaction supernatant using ethyl acetate and analysed with high-performance liquid-chromatography. Circles represent the individual sample values ($\mathrm{N}=5$), and error bars \pm SD of the mean.
[0272] FIG. 17. Lignin aromatic and side-chain region of 2D HSQC NMR spectra (DMSO- d_{6} :pyridine- $\mathrm{d}_{5}, 4: 1, \mathrm{v} / \mathrm{v}$) of enzyme lignins (EL) from (A) the wheat control, and (B) the enzyme-treated wheat. Signal assignments in the spectra correspond to the chemical structures of the lignin monomeric subunits shown (S) syringyl, (G) guaiacyl, (H) phydroxyphenyl, (T) tricin, (pCA) p-Coumarate, (A) β-aryl ether (β - $\mathrm{O}-4$), (B) phenylcoumaran ($\beta-5$), (C) resinol ($\beta-\beta$).
[0273] The quantification values shown in the table are for relative comparisons of the lignin components determined from NMR contour volume-integrals based on $\mathrm{S}+\mathrm{G}+\mathrm{H}$ $=100 \%$. The pCA and T units are lignin appendages; their levels were estimated and expressed based on the total lignin $(\mathrm{S}+\mathrm{G}+\mathrm{H})$. Assignments are from papers noted in the Experimental Section, along with the newly A $\beta-\mathrm{T}$ assignment (80). Note that, to allow the crucial lignin side-chain contours to be more clearly seen, the boxed lignin side-chain region was vertically scaled by $\sim 1.75 \times$.
[0274] FIG. 18. SDS-PAGE after denaturation, purification and refolding. L is protein marker -Thermo Scientific ${ }^{\text {TM }}$ PageRuler ${ }^{\text {TM }}$ Plus Prestained Protein Ladder, 10 to 250 kDa . E 1 is protein purified in the absence of CuSO_{4}, and E 2 was purified with CuSO_{4} present in the refolding buffer.

TABLE 1

Proteins showing homology to the putative β-etherase within P putredinis NOl transcriptome. BLASTp searches

SEQ ID	evalue	pident	length	bitscore	Similarity\%	Similarity
$\begin{aligned} & \text { cl9124_glil } 4 \\ & (\text { SEQ IQ NO 10) } \end{aligned}$	$9.4 \mathrm{E}-111$	43.796	411	330	0.608	256/421
$\begin{aligned} & \text { c7740 gl il_6 } \\ & \text { (SEQ DD No ll) } \end{aligned}$	8.17E-77	38.482	382	243	0.508	23/439
$\begin{aligned} & \text { c10688 g1 i1 } 2 \\ & \text { (SEQ D NO } 12 \text {) } \end{aligned}$	1.72E-74	40.395	354	236	0.52	226/435
$\begin{aligned} & \text { c5294_g1_il_3 } \\ & \text { (SEQ ID NO } 13 \text {) } \end{aligned}$	1.65E-71	37.366	372	229	0.52	223/429
$\begin{aligned} & c 2117 \text { g1 il_2 } \\ & \text { (SEQ D NO } 14 \text {) } \end{aligned}$	2.9E-57	36.936	349	191	0.422	184/436
$\begin{aligned} & \text { c19010_g1_i1 } 4 \\ & \text { (SEQ D NO } 15 \text {) } \end{aligned}$	$2.94 \mathrm{E}-32$	29.254	335	125	0.325	164/505
$\begin{aligned} & \text { c7470 glin_2 } \\ & \text { (SEQ ID NO } 16 \text {) } \end{aligned}$	$2.25 \mathrm{E}-26$	23.37	368	108	0.376	169/449

TABLE 2

Proteins with homology to the β-etherase within NCBI non-redundant database. BLASTp searches were performed on the c2092_gl_il sequence against the non-redundant protein database held by NCBI. Results were filtered to $>50 \%$ identity							
	Description	Max Score	Total Score	Query Cover	E value	Percent identity	
gb\|PKS12997.1		hypothetical protein jhhlp_000338 [Lomentospora prolifcans]	713	713	100\%	0.0	87.50\%
ref\|XP_016642676.1		Tyrosinase central domain protein [Scedosporium apiospermum]	674	674	100\%	0.0	82.40\%
gb\|TPX10091.1		hypothetical protein E0L32_001288 [Phialemoniopsis curvata]	572	572	93\%	0.0	67.19\%
gb\|ELA32929.1		tyrosinase central domain protein [Colletotrichum fructicola Nara gc5]	506	506	99\%	7e-176	57.95\%
gb\|KZL67883.1		tyrosinase central domaincontaining protein [Colletotrichum tofieldiae]	501	501	97\%	$8 \mathrm{e}-174$	58.90\%
gb\|EQB58959.1		hypothetical protein CGLO 00722 [Colletotrichum gloeosporioides Cg -14]	497	497	92\%	$3 \mathrm{e}-172$	59.89\%
gb\|KZL82263.1		tyrosinase central domaincontaining protein [Colletotrichum incamum]	496	496	97\%	$3 \mathrm{e}-172$	58.15\%
gb\|KXH49404.1		tyrosinase central domaincontaining protein [Colletotrichum nymphaeae SA01]	486	486	99\%	2e-168	55.88\%
gb\|KXH49404.1		tyrosinase central domaincontaining protein [Colletotrichum simmondsii]	485	485	99\%	le-167	55.64\%
gb\|OLN85731.1		Grixazone synthase 2 [Colletotrichum chlorophyti]	484	484	92\%	$3 \mathrm{e}-167$	58.99\%
ref\|XP_018157362.1		tyrosinase central domaincontaining protein [Colletotrichum higginsiamamIMI 349063]	481	481	92\%	4e-166	59.37\%
gb\|EXF76797.1		tyrosinase central domaincontaining protein [Colletotrichum fioriniae PJ7]	479	479	99\%	2e-165	55.15\%
gb\|TDZ75107.1	tyrosinase-like protein orsC [colletotrichum trifolii]	476	476	92\%	4e-164	59.95\%	
gb\|TKW48599.1		hypothetical protein CTA1_467 [Colletotrichum tanaceti]	473	473	92\%	7e-163	58.42\%
gb\|TDZ15437.1		tyrosinase-like protein orsC [colletotrichum orbiculare MAFF 240422]	470	470	92\%	4e-162	60.48\%
ref\|XP_001227696.2		hypothetical protein CHGG 09769 [Chaetomium globosum CBS 148.51]	469	469	100\%	2e-161	55.50%
gb\|TDZ29471.1		Tyrosinase-like protein orsC [colletotrichum spinosum]	460	460	92\%	2e-157	57.00\%
ref\|XP_022470530.1		tyrosinase central domaincontaining protein [Colletotrichum orchidophilum]	458	458	99\%	2e-157	54.66\%
gb\|OIW32989.1	tyrosinase central domaincontaining protein [Coniochaeta ligniaria NRRL30616	447	447	92\%	5e-153	53.79\%	
gb\|KXH30586.1		tyrosinase central domaincontaining protein [Colletotrichum salicis]	447	447	97\%	$3 \mathrm{e}-152$	54.02\%
gb\|RKU41032.1		hypothetical potein DL546 002981 [Coniochaeta pulveracea]	442	442	99\%	5e-151	51.96\%
gb\|KZL64229.1		tyrosinase central domaincontaining protein [Colletotrichum incanum]	434	434	92\%	4e-145	55.17\%
gb\|TEA15757.1		Tyrosinase-like protein orsC [Colletotrichum sidae]	427	427	92\%	$6 \mathrm{e}-145$	55.00%
gb\|OHW92206.1		tyrosinase central domaincontaining protein [Colletotrichum incanum]	420	420	84\%	5e-143	57.73\%
ref\|XP_01816298.1		Tyrosinase central domaincontaining protein [Colletotrichum higginsianum IMI 349063]	425	425	92\%	1e-142	54.38\%
gb\|TID02585.1		Tyrosinase ustQ [Colletotrichum higginsianum]	425	425	92\%	le-142	54.38\%

TABLE 2-continued
Proteins with homology to the β-etherase within NCBI non-redundant database. BLASTp searches were performed on the c2092_g1_il sequence against the non-redundant protein database held by NCBI. Results were filtered to $>50 \%$ identity

	Description	Max Score	Total Score	Query Cover	E value	Percent identity	
gb\|OLN83361.1		Tyrosinase 2 [Colletotrichum chlorophyti]	417	417	92\%	$5 \mathrm{e}-141$	51.97\%
emb\|CCF32411.1		hypothetical protein CH063 04807 [Colletotrichum higginsianum	412	412	84\%	$7 \mathrm{e}-140$	56.85\%
gb\|KZL72889.1		tyrosinase-like protein [Colletotrichum tofieldiae]	412	412	84\%	$7 \mathrm{e}-140$	57.14\%
gb\|TKW50870.1		hypothetical protein CTAl 3684 [Colletotrichum tanaceti]	419	419	92\%	$7 \mathrm{e}-140$	52.39\%
gb\|KDN70624.1		hypothetical protein CSUB01 04485 [Colletotrichum sublineola]	417	417	92\%	1e-139	53.58\%
gb\|EXF84421.1		hypothetical protein CFIO01_02736 [Colletotrichum fioriniae PJ7]	409	409	92\%	le-136	52.22\%
gb\|XP_003664995.1		tyrosinase-like protein [Thermothelmyces thermophilus ATCC 42464]	404	404	92\%	$3 \mathrm{e}-136$	54.09\%
gb\|TQN72542.1	Tyrosinase-like protein orsC [Colletotrichum sp. PG-2018a]	407	407	89\%	5e-136	54.77\%	
ref\|XP_003351009.1		uncharacterized protein SMAC 04313 [Sordaria marcrospora khell]	399	399	97\%	$6 \mathrm{e}-134$	50.12\%
ref\|XP_006692366.1		hypothetical protein CTHT 0018720 [Chaetomium thermophilum yar. thermophilum DSM 1495]	395	395	89\%	le-132	54.67\%
gb\|TDZ58291.1		Tyrosinase-like protein orsC [Colletotrichum trifolii]	393	393	79\%	$6 \mathrm{e}-132$	57.67\%
gb\|TDZ23501.1		Nitroalkane oxidase [Colletotrichum orbiculare MAFF 240422]	409	409	80\%	$8 \mathrm{e}-132$	57.75\%
ref\|XP_022471338.1		hypothetical protein COR01 10513 [Colletotrichum orchidophilum]	397	397	92\%	$9 \mathrm{e}-132$	50.78\%
gb\|KXH34366.1		hypothetical protein CSIM01 00277 [Colletotrichum simmondsii]	396	396	92\%	$2 \mathrm{e}-131$	50.51\%
gb\|KXH69104.1		hypothetical protein CSAL01 01466 [Colletotrichum salicis]	389	389	81\%	$3 \mathrm{e}-129$	56.19\%
ref\|XP_008090963.1		hypothetical protein GLRG 02114 [Colletotrichum graminicola M1.001	378	378	79\%	2e-126	56.44\%
ref\|XP_001227853.1		hypothetical protein CHGG 09926 [Chaetomium globosum CBS 148.51]	373	373	92\%	$5 \mathrm{e}-124$	50.00\%
gb\|TDZ28941.1		Tyrosinase-like protein orsC [Colletotrichum spinosum]	371	371	73\%	2e-122	58.14\%
gb\|ELA37064.1		hypothetical protein CGGC5 3508 [Colletotrichum fructicola Nara ge5]	364	364	72\%	le-121	59.52\%
ref\|XP_007911158.1	putative tyrosinase-like protein [Phaeoacremonium minimum UCRPA7]	363	363	68\%	$2 \mathrm{e}-121$	59.22\%	
gb\|EQB52888.1		hypothetical protein CGLO 07432 [Colletotrichum gloeosporioides Cg-14]	361	361	72\%	$2 \mathrm{e}-120$	59.86\%
gb\|TEA10724.1		Nitroalkane oxidase [Colletotrichum sidae]	373	373	73\%	$4 \mathrm{e}-118$	58.33\%
ref\|XP_024731024.1		putative tyrosinase [Meliniomyces bicolor E]	331	331	79\%	$2 \mathrm{e}-108$	51.38\%
emb\|CDP29730.1		Putative tyrosinase [Podospora anserina S mat+	326	326	81\%	$4 \mathrm{e}-106$	50.15\%
emb\|VBB81548.1		Putative tyrosinase [Podospora comtat]	326	326	81\%	5e-106	50.15\%
ref\|XP_001273822.1		tyrosinase, putative [Aspergillus clavatus NRRL 1]	326	326	83\%	2e-105	50.00\%
ref\|XP_001905273.1		uncharacterized protein PODANS 57820 [Podospora anserina S mat +]	323	232	80\%	$3 \mathrm{e}-105$	50.00\%
gb\|PGH18781.1		hypothetical protein AJ79_00194 [Helicocarpus griseus UAMH5409]	325	325	83\%	5e-105	50.15\%
gb\|PBP21500.1		hypothetical protein BUE80 DR007716 [Diplocarpon rosae]	278	278	68\%	$4 \mathrm{e}-88$	50.17\%

TABLE 3

| Purification of β-etherase. The heterologously expressed protein was purified using anion-exchange (Q) and size-
 exclusion chromatography (S.E). Protein concentration and VT221 |
| :--- | :---: | :---: | :---: | :---: | :---: |

TABLE 4

β-etherase substrate specificity		
Substrate	Etherase reactivity	Tyrosinase reactivity
Tyrosine methyl ester	-	+
L-Dopa (3,4-dihydroxy-Lphenylalanine)	-	+
Dopamine hydrochloride	-	$+$
Caffeic acid (catechol oxidase substrate)	-	$+$
4-Methly-catechol (catechol oxidase substrate)	-	$+$
Tyrosol (catechol oxidase substrate)	-	-
Tannic acid	-	-
(+)-Catechin hydrate	+	+
Pyrogallol	+	+
4-Hydroxybenzoic acid	+	-
Quercetin	+	-
Vanillic acid	+	-

MATERLAL AND METHODS

Wheat Straw Degradation in Shake-Flasks Inoculated with Compost
[0275] Two-liter shake flasks, containing 1 L minimal media and $5 \%(\mathrm{w} / \mathrm{v})$ milled wheat straw, were inoculated with $1 \%(\mathrm{w} / \mathrm{v})$ compost. The inoculum was collected from composting wheat straw that had been developed over the period of a year and watered at regular intervals. The inoculum was prepared by blending until homogenized and used on the day of preparation. The minimal media was based on Aspergillus niger minimal media and contained KCI $0.52 \mathrm{~g} /$ $\mathrm{L}, \mathrm{KH}_{2} \mathrm{PO}_{4} 0.815 \mathrm{~g} / \mathrm{L}, \mathrm{K}_{2} \mathrm{HPO}_{4} 1.045 \mathrm{~g} / \mathrm{L}, \mathrm{MgSO}_{4} 1.35 \mathrm{~g} / \mathrm{L}$, $\mathrm{NaNO}_{3} 1.75 \mathrm{~g} / \mathrm{L}$, Hutner's trace elements $\left(\mathrm{Na}_{2} \mathrm{EDTA} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ $50 \mathrm{~g} / \mathrm{L}, \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} 22 \mathrm{~g} / \mathrm{L}, \mathrm{H}_{3} \mathrm{BO}_{3} 11.4 \mathrm{~g} / \mathrm{L}, \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $0.506 \mathrm{~g} / \mathrm{L}, \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} 0.4499 \mathrm{~g} / \mathrm{L}, \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} 0.161 \mathrm{~g} /$ $\mathrm{L}, \mathrm{CuSO}_{4}-5 \mathrm{H}_{2} \mathrm{O} 0.157 \mathrm{~g} / \mathrm{L},\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O} 0.110 \mathrm{~g} /$ L). These flasks were incubated at $30^{\circ} \mathrm{C}$. and shaken at 150 rpm . Aliquots (10 mL) containing both the solid and liquid fractions were aseptically collected weekly for eight weeks. The samples were then serially diluted with $x 1$ phos-phate-buffered saline to concentrations ranging between $10-$ ${ }^{1}$ and 10^{-7}. From these dilutions $100 \mu \mathrm{~L}$ samples were used to create spread plates on both nutrient agar (NA) and potato dextrose agar (PDA), in order to culture strains from the composting environment.

Targeted Amplicon Sequencing of 16S and ITS Region

[0276] Genomic DNA was harvested from the compost cultures using a modified CTAB protocol adapted for use on materials with high phenolic contents. From the com-
posting shake flask, 20 mL aliquots were harvested weekly. The biomass was separated from the liquid fraction by centrifugation performed at 4000 g at $4^{\circ} \mathrm{C}$., and 0.5 g of biomass removed to a 2 mL screw-cap tube. To this $500 \mu \mathrm{~L}$ of cetyltrimethylammonium bromide (CTAB) buffer (2% (w/ v) CTAB 100 mM Tris-HCI (pH 8.0), 20 mM EDTA (pH 8.0), $2 \mathrm{M} \mathrm{NaCl}, 2 \%$ (w/v) polyvinylpyrrolidone (Mr 40.000), 5% 2-mercaptoethanol (v / v), 10 mM ammonium acetate, was added along with 0.5 g of zirconia beads and 0.5 mL of phenol: chloroform: isoamyl alcohol (25: 24: 1, pH 8.0), before briefly vortexing. The material was then bead-beaten using a TissueLyser II (Qiagen) for 5 min at speed $28 / \mathrm{s}$. A modified phenol-chloroform method was used to extract DNA after cell lysis. The sample was spun for 5 min at max speed to achieve separation of the phases before the aqueous layer was removed to a fresh 2 mL Eppendorf tube. To the aqueous phase chloroform: isoamyl alcohol (21:1) was added, and this was spun and the aqueous phase transferred to a fresh tube, to remove any remaining phenolics. To precipitate the DNA within the sample, an equal volume of ice-cold 100% isopropanol was added and incubated for 1 h . DNA was pelleted by centrifugation at $13,000 \mathrm{rpm}$ for 10 min , and supernatant was removed without disturbing the pellet. The pellet was then washed with 80% ethanol, before being resuspended in DNAse-free water.
[0277] Regions for amplicon sequencing were amplified using Phusion ${ }^{\circledR}$) High-Fidelity DNA Polymerase (Finnzymes OY, Finland) as per manufactures instructions before being purified with Agencourt AMPure XP (Beckman Coulter), and sequenced at the Biorenewables Development Centre (BDC), York, U.K. using an Ion Torrent platform. The primers pairs, for ITS and 16 S sequencing, were as follows; ITS1 Fw - TCCGTAGGTGAACCTGCGG (SEQ ID NO 34), Rv - CGCTGCGTTCTTCATCG (SEQ ID NO 35), 16S Fw -AYTGGGYDTAAAGNG (SEQ ID NO 36), RvTACNVGGGTATCTAATCC(SEQ ID NO 37). Ribosomal DNA sequence data generated via targeted amplicon sequencing was analyzed using the open-access software Qiime on the University of York's Technology Facilities linux server. ${ }^{57}$ Each fastq file generated from the IonTorrent platform was first demultiplexed and then converted into both fasta and qual file types using Qiimes python script convert_fastaqual_fastq.py. To remove the primer sequences from the reads, the script split_libraries.py was used along with a mapping file generated as per Qiimes instructions. Low-quality reads were removed by filtering out reads under 180 bp long and those without recognizable primers. The orientation of the sequences was then corrected based on the primer location. Operational taxonomic units (OTUs) were then created from the fasta files. These files were picked using the open-reference OTU picking process. To perform this, the script pick_open_reference_otus.py was used. This step also includes taxonomy assignment,
sequence alignment, and tree building steps. For the taxonomy assignments of bacterial sequences the default reference database was used, (greengenes gg_13_8 97_otus database), ${ }^{58,59}$ and for the fungal ITS sequences the UNITE (alpha release 12_11) database was used. ${ }^{60}$

Central Composite Design for Media Optimisation

[0278] Media was optimized using a central composite design with rotation. ${ }^{61}$ It was optimized for the production of both cellulase and xylanase enzymes after seven days on 1.5% wheat straw and minimal media, as assessed by measuring reducing sugar release after incubation on CMC and xylan. The concentrations of both sodium nitrate and yeast extract were varied as part of the optimization. The sodium nitrate concentration was varied between $0 \mathrm{~g} / \mathrm{L}$ and $3.5 \mathrm{~g} / \mathrm{L}$, and yeast extract was varied between 0% and 1% (w/v). Statistica 6.0 software was used to create the experimental design and analyze the results.
[0279] The optimized media for P. putredinis NO1 growth consisted of yeast extract $8.55 \mathrm{~g} / \mathrm{L}, \mathrm{KCI} 0.52 \mathrm{~g} / \mathrm{L}, \mathrm{KH}_{2} \mathrm{PO}_{4}$ $0.815 \mathrm{~g} / \mathrm{L}, \mathrm{K}_{2} \mathrm{HPO}_{4} 1.045 \mathrm{~g} / \mathrm{L}, \mathrm{MgSO}_{4} 1.35 \mathrm{~g} / \mathrm{L}, \mathrm{NaNO}_{3}$ $1.75 \mathrm{~g} / \mathrm{L}$ and Hutner's trace elements.

Characterization of P. Putredinis NO1 Growth on Wheat Straw

[0280] Growth of P. putredinis NO1 was assessed using the dried weight of the biomass present within the culture. Cultures were transferred to pre-weighed and freeze-dried falcon tubes and chilled for 5 min . They were then centrifuged at $4,500 \mathrm{rpm}$, and the supernatant removed. The biomass was gently rinsed with xl PBS and tubes were flashfrozen in liquid nitrogen and lyophilized. Each tube was then re-weighed to calculate the dry weight of the biomass present. The total protein content of the cultures was used as an indicator of growth on insoluble materials such as wheat straw. Total protein was extracted by boiling $100 \mu \mathrm{~g}$ of freeze-dried biomass in 1 mL of $0.2 \%(\mathrm{w} / \mathrm{v})$ sodium dodecyl sulfate, for 5 min to lyse all cells present. Protein was then collected by centrifugation at $14,000 \mathrm{rpm}$ and the supernatant collected into a fresh 50 mL falcon tube. This was repeated three times, without heating, and with vigorous vortexing between each centrifuge step to wash the biomass of any remaining protein. Extracted protein was precipitated with five volumes of ice-cold acetone overnight at $-20^{\circ} \mathrm{C}$., before being centrifuged at 4500 rpm and the resulting pellet washed with 80% (v/v) ice-cold ethanol. The ethanol-protein mix was then centrifuged again, and the supernatant removed and the pellet air-dried. The protein was then solubilized in 3 mL of $\mathrm{H}_{2} \mathrm{O}$ and quantified using the Bradford assay. The ability of an enzyme to cleave polysaccharides and produce products with reducing ends was assessed at each timepoint by incubating $10 \mu \mathrm{~L}$ of cultural supernatant with the $2 \%(\mathrm{w} / \mathrm{v})$ of either carboxymethylcellulose (CMC) or xylan (beechwood) in $200 \mu \mathrm{~L}$ of 50 mM sodium phosphate at 6.8 and $30^{\circ} \mathrm{C}$. Before and after incubation $10 \mu \mathrm{~L}$ aliquots mixed with p-hydroxybenzoic acid hydrazide (PAHBAH), heated to $70^{\circ} \mathrm{C}$. for 10 min , and color change detected at 415 nm using a microtitre Tecan Safire 2 plate reader. ${ }^{62}$ A stock solution of the appropriate monosaccharide was assayed to obtain a standard curve for quantification of sugar release.

RNA Extraction from P Putredinis NO1 Sp

[0281] Cultures of P. putredinis NO1 were established in 200 mL shake flasks, containing 20 mL of the optimized growth media and either 1.5% wheat straw or 0.5% glucose. These were incubated at $30^{\circ} \mathrm{C}$. with shaking at 180 rpm . To control for varying amounts of cell growth, aliquots of either $0.5 \mathrm{~g}, 0.3 \mathrm{~g}$ and 0.1 g of biomass from the wheat straw cultures were weighed into 2 mL screw-cap tubes that contained $3 \times 3 \mathrm{~mm}$ tungsten carbide beads and 1 mL Trizol (Life Technologies). The cells were then disrupted in a TissueLyser II (Qiagen) for either $2 \times 2 \mathrm{~min}$ or $2 \times 5 \mathrm{~min}$ at $28 / \mathrm{s}$, dependent on the stage of growth. Total RNA was then extracted with the standard Trizol method as per manufacturer's instructions and extracted RNA was resuspended in $50 \mu \mathrm{~L}$ of nuclease-free water. The quality of RNA was assessed by visualization on agarose gels. To obtain enough RNA for processing six technical replicates were performed for each biological replicate. These were stored at $-80^{\circ} \mathrm{C}$. after being flash-frozen in liquid nitrogen before further processing could occur. The RNA samples were treated for DNA contamination with RTS DNase kits (Mobio) using standard methods described by the manufacturers. The samples were then cleaned with ZymoResearch RNA Clean \&
[0282] Concentrator ${ }^{\text {TM }} 5$ kits, using the manufacturer's protocol to separate small and large RNA fragments into different fractions. RNA fragments greater than 200 nt were elution into $50 \mu \mathrm{~L}$ of RNase-free water before RNA concentration, and quality was evaluated with the 2200 TapeStation (Aligent). Once total RNA of a suitable quantity and quality was obtained, samples could be enriched for messenger RNA (mRNA). This was performed using RiboZero ${ }^{\text {TM }}$ Magnetic Epidemiology rRNA removal kit (RZE1224/MRZ11124C; Illumina) according to the manufacturer's protocol.

RNA Sequencing

[0283] The Genome Analysis Centre (TGAC), Norwich, U.K, performed the RNA sequencing on an Illumina HiSeq platform. As per the requirements of the sequencing service, 100 ng of enriched mRNA was provided for each sample. From the proved mRNA, cDNA libraries were constructed using the adapted TruSeq RNA v2 protocol (Illumina 15026495 Rev.B). Libraries were then normalized using elution buffer (Qiagen) and pooled in equimolar amounts into one final 12 nM pool. These were then diluted to a final concentration of 10 pM , spiked with $1 \% \mathrm{PhiX}$ and loaded onto the Illumina cBotTemplate, for hybridization and first extension, using the TruSeq Rapid PE Cluster Kit vl before the flow cell was transferred onto the Illumina HiSeq2500. Here, the remainder of the clustering process was conducted, and the library pool was run in a single lane for 100 cycles of each paired-end read before samples were demultiplexed. One base-pair mismatch per library was allowed, and reads were converted to FASTq. The raw data was subject to rRNA removal by catching the remaining paired reads after mapping to a modified rRNA_115_tax_silva_vl. 0 ribosomal set, using BOWTIE2. The reads were further trimmed to remove adaptor sequences with the ngsShorT_2.1 method, and libraries were pooled before being assembled by Trinity Software to obtain 37,720 contigs. Then, using this assembly as a reference, the original (unprocessed) individual libraries were mapped and the
number of reads counted for each contig. Counts per million (CPM) were converted to reads per kilobase of exon per million reads mapped (RPKM) to normalize for both the depth of sequencing achieved in each sample and length of the contig.
[0284] Emboss GETORF (http://www.bioinformatics.nl/ cgi-bin/emboss/getorf) was used to generate putative pro-tein-coding sequences by translating all regions over 300 bp between potential start and stop codons. Putative open reading frames (ORFs) were searched against the NCBI non-redundant protein database and KOG database using BLASTp, and Pfam and dbCAN databases using HMMER3. $(45,81,82$) Local BLAST searches using unique were performed using BLAST+ 2.3.0. $(65,64)$ Signal peptides were predicted from ORFs using SignalP 4.0. $(66,67)$

Protein Extraction

[0285] Supernatant proteins were harvested by collecting samples (20 mL) from the culture supernatant of P. putredinis NO1 and precipitated in five volumes of ice-cold acetone. The acetone fractions were incubated overnight at $-20^{\circ} \mathrm{C}$., before being centrifuged at $10,000 \mathrm{xg}$. The resulting pellet was washed with 80% ice-cold acetone, air-dried and resuspended in 0.5 x PBS with 0.1% sodium dodecyl sulfate (SDS). To selectively extract biomass bound proteins, two grams of biomass collected from the fungal cultures was washed twice with ice-cold $0.5 x$ PBS, before being resuspended and mixed for 1 h at $4^{\circ} \mathrm{C}$., in 0.5 x PBS with 10 mM EZ-linked biotin (Thermo Scientific). The reaction was then quenched for 30 min with 50 mM Tris-HCL, pH 8 , and excess biotin was removed by washing twice with ice-cold $0.5 \times$ PBS. Warmed SDS ($2 \% \mathrm{w} / \mathrm{v}$, at $60^{\circ} \mathrm{C}$.) was used to extract the proteins. The mixture was incubated at room temperature for 1 h , centrifuged and precipitated with icecold acetone as described above. The resulting pellets were solubilized in 1x PBS containing 0.1% SDS then loaded onto streptavidin columns (Thermo Scientific) that had been pre-washed (0.1% SDS $1 \times$ PBS). The proteins were then incubated for 1 h on the column at $4^{\circ} \mathrm{C}$., and washed with three column volumes of 0.1% SDS 1 x PBS, before being incubated overnight with elution buffer $(50 \mathrm{mM}$ DTT in $1 \times \mathrm{PBS}$) at $4^{\circ} \mathrm{C}$. Proteins were eluted the following day by the addition of 1 mL elution buffer and the resulting fraction collected. The column was incubated for one hour before this was repeated. In total the elution was performed four times. These fractions were then flash-frozen in liquid nitrogen, freeze-dried, resuspended in 2 mL distilled water and desalted using Zeba, 7 K MWCO columns (Thermo Scientific) following manufacturer's instructions. Both the supernatant and biotin-tagged proteins were stored in 4$12 \%$ (w/v) Bis-Tris acrylamide gels. Protein samples were loaded into the gel, separated electrophoresis for 20 min and stained with InstantBlue (Sigma-Aldrich).

Proteomic LC-MS/MS

[0286] LC-MS/MS was performed to identify proteins within both the supernatant and biotin-labelled fractions. Proteins contained within gel slices were washed with 50% (v / v) aqueous acetonitrile containing 25 mM ammonium bicarbonate, then reduced with 10 mM DTE and Scarbamidomethylated with 50 mM iodoacetamide. Gels were then dehydrated with acetonitrile and digested with $0.2 \mu \mathrm{~g}$ trypsin (Promega) in 25 mM ammonium bicarbonate.

The digestion was performed overnight at $37^{\circ} \mathrm{C}$. Peptides were extracted with $50 \%(\mathrm{v} / \mathrm{v})$ aqueous acetonitrile, dried in a vacuum concentrate and resuspended in $0.1 \%(\mathrm{v} / \mathrm{v})$ aqueous trifluoroacetic acid. Peptides were loaded onto a nanoAcquity UPLC system (Waters) equipped with a nanoAcquity Symmetry C18, $5 \mu \mathrm{~m}$ trap ($180 \mu \mathrm{~m} \times 20 \mathrm{~mm}$ Waters) and a nanoAcquity HSS T3 $1.8 \mu \mathrm{~m}$ C18 capillary column ($75 \mathrm{~mm} \times 250 \mathrm{~mm}$, Waters). The trap was washed with $0.1 \%(\mathrm{v} / \mathrm{v})$ aqueous formic acid at a flow rate of $10 \mu \mathrm{~L}$ min^{-1}, before switching to the capillary column. Peptides were separated using a gradient elution of two solvents, $0.1 \%(\mathrm{v} / \mathrm{v})$ aqueous formic acid (solvent A) and acetonitrile containing $0.1 \%(\mathrm{v} / \mathrm{v})$ formic acid (solvent B). The flow rate used was $300 \mathrm{~nL} \mathrm{~min}{ }^{-1}$, and the column temperature was $60^{\circ} \mathrm{C}$. The gradient proceeded linearly from 2% solvent B to 30% over 125 min , then $30-50 \%$ over 5 min , before being washed with 95% solvent B for 2.5 min . The column was then re-equilibrated at the initial conditions for 25 min before subsequent injections. The nanoLC system was interfaced with a maXis HD LC-MS/MS System (Bruker Daltonics) with a CaptiveSpray ionization source (Bruker Daltonics). Positive ESI- MS \& MS/MS spectra were acquired using AutoMSMS mode. Instrument control, data acquisition and processing were performed using Compass 1.7 software (microTOF control, Hystar and DataAnalysis, Bruker Daltonics). Instrument settings were as follows: ion spray voltage: $1,450 \mathrm{~V}$; dry gas: $3 \mathrm{~L} \mathrm{~min}^{-1}$; dry gas temperature $150^{\circ} \mathrm{C}$.; collision RF: $1,400 \mathrm{Vpp}$; transfer time: 120 ms ; ion acquisition range: $\mathrm{m} / \mathrm{z} 150-2,000$. AutoMSMS settings specified: absolute threshold 200 counts, preferred charge states: 2-4, singly charged ions excluded. Cycle time: 1 s , MS spectra rate: 5 Hz , MS/MS spectra rate: 5 Hz at 2,500 cts increasing to 20 Hz at $250,000 \mathrm{cts}$ or above. Collision energy and isolation width settings were automatically calculated using the AutoMSMS fragmentation table. A single MS/MS spectrum was acquired for each precursor, with dynamic exclusion for 0.8 min unless the precursor intensity increased fourfold.

Genomic Data Analysis

[0287] The raw data was subject to rRNA removal by catching the remaining paired reads after mapping to a modified rRNA_115_tax_silva_v1.0 ribosomal set, using BOWTIE2. The reads were further trimmed to remove adaptor sequences with the ngsShoRT_2.1 method, and libraries were pooled before being assembled by Trinity Software to obtain 37,720 contigs. Then, using this assembly as a reference, the original (unprocessed) individual libraries were mapped and the number of reads counted for each contig. Counts per million (CPM) were converted to reads per kilobase of exon per Million reads mapped (RPKM) to normalize for both the depth of sequencing achieved in each sample and length of the contig. Emboss GETORF (http://www.bioinformatics.nl/cgi-bin/emboss/getorf) was used to generate putative protein-coding sequences in all six reading frames from the transcriptomic libraries by translating regions over 300 bp long between potential start and stop codons. These putative open reading frames (ORFs) were searched against the NCBI non-redundant protein database and KOG database using BLASTp, the Pfam and dbCAN databases using HMMER3. ${ }^{45,63}$ Annotations were subsequently mapped back to the contig from which the ORF originated. Local BLAST searches using unique
were performed using BLAST + 2.3.0. ${ }^{64,65}$ Signal peptides were predicted from ORFs using SignalP 4.0.66,67

Proteomic Data Analysis

[0288] Spectra obtained from the LC-MS/MS analysis were searched against all potential opening reads frames generated from the P. putredinis NO1 transcriptomic library, using Mascot (Matrix Science Ltd., version 2.4). This was locally run through the Bruker ProteinScape interface (version 2.1). Search criteria were specified as follows; the instrument was selected as ESI-QUAD-TOF, trypsin was stated as the digestion enzyme, fixed modifications as carbamidomethyl (C), and variable modifications as oxidation (M). Peptide tolerance was 10 ppm , and MS/MS tolerance 0.1 Da. Results were filtered through 'Mascot Percolator' to achieve a global false discovery rate of 1%, as assessed against a decoy database and further adjusted to accept only individual peptides with an expect score of 0.05 or lower. An estimation of relative protein abundance was performed as described by Ishihama, ${ }^{68}$ whereby an exponentially modified Protein Abundance Index (emPAI) is used to estimate the relative abundance of proteins in LC-MS/ MS experiments. From this index the molar percentage values could be calculated by normalising individual protein Mascot emPAI values against the sum of all emPAI values for each sample. Protein sequences were retrieved using the R package BioStrings. ${ }^{69}$

> Synthesis of Synthetic Substrate GGB4MU (7-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-4-methyl-2H-1-benzopyran-2-one)

[0289] The synthetic substrate GGß4MU was synthesized in 6 steps according to the protocol reported by Weinstein and Gold starting from acetovanillone. ${ }^{44}$ The pure substrate GGB4MU was obtained as a white solid following purification using plate chromatography on silica-gel ($10 \% \mathrm{v} / \mathrm{v}$ MeOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The NMR data were in excellent agreement with those previously reported. ${ }^{44}$

Identification of β-Etherase from Native Supernatant

[0290] P. putredinis NO1 was cultivated in medium containing 1.5% wheat straw. The supernatant was filtered, and the protein of interest purified by different purification steps, including ammonium sulfate precipitation (ASP), gel filtration using a superdex 200 (GF) on two different columns and anion-exchange chromatography (AE). Briefly, filtered culture supernatant with 0.1% Tween 20 was concentrated in a 50 mL stirred Ultracentrifugation Cell (Millipore Corporation, USA) with a Biomax 30 kDa Ultrafiltration Membrane (Millipore Corporation, USA). Ammonium sulfate was slowly added to the filtered culture supernatant to a concentration of 20% while stirring at $4^{\circ} \mathrm{C}$. The solution was centrifuged at 10.000 g for 15 min . The pellet was then resuspended in 2 mL buffer A (50 mM Tris- $\mathrm{HCL}, 100 \mathrm{mM} \mathrm{NaCl}$, 0.1% Tween $20, \mathrm{pH} 8.5$). Additional ammonium sulfate was added to the supernatant, following the same procedure as described above, to obtain fractions with 30, 40 and 50% ammonium sulfate. After assessing the fractions with the GGp4MU assay, samples were purified via gel-filtration on a Superdex-200 (GE Healthcare, US), using the ÄKTA system and 50 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Tween 20 ,
pH 8.5 . The most active sample was further purified using anion-exchange chromatography. Anion-exchange chromatography was conducted on a DEAE FF column (GE Healthcare, US) with an increasing salt concentration from 0 to 1 M NaCl in $20 \mathrm{~min}(5 \mathrm{~mL} / \mathrm{min})$. A running buffer of 30 mM Tris-HCI, 0.1% Tween 20 , at various pH (7.0/7.4/ 8.5) was used. The Elution buffer was 30 mM Tris-HCI, 1 M $\mathrm{NaCl}, 0.1 \%$ Tween 20.

Gene Cloning and Expression

[0291] The c2092 gene was codon-optimized for expression in E. coli and synthesized into pET151 vector with N terminal His-tag by Invitrogen. The expression plasmid was transformed into Arctic Express (DE3) competent cells, and successful transformants were selected on LB media containing ampicillin ($100 \mathrm{mg} \mathrm{L}^{-1}$) and gentamycin ($10 \mathrm{mg} \mathrm{L}^{-}$ ${ }^{1}$). Auto-induction media was used for protein production. Inoculated cultures were incubated at $30^{\circ} \mathrm{C}$. with shaking at 180 rpm until an optical density of 0.6 at 600 nm was reached. Once a suitable cell density was reached flasks, the temperature was reduced to $11^{\circ} \mathrm{C}$. for 48 h before harvesting.

Purification of Recombinant β-Etherase

[0292] Cell pellets were collected by centrifugation at 7000 rpm and $4^{\circ} \mathrm{C}$. for 15 min , then suspended in 50 mL (50 mM Tris, 1 mm DTT, pH 8.5). Suspended pellets were then sonicated on ice for using a Misonix S-4000 sonicator at 70 kHz for 4 min , using a program of 3 s off followed by 7 s on. After centrifugation at $17,000 \mathrm{rpm}$ for 45 min to remove cell debris, the protein was purified by anionexchange chromatography facilitated by an ÄKTA purifier UPC10 with UNICORN 5.31 workstation. Briefly, clear supernatant was loaded onto a mono-Q anion-exchange chromatography HP column (5 mL , GE Healthcare) that had previously been equilibrated with 50 mm Tris, $100 \mathrm{~mm} \mathrm{NaCl}, 10 \%$ glycerol pH 8 . The protein was then eluted with an increasing NaCl gradient (0 to 1 M) for 100 min at a rate of $1 \mathrm{~mL} / \mathrm{min}$. Eluted fractions containing the protein of interest were pooled and concentrated using Millipore Vivaspin20 10 kDa (Sartorius). These were then injected into a superdex 75 (16/60) gel-filtration column (GE Healthcare) that had been equilibrated with 50 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 10 \%$ glycerol pH 8.5. Fractions were assessed with SDS-PAGE to determine purity, and the protein concentration was calculated spectroscopically using the extinction coefficient at 280 nm .

Purification and Refolding of Recombinant β Etherase

[0293] Cell cultures were pelleted through centrifugation. Supernatant was discarded, and pellets were suspended in 5 mL per 100 mL of starting culture 20 mM (4-(2-hydro-xyethyl)-1-piperazineethanesulfonic acid) (HEPES) pH 8 , before sonicated on ice ($70 \mathrm{~V}, 4 \mathrm{~s}$ on, 7 s off for a total of 4 min on). Centrifugation at 10000 xg was again used to pellet cell debris and inclusion bodies. The pellet was washed with 20 mM HEPES, 2 M Urea, $0.5 \mathrm{M} \mathrm{NaCl}, 2 \%$ TritonTM X-100, pH 8 , using the same volume as before, and sonicated and centrifuged as before. The resultant pellet was then resuspended in 20 mM HEPES, $0.5 \mathrm{M} \mathrm{NaCl}, 5 \mathrm{mM}$ imidazole, 6 M guanidine hydrochloride, 1 mM dithiothrei-
tol (DTT) pH 8 , using 10 mL per 100 mL of original cell culture, to solubilise inclusion bodies. After pelleting through centrifugation for a final time, the supernatant was applied to a HisTrap column equilibrated with 20 mM HEPES, $0.5 \mathrm{M} \mathrm{NaCl}, 5 \mathrm{mM}$ imidazole, 6 M guanidine hydrochloride, 1 mM DTT pH 8 . The equilibration buffer was then used to wash the column for a total of 5 CV followed by the same volume of 20 mM HEPES, 0.5 M NaCl , 20 mM imidazole, 6 M urea, 1 mM DTT pH 8 . A linear gradient from the final wash buffer to 20 mM HEPES, $0.5 \mathrm{M} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, $0.1 \mathrm{mM} \mathrm{CuSO} 4,1 \mathrm{mM}$ DTT pH 8 was then used to refold the tagged protein on the column. This was applied over 30 mL using a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$. To elute refolded protein another linear gradient was applied over 20 mL , starting with 20 mM HEPES, $0.3 \mathrm{M} \mathrm{MgCl}_{2}, 20 \mathrm{mM}$ imidazole, $1 \mathrm{mM} \mathrm{DTT}, \mathrm{pH} 8$ and ending with the same buffer with the addition of 500 mM imidazole and 10% glycerol. Apart from when otherwise mentioned, the flow rate was kept at $1 \mathrm{~mL} / \mathrm{min}$ when using a 1 mL capacity column and $3 \mathrm{~mL} / \mathrm{min}$ when using a 5 mL capacity column. Fractions of 1.5 mL were collected throughout the elution step, and UV absorbance was used to determine protein content. Fractions with high protein contents were visualised using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the presence of the recombinant protein confirmed through western blot analysis. Protein activity was confirmed through the measurement of 4MU from the GGB4MU assay after removal of imidazole and DTT using Zeba ${ }^{\text {TM }}$ Spin Desalting Columns, 7 K MWCO (ThermoFisher) or Slide-A-Lyzer ${ }^{\text {TM }}$ Dialysis Cassettes 10 K MWCO (ThermoFisher).

Fluorescence Assay for β-Etherase

[0294] Enzyme activity was measured in 1 mL reaction containing $10 \mu \mathrm{~L} 4 \mathrm{MU} / \mathrm{GG} \beta 4 \mathrm{MU}$ (synthetic fluorescent substrate 10 mM) and appropriate concentration of pure protein in 50 mM Tris- $\mathrm{HCL}, 100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.5,5 \mathrm{mM}$ CuSO_{4}. The reaction was incubated at $30^{\circ} \mathrm{C}$. for 1 h . Formation of 4 -methylumbelliferone (4MU) was monitored using an RF-1500 fluorometric analyzer. After 0 h and 1 h of incubation $100 \mu \mathrm{~L}$ of the reaction mixture was taken and added to $50 \mu \mathrm{~L}$ of 100 mM glycine- NaOH buffer (pH 10.0). One unit of the enzyme was defined as the amount that released 1 nmol of $4 \mathrm{MU} / \mathrm{h}$ from the substrate. Five replicate were taken for each sample, and control reactions of boiled enzyme and wheat straw treated with buffer only were also performed.

Enzyme Properties

[0295] The effect of pH and temperature on enzyme activity was investigated by varying the pH of the reaction mixtures using 50 mM Tris-HCI buffer from pH 7.0 to 9.5 , 50 mM glycine- NaOH buffer at pH range 9.0 to 10.5 and $50 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}-\mathrm{NaOH}$ buffer at pH range 10.5 to 12. The optimum temperature of enzyme activity was determined at various temperatures ranging from $20^{\circ} \mathrm{C}$. to $70^{\circ} \mathrm{C}$. Assays were performed as described in the previous section.

Phenol Oxidase Assay

[0296] Specificity was investigated by incubating 1 mM of each substrate of interest with the enzyme in $100 \mu \mathrm{LTris} \mathrm{pH}$ 8.5 buffer at room temperature. Activity was determined by
monitoring the change in Ultraviolet-Visible absorbance spectra (220-750 nm) of aliquots using a NanoDrop 8000 Microvolume UV-Vis spectrophotometer (Thermo Scientific). Scans were performed at regular intervals over 2 h .

Extraction of Tricin

[0297] Wheat straw was ground to $<1 \mathrm{~mm}$ using a cyclone mill (Retsch) and washed several times with 50 mM Tris pH 8 to remove residual surface sugars. In 1 mL reactions, 100 mg of washed wheat straw was incubated with an appropriate concentration of pure enzyme in 50 mM Tris buffer at pH 8 with $5 \mathrm{mM} \mathrm{CuSO}_{4}$. Reactions were incubated overnight at $30^{\circ} \mathrm{C}$. with shaking. Control reactions were performed using wheat straw incubated with boiled β-etherase or with buffer only. Tricin was extracted based upon Karambelkar. ${ }^{70}$ Briefly, 1 mL of ethyl acetate was added to $100 \mu \mathrm{~L}$ of the reaction supernatant. This was homogenized before being centrifuged for 5 min at $13,000 \mathrm{rpm}$. The ethyl acetate layer was transferred into new tubes and evaporated using a centrifugal evaporator at $55^{\circ} \mathrm{C}$. before being resuspended in $100 \mu \mathrm{~L} 50 \% \mathrm{H}_{2} \mathrm{O}, 50 \%$ acetonitrile. This was analyzed with a Waters 2996 photodiode array detector Separations Module HPLC system, column used was C18$5 \mu \mathrm{M}$ preparative column $(4.6 \times 250 \mathrm{~mm}$, Waters, X-Bridge, Made in Ireland). The mobile phase was 0.1% acetic acid in water (A), and methanol (B) and a linear gradient was used; 95% A (5 min), $70 \% \mathrm{~A}(25 \mathrm{~min}$), $0 \% \mathrm{~A}(30 \mathrm{~min}), 95 \% \mathrm{~A}$ (5 min), the flow rate was $1.0 \mathrm{~mL} / \mathrm{min}$. After identification through comparisons with authentic standards, based on retention time and UV spectrum, peaks were manually collected and the mass confirmed with mass spectroscopy.

β-Etherase Boosting Saccharification with Cellulase Enzymes

[0298] For saccharification reactions, biomass pretreated with β-etherase was incubated with $1.2 \mu \mathrm{~g} / \mathrm{mL}$ enzyme cocktail (4:1 Celluclast: novo 188 (Novozymes)) in 50 mM sodium acetate at pH 4.5 and incubated overnight at $37-40^{\circ} \mathrm{C}$. with shaking. This was performed alongside a control reaction with buffer only. Solids were removed by centrifugation, and residual protein was precipitated with 80% ethanol. The supernatant, containing mono- and oligosaccharides, was dried with a centrifugal evaporator before samples were resuspended in ultra-pure water and filtered through a $0.2 \mu \mathrm{~m}$ polytetrafluoroethylene (PTFE) filter. Five replicates from each sample were investigated, and carbohydrate composition was analyzed by high-performance anion-exchange chromatography (HPAEC).

High-Performance Anion-Exchange Chromatography (HPAEC)

[0299] High-performance anion-exchange chromatography was used to analyze monosaccharide release after saccharification. Briefly, $5 \mu \mathrm{~L}$ of samples or standards were injected on a CarboPac PA20 $3 \times 150 \mathrm{~mm}$ analytical column via a CarboPac PA20 $3 \times 0 \mathrm{~mm}$ guard column using Chromeleon 6.8 Chromatography Data Systems software (Dionex). Sugars were separated at a flow rate of $0.4-0.5 \mathrm{~mL} \mathrm{~min}^{-1}$ at a temperature of $25^{\circ} \mathrm{C}$. as follows: after equilibration of the column with $100 \% \mathrm{H}_{2} \mathrm{O}$, samples were separated in a linear gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ to $99 \%-1 \%$ of $\mathrm{H}_{2} \mathrm{O}-0.2 \mathrm{M} \mathrm{NaOH}$ for 5 min , then constant for 10 min , followed by a linear gradi-
ent to $47.5 \%-22.5 \%-30 \%$ of $\mathrm{H}_{2} \mathrm{O}-0.2 \mathrm{M} \mathrm{NaOH}-0.5 \mathrm{M}$ $\mathrm{NaOAc} / 0.1 \mathrm{M} \mathrm{NaOH}$ in 7 min and then kept constant for 15 min . After washing the column with 0.2 M NaOH for 8 min it was re-equilibrated with $100 \% \mathrm{H}_{2} \mathrm{O}$ for 10 min before the injection of the next sample. Carbohydrates were detected by ICS-3000 PAD system with an electrochemical gold electrode, identified by comparison with retention times of external standards (arabinose, fucose, galactose, glucose, glucuronic acid, mannose, rhamnose, and xylose) and quantified through the integration of these known standards.

Lignin Isolation

[0300] Enzyme lignins, representing essentially all of the lignin in the sample, were prepared following ball-milling of the cell wall isolate as previously described. $(75-77,78$)

NMR Analysis

[0301] 2D NMR of enzyme lignins (EL) in $4: 1 \mathrm{v} / \mathrm{v}$ DMSO-d d_{6} :pyridine- d_{5} were acquired on a Bruker Biospin (Billerica, MA) Avance 700 MHz spectrometer equipped with a $5-\mathrm{mm}$ QCI ${ }^{1} \mathrm{H}^{31} \mathrm{P} /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ QCI cryoprobe with inverse geometry (proton coils closest to the sample), as described previously. $(76,77)$ Volume-integration of contours in HSQC plots used TopSpin 4.07 (Mac version) software, and no correction factors were used. The data represent volume-integrals only, and data are presented on an $\mathrm{S}+$ $\mathrm{G}+\mathrm{H}=100 \%$ basis (FIG. 17); pCA, and tricin T units are always terminal and are, therefore, likely overestimated.(77) Data assignments here were made by comparison with published data from other samples from our lab, including in the various tricin-related papers. (71-74, 79, 80)

Statistical Analysis

[0302] Where mentioned two tail ANOVAs were performed using R core package "stats".(83)

Example 1 Isolation of Parascedosporium Putredinis NOl

[0303] We inoculated liquid cultures containing wheat straw as the sole carbon source with samples of wheat straw-enriched compost and tracked the dynamics of the resulting microbial community using targeted amplicon sequencing during cultivation. Sequencing of 16 S ribosomal RNA genes generated over three million reads from the prokaryotic community over the whole time course, which clustered together to form 25,304 operational taxonomic units (OTUs) (FIG. 1 a). The most abundant bacterial phyla identified were the gram-negative Bacteroidetes, Verrucomicrobia and Proteobacteria, respectively, representing an average of $31 \%, 19.8 \%$, and 15.5% of the total reads across the time course. Analysis of the eukaryotic community by sequencing the Internal Transcribed Spacer (ITS) region predominantly yielded reads that had no match within the UNITE fungal rDNA sequence database. 23,24 In total, 96.5% of generated OTUs were not recognized as fungal and instead showed the closest homologies to protozoa. Among the fungi, we noted distinct changes in the composition of the community with time. In particular, a fungus (designated strain NO1) identified as Parascedosporium putredinis an Ascomycete in the Microascaceae family, showed increased
abundance after 4 weeks of incubation (FIG. 1 b). This fungus was readily isolated from shake flasks by culturing on both nutrient agar and potato dextrose agar and dominated the eukaryotic community in the shake flasks after four weeks of incubation, representing 84% of the identifiable fungal reads at 8 weeks, a time point by which, we hypothesize, the majority of easily accessible carbon from wheat straw has been depleted. ${ }^{25}$ Interestingly, this fungus could be selectively cultivated when agar plates contained kraft lignin as the sole carbon source.

Example 2 Omics Analysis of Wheat Straw Degradation by P. Putredinis NO1

[0304] We confirmed that P. putredinis NOl could grow on wheat straw as a sole carbon source and optimized the composition of growth media for cellulase and xylanase production using a central composite design (FIG. 6). The deconstruction of wheat straw by P. putredinis NO1 over 28 days was subsequently tracked by measuring mass loss and carbohydrate-active enzyme (CAZy) activity (FIG. 7). From this study, we identified the second, fourth and tenth day of incubation on wheat straw as distinct time points to harvest RNA for sequencing on an Illumina platform. These incubation times were chosen as together they represent the first detection of lignocellulolytic activity (day 2), the peak of enzyme activities (day 4) and the subsequent reduction of lignocellulolytic activity - a point at which the easily accessible sugars in the wheat straw had been utilized. In total, 5,586 unique contiguous DNA sequences (contigs) were assembled from the $339,854,704$ reads generated, and differential gene analysis identified 2,189 contigs that were upregulated at high confidence and fold change ($\mathrm{P}<0.001$, $\mathrm{FC}>10$) when P. putredinis NO1 was grown on wheat straw compared to growth on glucose. These highly upregulated genes included those coding for 102 putative CAZy proteins; comprising 47 glycoside hydrolases (GH), 41 auxiliary activities (AA), ten carbohydrate esterases (CE) and a polysaccharide lyase (PL). The majority of CAZy family proteins were upregulated after four days of growth (FIG. 2), in agreement with the peak of the observed enzymatic activities in P. putredinis NO1 culture supernatants.
[0305] As the macromolecular structure of lignocellulose prohibits intracellular degradation, many enzymes for its deconstruction must be secreted. We therefore performed LC-MS/MS analysis on protein samples collected directly from the culture supernatant, and separately from those bound to insoluble components of the culture using a bio-tin-labelling method designed to enrich for proteins tightly bound to the residual biomass. ${ }^{26}$ We identified 3,671 proteins across all samples, including 1,037 proteins present in only wheat straw conditions (FIG. 8a). Within the resultant protein library, 275 sequences contained a recognizable CAZy domain. These accounted for 25.7% (194 proteins) of the molar percentage of the supernatant samples and 14.1% (174) of the biotin-labelled samples after four days of growth on wheat straw, compared to 13.3% (97) of the supernatant and 2% (56) of the biotin labelled samples from glucose-grown cultures (FIG. $8 b$).
[0306] The most abundant CAZy protein family, accounting for 3.7% and 3.6% of the respective supernatant and biotin-labelled fractions on the fourth day, were GH6s, which may be endoglucanases or processive cellobiohydrolases. These, along with GH7s, often constitute the major
cellulases in filamentous fungi. ${ }^{27}$ The GH6 family, is represented by four distinct proteins within the proteome, included the most abundant single protein c7229_g3_il_1, a putative cellobiohydrolase with an 85.89% sequence identity to a cellulase (XP_016646396.1) from Scedosporium apiospermum. Other abundant GHs likely active on cellulose include GH7 (typically cellobiohydrolases or endoglucanases), GH5 and GH45 (often endoglucanases) and GH1 and 3 (typically glucosidases). ${ }^{28}$
[0307] Efficient lignocellulose deconstruction demands a combination of cellulolytic and hemicellulolytic enzymes that work cooperatively. Enzymes related to the depolymerization of arabinoxylan (major hemicellulose of wheat straw), were well represented within the exoproteome. Nine proteins were identified with homology to endo β-14 -xylanases (GH10 and GH11), which hydrolyse the arabinoxylan backbone, and five proteins were identified as putative β-1,4-xylosidases that act on the resultant fragments to produce xylose monomers (GH3, GH31, GH43_1, GH43_11, GH43_36). Also of note were the GH43 subfamilies ${ }^{-}$GH43_1, GH43_21, GH43_22, GH43_26 and GH43_36 that were abundant within the secretome, including putative β-D-xylosidases, α-L-arabinofuranosidase, and β-1,3-galactosidase activities. Fifteen GH43 subfamily members were identified, with nine proteins showing closest homology to known arabinofuranosidases.
[0308] Three proteins, belonging to the CE1 family, showed significant sequence homology to feruloyl esterases. Ferulic acid is esterified to the arabinose side chain of arabinoxylans, and through the formation of diferulate bridges and ester-ether linkages allows the respective formation of covalent interactions between arabinoxylan chains and lignin. Feruloyl esterases, therefore, are thought to aid the solubilization of plant cell wall polysaccharides by the hydrolysis of the ester link that exists between ferulic acid residues and arabinose, thereby disrupting the crosslinking of cell wall components. ${ }^{29}$ Putative acetyl xylan esterases (3 in CAZy family CE1 and 3 in CE5) were also observed and are known to facilitate the degradation of xylan through the removal of acetyl substitutions. ${ }^{30}$
[0309] The CAZy auxiliary activity (AA) class is classified as containing enzymes that act in conjunction with car-bohydrate-active enzymes through redox activities. Interestingly, 69 putative proteins from the AA class were detected in the exosecretome, more than many lignocellulosedegrading fungi contain in their total genome,,31 suggesting an important role for the oxidative degradation of lignocellulose in P. putredinis NO1. The AA9 family, which along with the AA10, AA11, AA13, AA14 and AA15 families constitute the lytic polysaccharide monooxygenases (LPMOs) - a class of copper metalloenzymes that catalyse the oxidative cleavage of glycosidic bonds in multiple polysaccharide substrates including chitin, cellulose, and xylan, ${ }^{32.33}$ were highly represented within the exosecretome. In total, we identified nineteen putative LPMOs (16 AA9s; 2 AA11s; 1 AA13), fifteen of which were upregulated tenfold or more between glucose and wheat straw conditions. Fittingly, 16 AA3s (glucose-methanol-choline (GMC) oxidoreductase) and 9 AA7s (glucooligosaccharide oxidase), which have been shown to facilitate the activity of the LPMOs through electron shuttling, ${ }^{34,35}$ were also present within wheat straw cultures.
[0310] Five putative multicopper oxidase proteins were also observed - two from the AA1_3 subfamily (Laccase-
like multicopper oxidase) and one from the AA1_2 subfamily (Ferroxidase). Laccase-like multicopper oxidases are of unknown function but have been implicated in lignin degradation, as well as other diverse functions (iron homeostasis, offense/defence), ${ }^{36}$ whereas ferroxidases have been reported to be involved in lignocellulose degradation in Ascomycetes, in which they generate hydroxyl radicals via the Fenton reaction. ${ }^{37}$ Established lignin depolymerizing enzymes associated with the white-rot fungal decay of lignin, including laccases from the AA1_1 subfamily or peroxidases from the AA2 family, were not present within the libraries, perhaps not surprising given the P. putredinis NO1 sits within the Ascomycota phylum, and as such is closer in relation to the soft-rots.
[0311] Despite the apparent lack of known ligninases in P. putredinis NO1, a putative AA6 (1,4-benzoquinone reductase) associated with the intracellular biodegradation of aromatic compounds was present within the supernatant and may have a role in the metabolism of lignin breakdown products. ${ }^{31,38}$
[0312] Of key interest to us was the potential of P. putredinis NO1 to produce novel lignocellulolytic activities, particularly those able to boost lignocellulose deconstruction via the modification and solubilization of lignin. An unknown protein, c2092, identified in the exosecretome was subsequently found to have β-etherase activity and no CAZy identification.

Example 3 A New β-Etherase

[0313] The β-ether motif with its characteristic $\beta-\mathrm{O}-4$ inter-unit linkage is the most abundant in lignin, estimated at representing over 50% of the total inter-unit linkages. ${ }^{39}$ Enzymes employing β-ether cleavage mechanisms can deconstruct synthetic and extracted lignin; $40,41,42$ these bacterial etherases that have been characterized to date, however, are intracellular proteins, and are glutathione- or NAD^{+}- dependent, suggesting that in nature they are not directly involved in the breakdown of the lignin macromolecule, but rather its smaller, membrane-transportable oligomers. An extracellular fungal protein displaying β-etherase activity was previously purified from the supernatant of the Chaetomium sp. 2BW- 1, although its identity remains unknown. ${ }^{43}$
[0314] Using a synthetic lignin model compound GGß4MU (7-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-4-methyl-2/7-1-benzopyran-2one) containing a β-methylumbelliferyl ether, guaiacylgly-cerol- β-(4-methylumbelliferyl) ether (FIG. 9), ${ }^{44}$ that when cleaved yields the fluorogenic product 4-methylumbelliferone (4MU), we detected β-etherase activity within the culture supernatant of P. putredinis NO1. This activity was present when P. putredinis NO1 was grown on wheat straw but not on glucose, suggesting a possible role in lignocellulose degradation, and appeared to be independent of cofactors such as glutathione or NAD^{+}. Given its presence in the secretome and its apparent cofactor independence, we hypothesized that this putative ligninase was unlikely to share significant sequence homology to the previously described intracellular β-etherases from sphingomonads, and indeed no proteins with similarity to these enzymes were detected. We, therefore, subjected the culture supernatant of P. putredinis NOl grown on wheat straw to a series of
protein fractionation techniques, enriching at each step for β-etherases activity.
[0315] The putative β-etherase was initially purified by ammonium sulfate precipitation of the proteins in the culture supernatant to decrease sample pigmentation and reduce protein-protein interactions. This treatment facilitated further purification by size-exclusion and anionexchange chromatography. Using shotgun proteomics, we identified c2092, a 44.5 kDa protein present in the purified fraction that contained a predicted signal peptide. Analysis of the transcriptomic and proteomic data revealed this protein was strongly upregulated in the presence of wheat straw and present in both the supernatant and biotin-labelled proteomic libraries throughout the growth of P. putredinis NO1 on wheat straw (FIG. 10). Using profile Hidden Markov models constructed by HMMER3 on using the pFAM database, ${ }^{45}$ we saw homology to a common central tyrosinase domain (PF00264; Evalue $=7.1 \mathrm{e}-49$) with a characteristic binuclear type-3 copper-binding site consisting of six histidine residues located in a four-helical bundle coordinating the binding of two copper ions ${ }^{46}$ (FIG. 11). Fungal tyrosinases are associated with pigmentation and browning; specifically, through melanin production, whereby they catalyse the introduction of a hydroxyl group at the ortho-position of a para-substituted monophenols and the subsequent oxidation to the corresponding o-quinone. ${ }^{47}$ However, c2092 lacks both the C - and N -terminal domains that tyrosinases typically contain and instead shows higher homology (170/ 370 identity (46%)) to a catechol oxidase (AoCO4) from Aspergillus oryzae. ${ }^{48}$ Catechol oxidases differ from tyrosinases due to a lack of mono-oxygenase activity. ${ }^{49}$ Examination of the proteomics library resulted in the identification of seven sequences with significant similarities to c2092 (Table 1), all predicted to be extracellular and soluble, and five upregulated in the presence of wheat straw (FIG. 12). Searches within the NCBI non-redundant database further revealed the presence of proteins of similar sequence ($>50 \%$ sequence identity) distributed throughout fungal genomes of the Sordariomycetes class of Ascomycetes (Table 2).

Example 4 Experimental Confirmation of β-Etherase Activity

[0316] To determine if c2092 was responsible for the observed β-etherase activity, we heterologously expressed the codon-optimized sequence in Escherichia coli. The recombinant protein was purified (Table 3), and the β-etherase activity of the protein was confirmed by determining the level of fluorescence released after incubation with GGp4MU (FIG. 13a). The pH and temperature dependency of the enzyme were investigated, revealing maximum activity at pH 10 and $60^{\circ} \mathrm{C}$. (FIGS. 13b-c). Whereas the mushroom tyrosinase (Agaricus bisporus) has been reported to have promiscuous β-etherase activity on small synthetic compounds, no significant activity has been reported against macromolecular lignin. ${ }^{50}$ The β-etherase from P. putredinis NO1 did not display activity against L-tyrosine and LDOPA, as is characteristic of tyrosinases (FIG. 14). ${ }^{51}$ We subsequently assayed for potential oxidase activity against a range of phenolic substrates, including di-phenolics, known to be catechol oxidase substrates, ${ }^{49}$ and observed no similarities to catechol oxidase in terms substrate preferences (FIG. 15, Table 4). Interestingly, the etherase showed
activity with the substrates: 4-hydroxybenzoic acid, vanillic acid, and quercetin, all known to be tyrosinase inhibitors. ${ }^{52}$

Example 5 Release of Tricin and Lignin Units from Wheat Straw

[0317] Tricin has recently been described as a subunit in the lignin of monocot species, incorporated through a 4-O - β linkage. ${ }^{11}$ As wheat straw contains relatively high concentrations of tricin compared to other agriculturally relevant feedstocks, ${ }^{8}$ we assessed the ability of the β-etherase to release tricin from wheat straw. The β-etherase was incubated with wheat straw for sixteen hours under physiological conditions (pH 8.5 and $30^{\circ} \mathrm{C}$.). Reaction products were monitored by High-Performance Liquid-Chromatography (HPLC), and a peak corresponding to tricin was identified by reference to an authentic standard and confirmed by mass spectrometry. Under the growth conditions used for P. putredinis NO1, a significantly higher concentration of tricin was present in the reaction supernatant of wheat straw with the β-etherase compared to incubations with buffer alone (ANOVA, $\mathrm{F}(2,12)=44.67, \mathrm{p}<0.05$) (FIG. $4 a$). We were also able to detect the presence of p-coumaric acid, vanillin, and p-hydroxybenzaldehyde in the reaction supernatant through comparisons with authentic standards and mass spectrometry; however, unlike tricin, these compounds were not enriched under the β-etherase-treated reaction conditions (FIG. 16c) and presumably are produced as a result of simple ester cleavage.
[0318] NMR (FIG. 17) of the enzyme lignins (EL) isolated (following crude polysaccharidase treatment to saccharify most of the polysaccharides),(75) and the product generated from it by a non-optimized treatment with our enzyme showed little change to the actual lignin profile but a strong decrease in the tricin level. Thus, even though integration of correlation contours in the spectra resulting from such 2DHSQC (heteronuclear single-quantum coherence) experiments does not provide reliable quantification, their relative values are considered to be valid. $(76,77)$ Analysis showed that the relative tricin ether level in the lignin dropped from nearly 12% in the control to about 8.5% after the treatment. We were initially disappointed that we couldn't detect similar reductions in levels of the β-ether units A (FIG. 17), but caution that these are 'quantified' on an $\mathrm{A}+\mathrm{B}+\mathrm{C}=100 \%$ basis and it is easy to speculate on how the levels might not significantly change even with some (presumably lowlevel) β-ether cleavage. In spectra from the whole cell wall component (and not just the isolated lignin, not shown), the trends were similar and the T6 and T8 contours were particularly weak in the treated sample whereas the T2 $1 / 6^{\prime}$ peak was relatively strong; we have noted this occurrence before in rapidly relaxing samples, and do not fully understand its origin; regardless, the relative tricin level in the treated material was again lower than in the control and obviously consistent with the measured release of tricin noted above.
[0319] We further tested the activity of the β-etherase on alternative feedstocks, including sugarcane bagasse and rice straw. A smaller amount of tricin was released from sugarcane bagasse compared to wheat straw; however, in contrast to assays with wheat straw, p-coumaric acid was significantly enriched (ANOVA, $\mathrm{F}(2,12)=44.67, \mathrm{p}<0.05$) (FIG. $4 b$, FIG. 16). Rice straw showed little difference in product release, with relatively low concentrations of tricin and pcoumaric acid released during the incubation (FIG. 16).
[0320] As mushroom tyrosinase has been reported to cleave β-ether linkages promiscuously, ${ }^{50}$ we tested its β etherase activity on these lignocellulosic substrates under equivalent conditions. We observed less tricin, p-coumaric acid, and p-hydroxybenzaldehyde production in the reaction mixtures containing mushroom tyrosinase compared to the P. putredinis NO1 β-etherase treatments. Tricin is a known tyrosinase inhibitor that binds non-competitively to the hydrophobic pocket of the protein, ${ }^{53}$ and p -coumaric acid has been characterized as having a mixed-type inhibition effect. ${ }^{54}$ This inhibition, through the non-reversible binding of the reaction products, could go some way to explaining why mushroom tyrosinase displays little activity towards the lignin macromolecule.

Example 6β-Etherase Pretreatment Boosts Saccharification

[0321] The recalcitrance of lignocellulose to degradation requires that feedstocks are pretreated in order to disrupt lignin, before efficient saccharification can be achieved using current commercial enzymatic cocktails. These pretreatments are typically physico-chemical, using a combination of heat and pressure with acid, alkali or organic solvents. As these industrial processes are energy-intensive and environmentally damaging, the use of biological treatments, performed under relatively mild conditions, are desirable. To investigate if the application of the β-etherase would improve saccharification rates, we treated sugarcane bagasse, wheat straw, and rice straw with β-etherase for sixteen hours before the addition of commercial cellulases. Sugarcane bagasse demonstrated a major improvement in digestibility after pretreatment with β-etherase resulting in a significant increase in glucose, xylose, and arabinose compared to the untreated control (2-fold, 5 -fold and 23 -fold, respectively) after saccharification (FIGS. 5a-b). Wheat straw treated with β-etherase also showed an improvement in glucose release (ANOVA, $\mathrm{F}(2,12)=4.47, \mathrm{p}<0.05$), albeit at a more modest level with a 1.2 -fold increase. Interestingly, no improvement in saccharification was observed with rice straw, which may reflect the lower lignin content of rice straw compared to wheat straw and sugarcane. ${ }^{55}$ This suggests that although the β-etherase can modify the plant cell wall structure and enhance digestibility, differences in lignocellulose organization and lignin content between feedstocks may determine the extent to which this occurs.

Example 7: Enzyme Homology and Identification

[0322] P. putredinis NO1 is able to dominate cultures in the latter stages of wheat straw degradation in a mixed microbial community, in liquid culture, when easily accessible polysaccharides have been exhausted. Using a combination of omics approaches, we have identified a diverse range of potentially industrially relevant carbohydrateactive enzymes, including a large number of enzymes associated with the oxidative attack on lignocellulose. In particular, we have identified a new extracellular β-etherase that is preferentially expressed in the presence of wheat straw and demonstrated that this enzyme can boost enzymatic hydrolysis by cellulases as well as selectively release the pharmaceutically relevant flavonoid tricin from monocot lignin. The cleavage of β-ether bonds most likely aids the breakdown of lignocellulose in natural environments. We
contend that this ability to deconstruct and modify lignin is important for P. putredinis NOl to be able to out-compete other microbial species during the latter stage of plant biomass degradation. Preferential removal of tricin subunits has been described by the white-rot fungi, Pleurotus eryngii, during the selective delignification of wheat straw and has been proposed to be key to lignocellulose degradation, although the enzyme activity that facilitated tricin release was not identified. ${ }^{56}$ When the publicly available genome of P. eryngii was examined for the presence of proteins with homology to the β-etherase from P. putredinis NO1 no significant hits were detected. As the protein described as being responsible for β-etherase activity from Chaetomium sp. 2BW-1 was not identified to sequence level, it is unclear whether it shares homology to the enzyme described here; however, the proteins appear to be distinct as the reported sizes differ by $20 \mathrm{kDa} .{ }^{43}$ Taken together, these observations suggest that multiple, structurally dissimilar, enzymes in the natural environment may mediate ether linkage disruption in lignocellulose-degrading microbes. To the best of our knowledge, this is the first identification and characterization of an extracellular β-etherase that has no cofactor requirement for activity capable of selectively releasing tricin from lignin and could have potential biotechnological applications.

REFERENCES

[0323] 8. Lan W, et al. Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny. 88, 10461057 (2016).
[0324] 11. Li M, pu Y, Yoo CG, RagauskasA. The occurrence of tricin and its derivatives in plants. Green Chem 18, (2016).
[0325] 23. Kõljalg U, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. 166, 1063-1068 (2005).
[0326] 24. Abarenkov K, et al. The UNITE database for molecular identification of fungi - recent updates and future perspectives. 186, 281-285 (2010).
[0327] 25. Alessi AM, et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels 11, 166 (2018)
[0328] 26. Alessi AM, et al. Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Scientific reports 7, 2356 (2017).
[0329] 27. Jun H, Guangye H, Daiwen C. Insights into enzyme secretion by filamentous fungi: Comparative proteome analysis of Trichoderma reesei grown on different carbon sources. Journal of Proteomics 89, 191-201 (2013).
[0330] 28. Glass NL, Schmoll M, Cate JHD, Coradetti S. Plant cell wall deconstruction by ascomycete fungi. 67 , 477-498 (2013).
[0331] 29. de Oliveira DM, et al. Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant biotechnology journal 13, 1224-1232 (2015).
[0332] 30. Zhang J, Siika-Aho M, Tenkanen M, Viikari L. The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4, 60 (2011).
[0333] 31. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire
of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6, 41 (2013).
[0334] 32. Vaaje-Kolstad G, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-222 (2010).
[0335] 33. Quinlan RJ, et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. 108, 15079-15084 (2011).
[0336] 34. Laurent C, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C. Interaction between cellobiose dehydrogenase and lytic polysaccharide monooxygenase. Biochemistry 58, 1226-1235 (2019).
[0337] 35. Tan T-C, et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nature Communications 6, 7542 (2015).
[0338] 36. Levasseur A, et al. Exploring laccase-like multicopper oxidase genes from the ascomycete Trichoderma reesei: a functional, phylogenetic and evolutionary study. BMC Biochemistry 11, (2010).
[0339] 37. Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology 44, 77-87 (2007).
[0340] 38. Daly P, et al. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnol Biofuels 10, 35 (2017).
[0341] 39. Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society reviews 47, 852-908 (2018).
[0342] 40. Gall DL, et al. In vitro enzymatic depolymerization of lignin with release of syringyl, guaiacyl, and tricin units. Applied and environmental microbiology 84, (2018).
[0343] 41. Kontur WS, et al. A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's $\beta(\mathrm{R})$ aryl ether bond reveals the diversity of bacterial β etherases. The Journal of biological chemistry 294, 1877-1890 (2019).
[0344] 42. Marinovic M, et al. Selective cleavage of lignin $\beta-\mathrm{O}-4$ aryl ether bond by β-etherase of the white-rot fungus Dichomitus squalens. ACS Sustain Chem Eng 6, 2878-2882 (2018).
[0345] 43. Otsuka Y, Sonoki T, Ikeda S, Kajita S, Nakamura M, Katayama Y. Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol β aryl ether linkages. 270, 2353-2362 (2003).
[0346] 44. Weinstein DAG, M.H. Synthesis of guaiacylglycol and glycerol- β - O - (β-methylumbelliferyl) ethers: lignin model substrates for the possible fluorometric assay of β-etherases. Holzforschung 33, 134-135 (1979).
[0347] 45. Finn RD, et al. The Pfam protein families database. Nucleic Acids Research 38, D211-D222 (2010).
[0348] 46. Kanteev M, Goldfeder M, Fishman A. Struc-ture-function correlations in tyrosinases. Protein Science 24, 1360-1369 (2015)
[0349] 47. Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological
applications. Journal of Applied Microbiology 100, 219232 (2006).
[0350] 48. Hakulinen N, Gasparetti C, Kaljunen H, Kruus K, Rouvinen J. The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 18, 917-929 (2013).
[0351] 49. Gasparetti C, Faccio G, Arvas M, Buchert J, Saloheimo M, Kruus K. Discovery of a new tyrosinaselike enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Applied Microbiology and Biotechnology 86, 213-226 (2010).
[0352] 50. Min K, et al. Perspectives for biocatalytic lignin utilization: cleaving 4-O-5 and $\mathrm{C} \alpha-\mathrm{C} \beta$ bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase. Biotechnol Biofuels 10, 212 (2017).
[0353] 51. Yang Z, Robb DA. Comparison of tyrosinase activity and stability in aqueous and nearly nonaqueous environments. Enzyme and Microbial Technology 15, 1030-1036 (1993)
[0354] 52. Zolghadri S, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34, 279309 (2019).
[0355] 53. Mu Y, Li L, Hu S-Q. Molecular inhibitory mechanism of tricin on tyrosinase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 107, 235-240 (2013).
[0356] 54. Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. PhytotherRes 13, 371-375 (1999).
[0357] 55. Van Soest PJ. Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology 130, 137-171 (2006).
[0358] 56. van Erven G, Nayan N, Sonnenberg ASM, Hendriks WH, Cone JW, Kabel MA. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative ${ }^{13} \mathrm{C}$-IS py-GC-MS and whole cell wall HSQC NMR. Biotechnol Biofuels 11, 262 (2018).
[0359] 57. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods 7, 335-336 (2010).
[0360] 58. DeSantis TZ, et al. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology, 72, 5069-5072 (2006).
[0361] 59. McDonald D, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME $J 6,610-$ 618 (2012).
[0362] 60. Abarenkov K, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. The New phytologist 186, 281-285 (2010).
[0363] 61. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965-977 (2008).
[0364] 62. Lever M. Colorimetric and fluorometric carbohydrate determination with p-hydroxybenzoic acid hydrazide. Biochemical Medicine 7, 274-281 (1973).
[0365] 63. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic acids research 39, W29-W37 (2011).
[0366] 64. Camacho C, et al. BLAST+: architecture and applications. BMC bioinformatics 10,421 (2009).
[0367] 65. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology 215, 403-410 (1990).
[0368] 66. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature protocols 2, 953-971 (2007).
[0369] 67. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods 8, 785-786 (2011).
[0370] 68. Ishihama Y, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Molecular \& cellular proteomics : MCP4, 1265-1272 (2005).
[0371] 69. H. Pages PA, R. Gentleman and S. DebRoy. BioStrings: Efficient manipulation of biological strings. (ed^(eds). R package version 2.52.0. edn (2018).
[0372] 70. Karambelkar P, Jadhav, V.M. , Kadam, V. Isolation and characterization of flavonoid tricin from sugarcane sludge. Indo American Journal of Pharmaceutical Research 4, 7 (2014).
[0373] 71. J. C. del Rio et al., Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. Journal of Agricultural and Food Chemistry 60, 5922-5935 (2012).
[0374] 72. W. Lan et al., Tricin-lignins: Occurrence and quantitation of tricin in relation to phylogeny. Plant J. 88, 1046-1057 (2016)
[0375] 73. W. Lan et al., Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 167, 1284-U1265 (2015).
[0376] 74. W. Lan et al., Maize tricin-oligolignol metabolites and their implications for monocot lignification. Plant Physiol. 171, 810-820 (2016).
[0377] 75. H.-M. Chang, E. B. Cowling, W. Brown, E. Adler, G. Miksche, Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 29, 153-159 (1975).
[0378] 76. H. Kim, J. Ralph, Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d d_{6} - pyridine- $_{5}$. Org Biomol Chem 8, 576-591 (2010).
[0379] 77. S. D. Mansfield, H. Kim, F. Lu, J. Ralph, Whole plant cell wall characterization using solutionstate 2D-NMR. Nature protocols 7, 1579-1589 (2012).
[0380] 78. H. Kim et al., Monolignol benzoates incorporate into the lignin of transgenic Populus trichocarpa depleted in C3H and C4H. ACS Sustain Chem Eng 8, 3644-3654 (2020).
[0381] 79. J. Rencoret et al., Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. Journal of Agricultural and Food Chemistry 61, 24342445 (2013).
[0382] 80. W. Lan et al., Elucidating tricin-lignin structures: Assigning correlations in HSQC spectra of monocot lignins. Polymers (Basel) 10, 916 (2018)
[0383] 81. H. Zhang et al., dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research 46, W95-W101 (2018).
[0384] 82. R. D. Finn, J. Clements, S. R. Eddy, HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29-W37 (2011).
[0385] 83. R. C. Team (2019) R: A Language and Environment for Statistical Computing. (Vienna, Austria).
<160> NUMBER OF SEQ ID NOS: 47
$<210>$ SEQ ID NO 1
$<211>$ LENGTH: 1227
$<212>$ TYPE DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 1

ggacccttgc cctactggga gtggggacta gacgtcaaca accccaacgc ctccccggtc	540
ttcgacggct ccgacacgtc tctgagcggc aacggtgcct tctttgcgca tgagggcatc	600
cagatggtgc agcctatcaa cggcaacatc ctcaagctcc cccccggcaa cggtggtggc	660
tgcgtgacca agggtccctt caaggacatg aaggttcact ttggcaccat catcctgccc	720
gtgtacggcc agcctatcct cagtggtgtc gagaacccca ttgccgacaa cgagcgctgc	780
ctcaagcgcg atctcaatgc cggcatcgct aagcgcttca ctagcttcct caactcgacc	840
agcgtgattc tcaagaacaa caacatcgag atgttccagg cccatctgca gggcgacgac	900
cgctacgtgc tcaaccagct cggtgttcac ggtggtggtc actacaccat cggcggtgac	960
cccggtggtg atcccttcat ctcccctggt gacccggctt tctacctcca ccacgcccag	1020
attgaccgca tctactggat ctggcagatg ctcgacttca agaaccgtca gggtgtccac	1080
ggtaccgcca ccctccagaa caaccetccc agcgccaacg ttaccgttga ggacaccatc	1140
gacctctctc ccctcgcccc gcctgtcaag atcaaggacc tcatgaacac tgtcggaggc	1200
tcgccettgt gctacatcta cetctaa	

```
<210> SEQ ID NO 2
<211> LENGTH: 1158
<212> TYPE: DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 2
```

atgtecgtcg tcaagaaget cetcgcegce ctcgcggcea ccactttcet caccggcgte gctgctcaga cctatgagtt tagcgaggag gagctcacct ctggtgatgc cctcaaggcecttagcaagc aggctatgga aaatgctctt gcccgcctcc ccgaatctgg agagggctgcacgcgggaga acgtcaaaat tcgaaaggaa tggcgcaaca tgccggccga gatgagaatcggctatgtca gcgctctcca gtgcttgatg gaatccgaaa gcgaatatcc cgacgtcgacggtgccaaga cggcgtttga cgacttcgcc gttcttcatt acaacctcac gccgttcgtgcataactctg ctaccttcct taccttccac aggtactaca ttcacaccct ggaagagcagatgaggaaca agtgcggata cactggtgac ttcccctact gggagtgggg cctcgactgcgacgaccegc aacagtetcc cctetttgac ggctccgaaa cctctctcgg cagcgacggt540
gagcctgtgg aggccggagc cggcggtggc ttcggcggcg gcttcggctt tggcatggga 600
ggcggcagcg gtggtggctg cgtgatgaag ggaccettct ccaactacac cgtcaacctc 660
ggaccctcaa ccaccgccga cccgctcgca tataacccgc gctgcatcaa gcgaaacctg 720
aacggcgcta tctgcaagca gaatgcctcg ctccggaaca cgacgacgac gatccttgac 780
tegcecgata tcgaactatt ccaggegatt gtccaaggtg acatgcgata ccccgaggeg 840
aggggtcttg gcatggccgt ccacggcggt ggtcacttta ctattggtgg tgatcccggt 900
ggcgacttct acttctccce tetcgagcce gccttcttcc aacaccacgg ccagatcgac 960
cgcatgtact ttgtctggca gaacctcgac tgggaaacce ggcagaacat tgccggcacc 1020
ggtaccatga tgaaccagcc ccccagccca gaggttgaga tcaccgaact cctcgacctc 1080

agcccccttg cagaagccag gccgatcaag gacctcattg acacccttgg ctcggccccg	1140
ttctgctttg tttacgag	1158

$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 1230
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Parascedosporium putredinis
$<400>$ SEQUENCE: 3
atgctcgtgt acgcttcgct ggcgatcctg ccccttcttg ccggggtggg cgcatcgccg
ccttggggge tccataatgc cggccactat atcgtaggcg gegacccagg cggtgatttc 960
tacgcttcce ccggcgacce ctacttctac ttccaccacg gcatgttgga ccgcgtgtgg 1020
tggatctggc agatgcagga cccggccgcc cgcgtcaacc ttattccggg taccggcgec 1080
ccggcgatga accatcccgg catgccgatg aaccgtcggc agtcgtccgc gacaattgtg 1140
gacttgggtt ggacggcgce ggcggtgcce attacggage tcaacgattc cttgggcggt 1200

a acggcggca agttttgcta cgtgtacgtg	1230

```
<210> SEQ ID NO 4
<211> LENGTH: 1152
<212> TYPE: DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 4
```

atgcgtctgt tcaaggctct cgccgccgcg gccctgaccg gcctcgtcgc ggccgatgct
gtcaatgacc tagagaccaa gggccgtgcc gccetcgacg ccgtcattga gagctctace 120
acgtgtagca aggacaagct caaggtccgc agagagtggg gagatatcag caccaccgag 180
cgcaaggctt acctcgacgg agtgctgtgc ctcctgaaca caccctccaa gctcgatccc 240
gctcgttacc coggcgccaa gaaccgctac gatgactttg togttgttca catgaaccag 300
accctctcca tccatggaac cggtaacttc ctcgtgtggc accgctacta cgtgtgggcc 360
tgggagaacg tcatgaggac cgagtgtggc tatgaaggaa cccagcccta ctgggactac 420
ggccgctggg ccgaggatcc tctttcctcg cctctcttcg acggaagcga gacttcgctt 480
ggcggaaacg gcgcccccgt aacccagaac aagcgcagcc gcgtggaagg ccgccagttc 540
ggcggtggcg gtggtttcgg tggtggcctt ggcggaggtt tcggaggcgg cggtgatggc 600
ggtggctgca tttccaccgg tcccttcaag gacatggtcg tcaccctcgg ccccatgtcc 660
gccgtcgtca ggcecgcacc ggcccgcaac ccccaggecg acggctacgg tagtaaccec 720
cgctgcatcc gccgcgacat caccaactcg ctgagcatgg cetacggaaa gaccgaggac 780
atcgtcaaca gcatcgtcaa ctacaacgac atccttgcct tccagaactt catgcagggc 840
900
ggtaccggcg tgcacggcgt cggccacttc accgtctccg gcgaccccgg tggtgatttc 960
accatctgge agtcccagga ctacgagace cgcaggggeg ccatggaggg aggcaccagc 1020
atgatgggag gtggcagggc ccagtccctc gatgacctcg tcgacctcgg cgtcattgcc 1080
gacactgtct accccatccg cgacatcctc agctctgttg acggccccgg ccccttetgc 1140
tacgtgtacg ag 1152
<210> SEQ ID NO 5 <211> LENGTH: 1185
<212> TYPE: DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 5
atgcgttctg ctttggctct cgtactcgcg gcctctctcc tcggcggaga ggccagcagc 60
atcaagaagc gattctcgac actcgatgtt tggcgccacg gcgactacga gcgggatatc 120
qtcgatcaqc tctccqacga aacgtttccc aagatcqceq agtgqgtcqa gaagaccqgc 180
tcgacctgca ctctcgaaaa tgccgtgcag cgaaaggagt ggaccgattt gaccattgat 240
gagagggcgg actacatcca agcggtgcag tgcttgatga agctccctcc caagtcgcag 300
gaccaagttc ccggctccet caaccgatat gacgacttcg tggccactca cgttactggt 360
attccggttc ttcacgcacc taccaacctc ttcgccagcc acaggtacta tatctgggcg 420
tacgagttgg cacttcgcga ggagtgcggg tacaagggct accagccgta catgaactac 480
gagcgacacc aggatcccat cacctcgccc ctgttcaacg gaaatgccac cagcatgggc 540
ggcaatggag cggcggctga gtaccccggc gtagtcatgc cttatcccag gccctacaac 600
gtcattcccg ctgcaggcgg tggtggctgc gtcacggaag gtcccttctc cgacatggtt 660
gtcagcatcg gccetctggg cactgttctc cgcgacattc cccgcaaccc ccgcgccgat 720
ggcctcggtt ccaacccecg ctgcctgcga cgcgatctta acaagttctc cgccgctgga 780
gcctccgcca accactcgta ctcgctcatt atggactacc ccgatgtcga cgccttctac 840
aaccgatacc tcggacagcc gttcctgaga ggagatgaat tcccgtgggg tcttcactct 900

gccggtcact acatcacggg aggagaccca ggtggcgact tttacgcctc gcctggtgac	960
ccgaccttct ggatgcatca tgccgccctc gaccgcttgt ggtggctgtg gcagatgcag	1020
gatcccgaga accgcctgca ggccatcccc ggcatcactt cgtcgaggat gaccaacgag	1080
gatgctcaaa agacaatggt ggatctgaag tggacggcag agccccgctc gctcggagat	1140
ctcaacgatc aatgggaag tgcccccttc tgttatatct atgta	1185

```
<210> SEQ ID NO 6
<211> LENGTH: 1059
<212> TYPE: DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 6
```

atgcagctca ccattctcgc aacggcgctt cttgccgtca gcgectccgc agcgcccacc
tgctgcacca acgcegagcg gcgagagtgg agaactttct caactaagga gaagcaagcc
tacatcgcgg cagtgaaatg tcttcaaagc aagccatctc agttgaagag cacctacccg
acgtcgcaga atcgattcga tgactttcag gcggttcata ttgacctgac ggagaagtat 240
cactttactg gacctttcca ggcctggcat cgegtctttc tccacaagta cgaatccgac 300
ctccggggac tttgtgcata caagggctac cagccatact gggactggac caaggattcc 360
gggtctgagg ctgccttcct cgcetcgcct gtctttgacg ctgttaatgg cttcggtgga 420
aacggacctt acgttgatac gtcgaacttt cccgtcacca acgtccccgt caaaatcccg 480
aataagactg geggaggetg tgttcaagat ggegcetttg tcaatatgac agtcactctc 540
ggcccaggcc ctagtcttga gtcgaacccc cgctgtctca cccgtgactt cagctactgg 600
ctcatctcac ggaccctaac caaggcggtg gtagactgga ctcttgaggc egcgtctttc 660
gctgtctttg acttccgtct gcagggcaca ggcatcgagc cagaaggcat gacagttcat 720
gcaggtggcc accttggtgt tggtggtgat atcggcgaga tcggcaacat gtattcatcc 780
cccggagacc cgetcttcta tcttcaccac gccaatcttg acagactctg ggaccagtgg 840
cagaggaaga agtttgctca gcgtgtccag gatatgacco gaccggatac aatgtgggcc 900
tatccattca acttctttgg cgacgtaccc tataccaata tcactctgga aaccttgctc 960
gacttcaagg gtctccttgg gtccagctcg gcagaccgat atgtcaagat caaggacgtt 1020
atggacagcc agggtccgaa cetctgcgtc ttctacaaa 1059
<210> SEQ ID NO 7
<211> LENGTH: 1167
<212> TYPE: DNA
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 7
atggtggcga tcagctacgt ccttacggcg ttggcggtgg cgatccctgc cettgcgcag
ggtccgtgtt ccacaattcg tcaacgacgg gcatggcata cgctgagcaa cagcgagaaa 120
cgcgettact tggatgccga ggtttgcttg ctgggcaagg cccccaagtt tggcttcgag 180
ggggccaaaa acaggttcga ggagctccag gccgctcatc aagtccaggc ttatctcatt 240

-continued

cgactacagg agctatggag ttcctctgat ccaagcagag aaactaccct ggagcataat	960
ctgacattgc taggtattat tcccgacatc aacattagta aggtcatgga cactagaggt	1020
gggtatcttt gctacgaata tgtt	1044

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 408
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Parascedosporium putredinis
$<400>$ SEQUENCE: 9

Trp Arg Thr Leu Thr Ser Ala Gln Arg Lys Gln Tyr Ile Ala Ser Val	
85	90

Lys Cys Leu Gln Thr Lys Pro Ser Phe Phe Asp Pro Asn Ile Ile Pro
Ala Ala Lys Ser Leu Phe Asp Asp Phe Val Gly Val His Val Phe Gln
115120125
Thr Gly Ser Ile His Leu Thr Ala Thr Phe Leu Thr Trp His Arg Tyr
130
135

Phe Val Tyr Thr Tyr Glu Thr Lys Leu Arg Glu Glu Cys Gly Tyr Thr			
145	150	155	160

Gly Pro Leu Pro Tyr Trp Glu Trp Gly Leu Asp Val Asn Asn Pro Asn

$$
165 \quad 170 \quad 175
$$

Ala Ser Pro Val Phe Asp Gly Ser Asp Thr Ser Leu Ser Gly Asn Gly

Ala Phe Phe Ala His Glu Gly Ile Gln Met Val Gln Pro Ile Asn Gly	
	205

Asn Ile Leu Lys Leu Pro Pro Gly Asn Gly Gly Gly Cys Val Thr Lys
Gy Pro Phe Lys Asp Met Lys Val His Phe Gly Thr Ile Ile Leu Pro
225230235

Val Tyr Gly Gln Pro Ile Leu Ser Gly Val Glu Asn Pro Ile Ala Asp		
245	250	255

Asn Glu Arg Cys Leu Lys Arg Asp Leu Asn Ala Gly Ile Ala Lys Arg
Phe Thr Ser Phe Leu Asn Ser Thr Ser Val Ile Leu Lys Asn Asn Asn275280285

<210> SEQ ID NO 10
<211> LENGTH: 386
<212> TYPE: PRT
$<213>$ ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 10


```
<210> SEQ ID NO 12
<211> T.ENGTH: 384
<212> TYPE: PRT
<213> ORGANISM: Parascedosporium putredinis
<400> SEQUENCE: 12
```

Met Arg Leu Phe Lys Ala Leu Ala Ala Ala Ala Leu Thr Gly Leu Val
151015

<210> SEQ ID NO 16
$<211>$ LENGTH: 348
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Parascedosporium putredinis
$<400>$ SEQUENCE: 16

Met 1	Lys	Asn	Leu	$\begin{aligned} & \text { Ala } \\ & 5 \end{aligned}$	Gly	Leu	Ile	Thr	10	eu	a	r	Gly	$\begin{aligned} & \text { Val Gly } \\ & 15 \end{aligned}$
Met	Ala	His	$\begin{aligned} & \text { Thr } \\ & 20 \end{aligned}$	His T	Thr	Leu	Val	$\begin{aligned} & \text { Pro } \\ & 25 \end{aligned}$	His		Gln	Asp	$\begin{aligned} & \text { Ser } \\ & 30 \end{aligned}$	Thr Pro
Cys	le	$\begin{aligned} & \text { Asn } \\ & 35 \end{aligned}$	Pro	Ser I	Leu	Arg	$\begin{aligned} & \text { Arg } \\ & 40 \end{aligned}$	Pro	Trp	Gln	Ile	Leu 45	Ser	Asp Gly
Glu	$\begin{aligned} & \text { Lys } \\ & 50 \end{aligned}$	Arg	Ser	Tyr	Leu	Asp 55	Ala	$G \ln$	Leu	Cys	Val 60	Met	Arg	Thr Pro
$\begin{aligned} & \text { Gln } \\ & 65 \end{aligned}$	Thr	Leu	$1 \mathrm{Y}$	eu	$\begin{aligned} & \text { Pro } \\ & 70 \end{aligned}$	Gly	Ala	Arg	Thr	Arg 75	Phe	Glu	Glu	$\begin{gathered} \text { Leu Ala } \\ 80 \end{gathered}$
Ala	Thr	His	Gln	Ile 85	Gly	Ala	Arg	Ala	$\begin{aligned} & \text { Ser } \\ & 90 \end{aligned}$	His	Ala	Thr	Gly	$\begin{aligned} & \text { Thr Phe } \\ & 95 \end{aligned}$
Phe	Pro	Tyr	$\begin{aligned} & \mathrm{His} \\ & 100 \end{aligned}$	Arg I	Tyr	Leu	Leu	$\begin{aligned} & \mathrm{His} \\ & 105 \end{aligned}$	Ala	His	Glu	Ser	$\begin{aligned} & \text { Leu } \\ & 110 \end{aligned}$	Leu Lys
Glu	Cys	$\begin{gathered} \text { Gly } \\ 115 \end{gathered}$	Tyr	His	Ala	Gly	$\begin{aligned} & \text { Leu } \\ & 120 \end{aligned}$	Pro	Tyr	Trp	Asp	$\begin{aligned} & \text { Glu } \\ & 125 \end{aligned}$	Thr	Arg Glu
Ala	$\begin{aligned} & \text { Gly } \\ & 130 \end{aligned}$	Asn	Phe	Ile I	Lys	$\begin{aligned} & \text { Ser } \\ & 135 \end{aligned}$	Thr	Ile	Phe	Glu	Ser 140	Gly	Leu	Gly Phe

<210> SEQ ID NO 17	
<211> LENGTH: 1158	
<212> TYPE: DNA	
<213> ORGANISM: artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: codon optimised sequence	
<400> SEQUENCE: 17	
caagaaccgg cactgaccga agatgatttt agcattccgg aaattgaagg tggtgatgca 60	
ctggcacagc tggcecaact ggcagcagat agcagceaag aaaccgcact gcgtatggca	120
aaacgtggtc tgaatagcgg ttgtagcccg agccagatta aagttcgtcg tgaatggcgt	180
accetgacca gcgcacagcg taaacagtat atcgcaageg ttaaatgcet gcagaccaad	240
ccgagctttt ttgatccgaa cattattccg gcagcaaaaa gcctgtttga tgattttgtt	300
ggtgtgcatg tttttcagac cggcagcatt catctgaccg caacctttct gacetggcat	360
cgttattttg tgtataccta tgaaaccaaa ctgcgcgaag aatgtggtta tacaggtccg	420
ctgccgtatt gggaatgggg tttagatgtt aataatccga atgccagtcc ggtttttgat	480
ggtagcgata ccagcetgag cggtaatggt gcattttttg cacatgaagg tattcagatg	540
gtgcagccga ttaatggcaa tattctgaaa ctgcctcctg gtaatggcgg tggttgtgtt	600

<211> LENGTH: 1092
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 19
cagacctatg agtttagcga ggaggagctc acctctggtg atgccctcaa ggcccttagc 60
aagcaggcta tggaaaatgc tettgcccgc ctccccgaat ctggagaggg ctgcacgcgg 120
gagaacgtca aaattcgaaa ggaatggcgc aacatgccgg ccgagatgag aatcggctat 180
gtcagcgctc tccagtgctt gatggaatcc gaaagcgaat atcccgacgt cgacggtgcc 240
aagacggcgt ttgacgactt cgecgttctt cattacaace tcacgccgtt cgtgcataac 300
tctgctacct tccttacctt ccacaggtac tacattcaca ccctggaaga gcagatgagg 360
aacaagtgcg gatacactgg tgacttcccc tactgggagt ggggcctcga ctgcgacgac 420
ccgcaacagt ctcccetctt tgacggctcc gaaacctctc tcggcagcga cggtgagcet 480
gtggaggceg gagceggcgg tggcttcggc ggcggcttcg gctttggcat gggaggcggc 540
agcggtggtg getgegtgat gaagggacce ttctccaact acaccgtcaa cctcggacce 600
tcaaccaccg ccgacccgct cgcatataac ccgcgetgca tcaagcgaaa cctgaacggc 660
gctatctgca agcagaatge ctcgctccgg aacacgacga cgacgatcet tgactcgcce 720
gatatcgaac tattccagge gattgtccaa ggtgacatgc gataccccga ggcgaggggt 780
cttggcatgg ccgtccacgg cggtggtcac tttactattg gtggtgatcc cggtggcgac 840
ttctacttct cccetctcga gcccgcette ttccaacacc acggccagat egaccgcatg 900
tactttgtct ggcagaacct cgactgggaa acccggcaga acattgccgg caccggtacc 960
atgatgaacc agccccccag cccagaggtt gagatcaccg aactcctcga cctcagcccc 1020
cttgcagaag ccaggccgat caaggacctc attgacaccc ttggctcggc cccgttctgc 1080
tttgtttacg ag 1092
$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 1176
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 20
tcgccgctta acaagaaggc caccttttcg taccagcagg tatctcgaaa tcctgacttc
gctgggaagg acaacgccaa cggctgcacg cttgaaaatg ctgcggtccg tagagaatgg 180
ggtgacttat cogttgccga gcgtgaagag tacgttgccg cggttctctg tctccagaag 240
ttaccatcca aggcgccega gggaaaggca ccaggtgcac tcagccgctt cgatgacttc 300
gttgccacgc acatgacaca ggccatgatg cttcactcgc ccaccaatct gtttgcgagc 360
caccgttact atatctggge ctacgaaace gctcttcgtg aagagtgcgg ctatacggge 420
taccagccgt acatgaatta cgaccgttat gccgatgacc tcctcaactc cccettgttc 480
aacgggaacg cgtccagcct aggaggcaac ggagctccaa gccaatacgc cggtgtccct 540

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 1008
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 23
gcgcccacct gctgcaccaa cgccgagcgg cgagagtgga gaactttctc aactaaggag

agctactggc tcatctcacg gaccctaacc aaggcggtgg tagactggac tcttgaggcc	600
gcgtctttcg ctgtcttga cttccgtctg cagggcacag gcatcgagcc agaaggcatg	660
acagttcatg caggtggcca ccttggtgtt ggtggtgata tcggcgagat cggcaacatg	720
tattcatccc ccggagaccc gctcttctat cttcaccacg ccaatcttga cagactctgg	780
gaccagtggc agaggaagaa gtttgctcag cgtgtccagg atatgaccgg accggataca	840
atgtgggcct atccattcaa cttctttggc gacgtaccct ataccaatat cactctggaa	900
accttgctcg acttcaaggg tctccttggg tccagctcgg cagaccgata tgtcaagatc	960
aaggacgtta tggacagcca gggtccgaac ctctgcgtct tctacaaa	1008

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 1110
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 24
cagggtccgt gttccacaat tcgtcaacga cgggcatggc atacgctgag caacagcgag
gccggaggca ctctgtgtta cgagtacgtc 1110

```
<210> SEQ ID NO 25
<211> LENGTH: 990
<212> TYPE: DNA
<213> ORGANISM: Paracedosporium putredinis
<400> SEQUENCE: 25
```

catacgcata	cacttgtgcc	gcacatgcaa gactcaactc	cotgtatcaa	cccaagtttg	60
cgacgtccat	ggcagattct	ctcggacggc gaaaaacgct	catatctcga	tgcecagctt	120
tgtgtgatga	gaacgecgca	gaccetcggt cttcctggcg	cgagaacacg	tttcgaggag	180
ctggctgcca	cccaccagat	tggcgeccgt gccagccatg	ccacggggac	atttttcccc	240
taccatcgat	acctactgca	tgcccatgag tcattgctga	aggagtgcgg	ctaccacgea	300
ggtctccett	actgggatga	gaccagggaa gctggaaatt	tcatcaagtc	taccatattc	360
gaatcgggce	tcggattcgg	tggctttgga agcgacctca	aagggtgcat	cgaagacgga	420
cctttcgcaa	acttgacaag	tacaatcggt cccgggtttt	cgctgaacga	acactgcatc	480
tcacgtgcgc	tcaatgaaac	tgcagggctc aaggcggcta	gggaagaggt	tgataagtgc	540
ttagaagcca	acgactatac	agagatgtgg cgttgtgcat	ataccacacc	ccatcgtggg	600
ggtcatgggg	gcgtgggagg	cacgatggga gacgctttgg	catcgeccgg	cgacccggta	660
ttctacgtcc	accacgettg	ggtcgataag atttggtggg	attggcagga	ggctgatctt	720
gataatagaa	tgtatgctat	tggcgggcec agcttccagt	cacctgatat	cgggtttcct	780
gaggttcctg	gtgatgttga	ggaagaagaa gcaaatatct	ttggcaaacc	aagcgaagca	840
atccgacgac	tacaggagct	atggagttcc tctgatccaa	gcagagaaac	taccotggag	900
cataatctga	cattgctagg	tattattccc gacatcaaca	ttagtaaggt	catggacact	960
agaggtgggt	atctttgcta	cgaatatgtt			990

<210> SEQ ID NO 26
$<211>$ LENGTH: 386
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 26

$<210>$ SEQ ID NO 27
$<211>$ LENGTH: 364
$<212>$ TYPE $:$ PRT
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 27
Gln Thr Tyr Glu Phe Ser Glu Glu Glu Leu Thr Ser Gly Asp Ala Leu
1

$\begin{aligned} & \mathrm{G} 1 \mathrm{n} \\ & 65 \end{aligned}$	Cys	Leu	Met	Glu	$\begin{aligned} & \text { Ser } \\ & 70 \end{aligned}$	Glu	Ser	Glu	Tyr	$\begin{aligned} & \text { Pro } \\ & 75 \end{aligned}$	Asp	Val	Asp	5	$\begin{aligned} & \text { Ala } \\ & 80 \end{aligned}$
Lys	Thr	Ala	Phe	$\begin{aligned} & \text { Asp } \\ & 85 \end{aligned}$	Asp			Val	$\begin{aligned} & \text { Leu } \\ & 90 \end{aligned}$		Tyr		Leu	$\begin{aligned} & \text { Thr } \\ & 95 \end{aligned}$	Pro
Phe	Val 1	His	$\begin{aligned} & \text { Asn } \\ & 100 \end{aligned}$	Ser	Ala	Thr	Phe	$\begin{aligned} & \text { Leu } \\ & 105 \end{aligned}$	Thr	Phe	His	Arg	$\begin{aligned} & \text { Tyr } \\ & 110 \end{aligned}$		Ile
His	Thr	$\begin{aligned} & \text { Lel } \\ & 115 \end{aligned}$	Glu	Glu	Gln	Met	$\begin{aligned} & \text { Arg } \\ & 120 \end{aligned}$	Asn	Lys	Cys	Gly	$\begin{aligned} & \text { Tyr } \\ & 125 \end{aligned}$	Thr		Asp
Phe	$\begin{aligned} & \text { Pro } \\ & 130 \end{aligned}$	Tyr	Trp	Glu	Trp	$\begin{aligned} & \text { Gly } \\ & 135 \end{aligned}$	eu	Asp	Cys	Asp	$\begin{aligned} & \text { Asp } \\ & 140 \end{aligned}$	Pro			Ser
$\begin{aligned} & \text { Pro } \\ & 145 \end{aligned}$	Leu	Phe	Asp	Gly	$\begin{aligned} & \text { Ser } \\ & 150 \end{aligned}$	Glu	Thr	Ser	Leu	$\begin{aligned} & \text { Gly } \\ & 155 \end{aligned}$	Ser	Asp	Gly	Glu	$\begin{aligned} & \text { Pro } \\ & 160 \end{aligned}$
Val	Glu	Ala	Gly	$\begin{aligned} & \text { Ala } \\ & 165 \end{aligned}$	Gly	Gly	Gly	Phe	$\begin{aligned} & \text { Gly } \\ & 170 \end{aligned}$	Gly	Gly	Phe	Gly	$\begin{aligned} & \text { Phe } \\ & 175 \end{aligned}$	Gly
Met	Gly	Gly	$\begin{aligned} & \text { Gly } \\ & 180 \end{aligned}$	Ser	Gly	Gly	Gly	$\begin{aligned} & \text { Cys } \\ & 185 \end{aligned}$	val	Met	Lys	Gly	$\begin{aligned} & \text { Pro } \\ & 190 \end{aligned}$		Ser
Asn	Tyr	$\begin{aligned} & \text { Thr } \\ & 195 \end{aligned}$	Val	Asn	Leu	Gly	$\begin{aligned} & \text { Pro } \\ & 200 \end{aligned}$	Ser	Thr	Thr	Ala	$\begin{aligned} & \text { Asp } \\ & 205 \end{aligned}$	Pro		Ala
Tyr	$\begin{aligned} & \text { Asn } \\ & 210 \end{aligned}$	Pro	Arg	Cys	Ile	$\begin{aligned} & \text { Lys } \\ & 215 \end{aligned}$	Arg	Asn	Leu	Asn	$\begin{aligned} & \text { Gly } \\ & 220 \end{aligned}$	Ala	Ile		Lys
$\begin{aligned} & G \ln 7 \\ & 225 \end{aligned}$	Asn	Ala	Ser	Leu	$\begin{aligned} & \text { Arg } \\ & 230 \end{aligned}$	Asn	Thr	Thr	Thr	$\begin{aligned} & \text { Thr } \\ & 235 \end{aligned}$	Ile	Leu	Asp		$\begin{aligned} & \text { Pro } \\ & 240 \end{aligned}$
Asp	Ile	Glu	Leu	$\begin{aligned} & \text { Phe } \\ & 245 \end{aligned}$	Gln	Ala	Ile	Val	$\begin{aligned} & \text { Gln } \\ & 250 \end{aligned}$	Gly	Asp	Met	Arg	$\begin{aligned} & \text { Tyr } \\ & 255 \end{aligned}$	Pro
Glu	Ala	Arg	$\begin{aligned} & \text { Gly } \\ & 260 \end{aligned}$	Leu	Gly	Met	qla	$\begin{aligned} & \text { Val } \\ & 265 \end{aligned}$	His	Gly	Gly	Gly	$\begin{aligned} & \mathrm{His} \\ & 270 \end{aligned}$		Thr
Ile	Gly	$\begin{aligned} & \mathrm{Gly} \\ & 275 \end{aligned}$	Asp	Pro	Gly	Gly	$\begin{aligned} & \text { Asp } \\ & 280 \end{aligned}$	Phe	Tyr	Phe	Ser	$\begin{aligned} & \text { Pro } \\ & 285 \end{aligned}$	Leu	Glu	Pro
Ala	$\begin{aligned} & \text { Phe } \\ & 290 \end{aligned}$	Phe	Gln		His	$\begin{aligned} & \text { Gly } \\ & 295 \end{aligned}$	Gln	Ile	Asp	Arg	Met 300	Tyr	Phe	Val	Trp
$\begin{aligned} & G \ln 7 \\ & 305 \end{aligned}$	Asn	Leu	Asp	Trp	$\begin{aligned} & \text { Glu } \\ & 310 \end{aligned}$	Thr	Arg	Gln	Asn	$\begin{aligned} & \text { Ile } \\ & 315 \end{aligned}$	Ala	Gly	Thr	Gly	$\begin{aligned} & \text { Thr } \\ & 320 \end{aligned}$
Met M	Met	Asn	Gln	$\begin{aligned} & \text { Pro } \\ & 325 \end{aligned}$	Pro	Ser	Pro	Glu	$\begin{aligned} & \text { Val } \\ & 330 \end{aligned}$	Glu	Ile	Thr	Glu	$\begin{aligned} & \text { Leu } \\ & 335 \end{aligned}$	Leu
Asp L	Leu	Ser	$\begin{aligned} & \text { Pro } \\ & 340 \end{aligned}$	Leu	Ala	Glu	Ala	$\begin{aligned} & \text { Arg } \\ & 345 \end{aligned}$	Pro	Ile	Lys	Asp	$\begin{aligned} & \text { Leul } \\ & 350 \end{aligned}$	Ile	Asp
Thr I	Leu	$\begin{aligned} & \mathrm{Gly} \\ & 355 \end{aligned}$	Ser		Pro	Phe	$\begin{aligned} & \text { Cys } \\ & 360 \end{aligned}$	Phe	Val	Tyr	Glu				

```
<210> SEQ ID NO 28
<211> TENGTH: 392
<212> TYPE: PRT
<213> ORGANISM: Paracedosporium putredinis
<400> SEQUENCE: 28
```

Ser Pro Leu Asn Lys Lys Ala Thr Phe Ser Tyr Gln Gln Val Ser Arg
151015

Trp Gln Ser Gln Asp Tyr Glu Thr Arg Arg Gly Ala Met Glu Gly Gly
305
$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 377
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 30

$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 336
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Paracedosporium putredinis
$<400>$ SEQUENCE: 31
Ala Pro Thr Cys Cys Thr Asn Ala Glu Arg Arg Glu Trp Arg Thr Phe

1	5	10	15
Ser Thr Lys Glu Lys Gln Ala Tyr Ile Ala Ala Val Lys Cys Leu Gln			

Ser Lys Pro Ser Gln Leu Lys Ser Thr Tyr Pro Thr Ser Gln Asn Arg354045
Phe Asp Asp Phe Gln Ala Val His Ile Asp Leu Thr Glu Lys Tyr His
$50 \quad 5560$
Phe Thr Gly Pro Phe Gln Ala Trp His Arg Val Phe Leu His Lys Tyr
$65 \quad 70 \quad 75080$
Glu Ser Asp Leu Arg Gly Leu Cys Ala Tyr Lys Gly Tyr Gln Pro Tyr

Trp Asp Trp Thr Lys Asp Ser Gly Ser Glu Ala Ala Phe Leu Ala Ser		
100	105	110

Pro Val Phe Asp Ala Val Asn Gly Phe Gly Gly Asn Gly Pro Tyr Val115120125
Asp Thr Ser Asn Phe Pro Val Thr Asn Val Pro Val Lys Ile Pro Asn130135140
Lys Thr Gly Gly Gly Cys Val Gln Asp Gly Ala Phe Val Asn Met Thr
145
150

| Val Thr Leu Gly Pro Gly Pro Ser Leu Glu Ser Asn Pro Arg Cys Leu | | | |
| ---: | ---: | ---: | ---: | ---: |
| | 165 | 170 | 175 |

<210> SEQ ID NO 33
<211> LENGTH: 330
<212> TYPE: PRT
$<213>$ ORGANISM: Paracedosporium putredinis
<400> SEQUENCE: 33
His Thr His Thr Leu Val Pro His Met Gln Asp Ser Thr Pro Cys Ile
$105010 \quad 15$
Asn Pro Ser Leu Arg Arg Pro Trp Gln Ile Leu Ser Asp Gly Glu Lys
202530
Arg Ser Tyr Leu Asp Ala Gln Leu Cys Val Met Arg Thr Pro Gln Thr
354045
Leu Gly Leu Pro Gly Ala Arg Thr Arg Phe Glu Glu Leu Ala Ala Thr
505560
His Gln Ile Gly Ala Arg Ala Ser His Ala Thr Gly Thr Phe Phe Pro
$65 \quad 70 \quad 75 \quad 80$
$\begin{array}{cc}\text { Tyr His Arg Tyr Leu Leu His Ala His Glu Ser Leu Leu Lys Glu Cys } \\ 85 & 90\end{array}$
Gly Tyr His Ala Gly Leu Pro Tyr Trp Asp Glu Thr Arg Glu Ala Gly
100105110


```
<210> SEQ ID NO 34
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 34
```

tccgtaggtg aacctgcgg
$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 17
$<212>$ TYPE: DNA
$<213>$ ORGANISM: artificial sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: primer
$<400>$ SEQUENCE: 35
cgetgegttc ttcatcg

```
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<220> FEATURE:
<221> NAME/KEY: Y
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: wherein y is C or T
<220> FEATURE:
<221> NAME/KEY: Y
<222> LOCATION: (7) ..(7)
<223> OTHER INFORMATION: wherein y is C or T
<220> FEATURE:
<221> NAME/KEY: d
<222> LOCATION: (8) ..(8)
<223> OTHER INFORMATION: wherein a is A or G or T
<220> FEATURE:
<221> NAME/KEY: n
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: wherein n is A or G or T or C
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 36
```

aytgggydta aagng
<210> SEQ ID NO 37
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: primer
<220> FEATURE:
<221> NAME/KEY: n
<222> LOCATION: (4) .. (4)
<223> OTHER INFORMATION: wherein n is C or T or G or A
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: V
<222> LOCATION: (5) .. (5)
<223> OTHER INFORMATION: wherein v is A or C or G
<400> SEQUENCE: 37
taenvgggta tctaatec

```
<210> SEQ ID NO 38
<211> LENGTH: 391
<212> TYPE: PRT
<213> ORGANISM: Agaricus bisporus
<400> SEQUENCE: 38
```

Ser Asp Lys Lys Ser Leu Met Pro Leu Val Gly Ile Pro Gly Glu Ile
Lys Asn Arg Leu Asn Ile Leu Asp Phe Val Lys Asn Asp Lys Phe Phe
$2025 \quad 30$
Thr Leu Tyr Val Arg Ala Leu Gln Val Leu Gln Ala Arg Asp Gln Ser
354045


```
Pro Glu Asp Val Met Asn His Arg Lys Leu Gly Tyr Val Tyr Asp Ile
    275 280 285
Glu Leu Arg Lys Ser Lys Arg Ser Ser His His His His His His
    290 295 300
```

<210> SEQ ID NO 43
<211> LENGTH: 18
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
$<223>$ OTHER INEORMATION: copper binding site
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (2) . (8)
<223> OTHER INFORMATION: wherein X is any amino acid
<220> FEATURE:
<221> NAME/KEY: X
$<222\rangle$ LOCATION: (10)..(17)
<223> OTHER INFORMATION: wherein X is any amino acid
<400> SEQUENCE: 43
His Xaa Xaa Xaa Xaa Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Xaa Xaa Xaa
151015
Xaa His
$<210\rangle$ SEQ ID NO 44
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: copper binding site
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (2)..(4)
$<223>$ OTHER INFORMATION: wherein X is any amino acid
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (6) .. (27)
<223> OTHER INFORMATION: wherein X is any amino acid
<400> SEQUENCE: 44
His Xaa Xaa Xaa His Xaa Xaa
151015
Xaa His
$20 \begin{aligned} & 25\end{aligned}$

```
<210> SEQ ID NO 45
<211> LENGTH: 29
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INEORMATION: copper binding site
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (2)..(4)
<223> OTHER INFORMATION: wherein X is any amino acid
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (6) .. (28)
<223> OTHER INFORMATION: wherein X is anY amino acid
<400> SEQUENCE: 45
```

His Xaa Xaa Xaa His Xaa Xaa
1

```
<210> SEQ ID NO 46
<211> LENGTH: 30
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: copper binding site
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (2)..(4)
<223> OTHER INFORMATION: wherein X is any amino acid
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (6)..(29)
<223> OTHER INFORMATION: wherein X is any amino acid
<400> SEQUENCE: 46
His Xaa Xaa Xaa His Xaa Xaa
151015
Xaa His
```

<210> SEQ ID NO 47
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: copper binding site
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (2)..(4)
<223> OTHER INFORMATION: wherein X is any amino acid
<220> FEATURE:
<221> NAME/KEY: X
<222> LOCATION: (6)..(30)
<223> OTHER INFORMATION: wherein X is any amino acid
<400> SEQUENCE: 47
His Xaa Xaa Xaa His Xaa Xaa
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa His
$20 \quad 25$
30

1. An isolated nucleic acid molecule encoding a β-etherase polypeptide wherein said polypeptide comprises copper and further wherein the activity of said polypeptide is independent of NAD^{+}and/or glutathione.
2. The isolated nucleic acid molecule according to claim 1, wherein said isolated nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of:
i) a nucleotide sequence as set forth in SEQ ID NO: 18, SEQ

IDNO:17. SEQ IDNO: 19, SEQ IDNO: 20, SEQIDNO: 21, SEQID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24 , or SEQ ID NO: 25;
ii) a nucleotide sequence wherein said sequence is degenerate as a result of the genetic code to the nucleotide sequence defined in (i);
iii) a nucleic acid molecule comprising a nucleotide sequence the complementary strand of which hybridizes under stringent hybridisation conditions to sequence set forth in SEQ ID NO: 18, SEQ ID NO: 17, SEQ ID NO 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO:24 or SEQ ID NO: 25;
iv) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence set forth in SEQ ID NO

26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQID NO: 30, SEQIDNO: 31, SEQID NO: 32 or SEQ ID NO: 33;
v) a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence wherein said amino acid sequence is modified by addition, deletion or substitution of at least one amino acid residue as represented in iv) above and has β-etherase activity.
3-9. (canceled)
10. An isolated β-etherase polypeptide wherein said polypeptide comprises copper and further wherein the activity of said polypeptide is independent of NAD^{+}and/or glutathione.
11. The isolated polypeptide according to claim 10 , wherein said isolated polypeptide is selected from the group consisting of:
i) a polypeptide comprising or consisting of an amino acid sequence as set forth in SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31. SEQ ID NO: 32 OR SEQ ID NO: 33;
ii) a modified polypeptide comprising or consisting of a modified amino acid sequence wherein said polypeptide is modified by addition, deletion or substitution of at least one amino acid residue of the sequence set forth in SEQ ID NO: 26. SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32 or SEQID NO: 33, and which has β-etherase activity.
12-18. (canceled)
19. A vector comprising the nucleic acid molecule according to claim 1.
20. The vector according to claim 19. wherein the vector is an expression vector adapted for expression in a heterologous microbial host cell.
21. A cell transformed or transfected with the nucleic acid molecule according to claim 1 .
22. The cell according to claim 21, wherein said cell is a heterologous host cell wherein said heterologous host cell does not naturally express the nucleic acid molecule.
23. The cell according to claim 21, wherein said cell is a bacterial cell, a fungal cell or a yeast cell.
24. (canceled)
25. The cell according to claim $\mathbf{2 3}$, wherein said fungal cell is an Aspergillus sp. cell. or wherein said fungal cell is not a Parascedosporium sp cell.
26. (canceled)
27. A composition comprising one or more polypeptides according to claim 10.
28. A composition according to claim 27, wherein said composition comprises at least the polypeptide set forth in SEQ ID NO: 9 or 26.
29. A composition according to claim 27 , wherein said one more polypeptides are set forth in SEQ ID NO: 26, 27, 28, 29, 30,31, 32 and 33.
30. A composition according to claim 27 wherein said composition further comprises one or more polypeptides for the saccharification of lignocellulose selected from the group consisting of cellulases, lytic polysaccharide monooxygenases, carbohydrate esterases, hemicellulases, glycosylhydrolases, endoglucanases, cellobiohydrolases, beta-glucosidases, xylanases, mannases, cellobiose dehydrogenases, and beta-xylosidases.
31. A method for the modification of plant biomass comprising the following steps:
i) contacting plant biomass with the composition according to
claim 27 to form a reaction mixture; and ii) incubating said reaction mixture under conditions which cleave β-ether linkages present in the plant biomass to obtain depolymerised lignin units.
32. The method according to claim 31, wherein;
said method comprises a further step of extracting said depolymerised lignin units from the reaction mixture;
said method comprises a further step of contacting said reaction mixture with a composition comprising one or more polypeptides for the saccharification of the processed lignocellulose; and/or
said method comprises extracting di- and/or monosaccharides
33. The method according to claim 31, wherein:
said depolymerised lignin units are selected from the group consisting of flavones and p-coumaric acid; and/or
said plant biomass is wheat straw or sugarcane bagasse.
34. The method according to claim 33 wherein said flavones are tricin.

35-36. (canceled)
37. The method according to claim 32, wherein said saccharification composition comprises or consist of one or more polypeptides selected from the group consisting of cellulases, lytic polysaccharide monooxygenases, carbohydrate esterases, hemicellulases, glycosylhydrolases, endoglucanases, cellobiohydrolases, beta-glucosidases, xylanases, mannases, cellobiose dehydrogenases, and beta-xylosidases.
38. (canceled)
39. A method for the manufacture of a β-etherase polypeptide comprising the following steps:
i) providing the cell according to claim 21 and cell culture medium,
ii) culturing the cell in i) above to express a β-eherase polypeptide wherein said polypeptide comprises copper and further wherein the activity of said polypeptide is independent of NAD^{+}and/or glutathione; and optionally,
iii) isolating said polypeptide from the cell or cell culture medium.
40. The method according to claim 39 wherein said polypeptide is isolated under denaturing conditions.

