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DEVICES AND METHODS FOR 
LABEL-FREE SENSING OF LYMPHOCYTE 

ACTIVATION AND IDENTITY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is related to, claims priority to, and 
incorporates herein by reference for all purposes U.S. Pro
visional Patent Application No. 63/437,101, filed Jan. 4, 
2023. 

STATEMENT REGARDING FEDERALLY 
FUNDED RESEARCH 

[0002] This invention was made with govermnent support 
under CA205101 awarded by the National Institutes of 
Health. The govermnent has certain rights in the invention. 

BACKGROUND 

[0003] Lymphocytes consist ofnatural killer (NK) cells, B 
cells, and T cells, and constitute approximately 20-40% of 
circulating white blood cells. T cells have diverse cytotoxic 
and immune-modulating activities after activation, and 
therapies that modulate T cell function are in development 
or clinical use for a range of diseases, including cancer, HIV, 
autoimmune disease, and transplant rejection. NK cells are 
cytotoxic and surveil the body for unhealthy cells. However, 
NK cells are not antigen-specific, and instead rely on a 
balance of activating and inhibitory signals to initiate cyto
toxicity. Their cytotoxic function has led to particular inter
est in the role of NK cells in tumor cell clearance and in 
adoptive cell therapy for cancer. B cells, like T cells, are a 
part of the adaptive immune system, and their primary role 
is the production of antibodies. B cells are also antigen
presenting cells that can present peptides to T cells to 
promote their effector functions. Subtypes of B cells also 
secrete cytokines that can either attenuate or suppress the 
function of surrounding immune cells. The multiple func
tions of B cells provide several avenues for leveraging B 
cells as a platform for cell-based therapies, including anti
gen-presenting B cells as a cancer immunotherapy and 
protein production for rare genetic diseases. Immune pro
filing measures activation ofNK, B, and T cells to a stimulus 
(such as an antigen from a virus or bacterium), which can be 
used to identify individual response and potentially predict 
outcome. Therefore, the presence and activation of lympho
cytes is important for monitoring immune health and 
response to therapy across a range of diseases. 
[0004] Given the relevance of NK cells, B cells, and T 
cells for cell therapy, immunotherapy, infectious disease, 
and immune profiling, new label-free and non-destructive 
tools are needed to assess lymphocyte activation and sub
type in single cells. Current methods include flow cytometry, 
cytokine release, single-cell RNA sequencing, and cytom
etry by time of flight (CyTOF). Flow cytometry provides 
single-cell resolution, but requires labelling with fluorescent 
antibodies that can be time consuming and may be disrup
tive to cells. 12 Bulk measurements of cytokine release are 
also popular but do not provide single-cell measurements, 
and ELISPOT, which provides single-cell cytokine release 
information requires cell labeling.12 Additionally, cytokine 
based techniques cannot provide information about subsets 
of immune cells that do not secrete cytokines. Finally, 
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single-cell RNA sequencing and CyTOF provide extensive 
single-cell information, but destroy the sample. 

SUMMARY 

[0005] In an aspect, the present disclosure provides a 
lymphocyte activation and/or identification status sensing 
device. The device includes a cell analysis observation zone, 
an autofluorescence spectrometer, a processor, and a non
transitory computer-readable medium. The cell analysis 
observation zone is adapted to receive a lymphocyte and to 
present the lymphocyte for individual autofluorescence 
interrogation. The autofluorescence spectrometer is config
ured to acquire an autofluorescence data set for the lympho
cyte located in the cell analysis observation zone. The 
autofluorescence spectrometer includes a light source, a 
photon-counting detector, and photon-counting electronics. 
The processor is in electronic communication with the 
autofluorescence spectrometer. The non-transitory com
puter-readable medium is accessible to the processor and has 
stored thereon instructions that, when executed by the pro
cessor, cause the processor to: a) receive the autofluores
cence data set; and b) identify a current activation and/or 
identification status of the lymphocyte based on a current 
activation and/or identification prediction. The current acti
vation and/or identification prediction is computed using at 
least a portion of the autofluorescence data set. The current 
activation and/or identification prediction can be: i) a six
class classification; ii) a lymphocyte identification predic
tion; iii) a lymphocyte activation prediction; iv) a B cell 
activation prediction; or v) a NK cell activation prediction. 
[0006] In another aspect, methods of classification are 
disclosed using the acquired autofluorescence data set and 
the above-referenced classification and predictions. 
[0007] The six-class classification predicts that the lym
phocyte is an activated T cell, a quiescent T cell, an activated 
B cell, a quiescent B cell, an activated NK cell, or a 
quiescent NK cell. The six-class classification is computed 
using at least three six-class metabolic endpoints. The at 
least three six-class metabolic endpoints include reduced 
nicotinamide adenine dinucleotide and/or reduced nicotina
mide dinucleotide phosphate (NAD(P)H) shortest fluores
cence amplitude component (a1), NAD(P)H shortest fluo
rescence lifetime component (t1), and NAD(P)H mean 
fluorescence lifetime C-tm). 
[0008] The lymphocyte identification prediction predicts 
that the lymphocyte is a T cell, a B ell, or a NK cell. The 
lymphocyte identification prediction is computed using at 
least two metabolic endpoints as an input. The at least two 
lymphocyte identification metabolic endpoints include fla
vin adenine dinucleotide (FAD) -cm, FAD -i:1, or NAD(P)H 
"tm. 

[0009] The lymphocyte activation prediction predicts that 
the lymphocyte is an activated lymphocyte or a quiescent 
lymphocyte. The lymphocyte activation prediction is com
puted using at least two lymphocyte activation metabolic 
endpoints of the autofluorescence data set as an input. The 
at least two lymphocyte activation metabolic endpoints 
include NAD(P)H a 1 and one of an optical redox ratio, 
NAD(P)H "ti, or NAD(P)H -cm. 
[0010] The B cell activation predicts that the lymphocyte 
(in most cases, known in advance to be a B cell) is an 
activated B cell or a quiescent B cell. The B cell activation 
prediction is computed using at least two B cell activation 
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metabolic endpoints as an input. The at least two B cell 
metabolic endpoints include NAD(P)H a 1 and NAD(P)H 
'tm. 

[0011] The NK cell activation prediction predicts that the 
lymphocyte (in most cases, known in advance to be a NK 
cell) is an activate NK cell or a quiescent NK cell. The NK 
cell activation prediction is computed using at least two NK 
cell activation metabolic endpoints as an input. The at least 
two NK activation metabolic endpoints include either: NAD 
(P)H a 1 and an optical redox ratio; or NAD(P)H a 1 , NAD 
(P)H -cm, and NAD(P)H second shortest lifetime (i:2), and 
NAD(P)H 1:1 . 

BRIEF DESCRIPTIONS OF THE DRAWINGS 
AND APPENDIX 

[0012] FIG. 1 is a flowchart illustrating a method, in 
accordance with an aspect of the present disclosure. 
[0013] FIG. 2 is a flowchart illustrating a method, in 
accordance with an aspect of the present disclosure. 
[0014] FIG. 3 is a flowchart illustrating a method, in 
accordance with an aspect of the present disclosure. 
[0015] FIG. 4 is a block diagram of a device, in accor
dance with an aspect of the present disclosure. 
[0016] FIG. 5 shows optical metabolic imaging of primary 
human B cells activated with IL-4 and anti-CD40. (A) B 
cells were isolated from human peripheral blood of three 
different donors and activated for 72 hours with 5 µg/mL 
anti-CD40 and 20 ng/ml IL-4, or cultured unstimulated. (B) 
IL-6 concentration was measured in media collected from B 
cells isolated from two different donors and cultured with or 
without anti-CD40/IL-4 for 72 hours. The increase in IL-6 
concentration in the activated B cell condition is consistent 
with T-cell dependent B cell activation. **** P<0.0001, 
parametric T-test. (C) Samples of media from activated and 
quiescent B cells were taken before imaging and measured 
using commercial kits. Glucose in the media of activated B 
cells was significantly decreased compared to the quiescent 
cell media. (D) Lactate levels in activated B cell media were 
significantly higher than lactate levels in the quiescent cell 
media. (E) Representative images ofNAD(P)H -cm, FAD -cm, 
redox ratio (NAD(P)H intensity divided by the sum of 
NAD(P)H and FAD intensity), and anti-CD69 staining in the 
unstimulated and activated conditions. (F) Redox ratio nor
malized to the mean of the control group significantly 
increased in the CD69+ B cells in the IL-4+anti-CD40 
condition compared to CD69- B cells in the unstimulated 
condition. (G)-(H) NAD(P)H -cm significantly decreased and 
NAD(P)H a 1 significantly increased in the CD69+ B cells in 
the IL-4+ anti-CD40 condition compared to CD69- B cells 
in the unstimulated condition. (I) A significant decrease in 
FAD -cm was seen in the CD69+ B cells in the IL-4+anti
CD40 condition compared to CD69- B cells in the unstimu
lated condition. In (C)-(D), media samples were diluted 
100-fold and 0.5 µL was assayed. Assays were performed 
according to the respective Bio Vision kit protocols. * P<0. 
05, **** P<0.0001, parametric T-test. In (F)-(I), data are 
displayed as box-and-whisker plots, representing the median 
and interquartile range (IQR), with whiskers at 1.5*IQR. 
Plots are overlaid with data points; each point represents one 
cell. n=1210 cells (461 cells in the activated CD69+ condi
tion, 749 cells in the control CD69- condition). **** 
P<0.0001, two-tailed unpaired T-test. 
[0017] FIG. 6 shows heterogeneity and classification of 
activated and quiescent B cells using OMI parameters. (A) 
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B cells were isolated from human peripheral blood of three 
different donors and activated for 72 hours with 5 µg/mL 
anti-CD40 and 20 ng/ml IL-4, or cultured unstimulated. (B) 
IL-6 concentration was measured in media collected from B 
cells isolated from two different donors and cultured with or 
without anti-CD40/IL-4 for 72 hours. The increase in IL-6 
concentration in the activated B cell condition is consistent 
with T-cell dependent B cell activation. **** P<0.0001, 
parametric T-test. (C) Samples of media from activated and 
quiescent B cells were taken before imaging and measured 
using commercial kits. Glucose in the media of activated B 
cells was significantly decreased compared to the quiescent 
cell media. (D) Lactate levels in activated B cell media were 
significantly higher than lactate levels in the quiescent cell 
media. (E) Representative images ofNAD(P)H -cm, FAD -cm, 
redox ratio (NAD(P)H intensity divided by the sum of 
NAD(P)H and FAD intensity), and anti-CD69 staining in the 
unstimulated and activated conditions. (F) Redox ratio nor
malized to the mean of the control group significantly 
increased in the CD69+ B cells in the IL-4+anti-CD40 
condition compared to CD69- B cells in the unstimulated 
condition. (G)-(H) NAD(P)H -cm significantly decreased and 
NAD(P)H a 1 significantly increased in the CD69+ B cells in 
the IL-4+anti-CD40 condition compared to CD69- B cells 
in the unstimulated condition. (I) A significant decrease in 
FAD -cm was seen in the CD69+ B cells in the IL-4+anti
CD40 condition compared to CD69- B cells in the unstimu
lated condition. In (C)-(D), media samples were diluted 
100-fold and 0.5 µL was assayed. Assays were performed 
according to the respective Bio Vision kit protocols. * P<0. 
05, **** P<0.0001, parametric T-test. In (F)-(I), data are 
displayed as box-and-whisker plots, representing the median 
and interquartile range (IQR), with whiskers at 1.5*IQR. 
Plots are overlaid with data points; each point represents one 
cell. n=1210 cells (461 cells in the activated CD69+ condi
tion, 749 cells in the control CD69- condition). **** 
P<0.0001, two-tailed unpaired T-test. 

[0018] FIG. 7 shows optical metabolic imaging of primary 
human NK cells activated with IL-12, IL-15, and IL-18. (A) 
NK cells were isolated from human peripheral blood of three 
different donors and activated with 10 ng/ml IL-12, 50 ng/ml 
IL-15, and 50 ng/mL IL-18 for 24 hours. (B) IFN-y con
centration in media collected from NK-cells isolated from 
two different donors and cultured with or without activating 
cytokines for 24 hours. The increase of IFN-y in the acti
vated condition is consistent with NK cell activation. **** 
P<0.0001, parametric T-test. (C) Samples of media from 
activated and quiescent NK cells from two different donors 
were taken before imaging and measured using commercial 
kits. Glucose in the media of activated NK cells was 
significantly decreased compared to the quiescent cell 
media. (D) Lactate levels in activated NK cell media were 
significantly higher than lactate levels in the quiescent cell 
media. (E) Representative images ofNAD(P)H -cm, FAD -cm, 
redox ratio, and anti-CD69 staining in the control and 
activated conditions. (F) Redox ratio significantly increased 
in the CD69+ NK cells in the cytokine-activated condition 
compared to CD69- NK cells in the unstimulated condition. 
(G)-(I) NAD(P)H -cm significantly decreased, and FAD -cm 
and NAD(P)H a 1 significantly increased, in the CD69+ NK 
cells in the cytokine-activated condition compared to 
CD69- NK cells in the unstimulated condition. In (C)-(D), 
media samples were diluted 100-fold and 0.5 µL was 
assayed. Assays were performed according to the respective 
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Bio Vision kit protocols. *** P<0.001, **** P<0.0001, para
metric T-test. In (F)-(I), data are displayed as box-and
whisker plots, representing the median and interquartile 
range (IQR), with whiskers at 1.5*IQR. Plots are overlaid 
with data points; each point represents one cell. n=1221 cells 
(554 cells in the activated CD69+ condition, 667 cells in the 
control CD69- condition). **** P<0.0001, two-tailed 
unpaired T-test. 

[0019] FIG. 8 shows heterogeneity and classification of 
activated and quiescent NK cells using OMI parameters. (A) 
Heatmap of single-cell data across all NK cell experiments 
reveals heterogeneity within the dataset. Hierarchical cell 
clustering was calculated on the z-scores (the difference 
between cell mean and population mean divided by the 
population standard deviation) of nine OMI variables (NAD 
(P)H -cm, 1:1 , 1:2 , a 1 ; FAD -cm, 1:1 , 1:2 , a 1 ; and control
normalized optical redox ratio). (B) UMAP of nine OMI 
parameters displays clustering of activated (CD69+ in acti
vated condition) and quiescent (CD69- in unstimulated 
condition) NK cells. (C) Pie chart showing the relative 
weight of each of the nine OMI parameters in the "all 
variable" random forest classifier. (D) ROC curve of random 
forest classifiers trained for classification of quiescent and 
activated NK cells based on different combinations of OMI 
parameters, with operating points indicated. "Top variables" 
classifiers refer to the largest weighted OMI parameters in 
the classifier using all variables, displayed in (C). The 
classifier using the top four OMI parameters performed the 
best (AUC 0.97), followed by the classifier that used all 9 
OMI parameters (AUC 0.96) and the classifier that used only 
NAD(P)H lifetime variables (NAD(P)H -cm, 1:1 , 1:2 , a 1 ) 

(AUC 0.96). n=1221 cells (554 cells in the activated CD69+ 
condition, 667 cells in the control CD69- condition) with a 
70/30 split for training and test sets. 

[0020] FIG. 9 shows classification of lymphocyte activa
tion status based on OMI parameters collected in B cells, 
NK cells, and T-cells. Data from activated and quiescent T 
cells, B cells, and NK cells was used to evaluate OMI 
measurements across lymphocytes. T cell data where T cells 
were activated with CD2/3/28 for 48 h and imaged with 
OMI. (A) Box-and-whisker plots of key OMI variables 
(control-normalized optical redox ratio, NAD(P)H -cm, and 
NAD(P)H a 1 ) display consistent changes with activation 
across T cells, B cells, and NK cells. Additional changes 
were noted between quiescent (CD69- control) cells in each 
of the three lymphocyte subtypes ( comparisons between 
quiescent groups were interpreted as not meaningful for the 
optical redox ratio, due to normalization). (B) Heatmap 
displaying hierarchical clustering of groups of activated or 
quiescent cells by lymphocyte subtype, donor, and activa
tion status, calculated from the z-scores (the difference 
between experimental group mean and the mean of all cells 
divided by the standard deviation of all cells) of nine OMI 
variables. (C) UMAP of single-cell OMI data displays 
distinct clusters of lymphocytes based on lymphocyte sub
type and activation status. (D) ROC curves of random forest 
classifiers trained to identify activated cells across all three 
lymphocyte subtypes, with operating points indicated. The 
highest weighted OMI parameters were used in the "top 
variables" classifiers; these weights are in FIG. 14. (E) 
Accuracy of different random forest classifiers trained to 
identify lymphocyte subtype (one vs one approach). Vari
able weights for "top variables" are in FIG. 15B. (F) 
Accuracy of random forest classifiers trained to identify 
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lymphocyte subtype and activation across all three lympho
cyte subtypes (one vs. one approach) using different OMI 
parameters. Variable weights are in FIG. 17B. n=3127 cells 
(749 CD69- control B cells, 461 CD69+ activated B cells, 
667 CD69- control NK cells, 554 CD69+ activated NK 
cells, 331 CD69- control T cells, 365 CD69+ activated T 
cells) with a 50/50 split for training and test sets. **** 
P<0.0001, Kruskal-Wallis with post-hoc comparisons. 
ns=not significant. 

[0021] FIG. 10 shows OMI ofCD69+ and CD69- B cells 
in both control and anti-CD40+ IL-4 activated culture. Both 
CD69+ and CD69- B cells in both conditions ( control and 
IL-4+anti-CD40 activated) for each OMI parameter: (A) 
optical redox ratio (NAD(P)H intensity divided by the sum 
ofNAD(P)H+FAD intensities), (B) NAD(P)H mean lifetime 
-cm, (C) FAD mean lifetime -cm, (D) unbound NAD(P)H 
fraction a 1 , (E) unbound NAD(P)H lifetime i:1 , (F) protein
bound NAD(P)H lifetime i:2 , (G) protein-bound FAD frac
tion a 1 , (H) protein-bound FAD lifetime i:1 , (I) unbound 
FAD lifetime i:2 . Plots display single cell values (dots) 
overlaid on box- and whisker plots displaying the median, 
interquartile range (IQR), and minimum/maximum value. 
n=1352 (461 cells in the activated CD69+ condition, 130 
cells in the activated CD69- condition, 12 cells in the 
control CD69+ condition, 749 cells in the control CD69-
condition). *** p<0.005, **** p<0.0001, Kruskal-Wallis 
with post-hoc comparisons. ns=not significant. 

[0022] FIG. 11 shows additional UMAPs and classifier 
performance for single B cell OMI. (A) UMAP of B cells 
with labels for both CD69+ and CD69- cells in the control 
and activated (anti-CD40+IL4) groups. (B) UMAP of 
B-cells color-coded by donor (A, B, C) and activation status 
(CD69+, CD69-). (C) Confusion matrix of the 9 OMI 
parameter random forest classifier shows performance for 
classification of CD69+ activated and CD69- control B 
cells. (D) Confusion matrix of a logistic regression classifier 
trained on 9 OMI parameters to classify B cells as CD69+ 
activated or CD69- control. (E) Confusion matrix of a 
support vector machine (SVM) classifier trained on 9 OMI 
parameters to classify B cells as CD69+ activated or CD69-
control. (F) ROC curves for random forest, logistic regres
sion, and SVM classifiers trained on 9 OMI parameters, with 
operating points indicated. In (A), n=1352 (461 cells in the 
activated CD69+ condition, 130 cells in the activated 
CD69- condition, 12 cells in the control CD69+ condition, 
749 cells in the control CD69- condition). In (B)-(F), 
n=1210 cells (461 cells in the activated CD69+ condition, 
749 cells in the control CD69- condition) with a 70/30 split 
for training and test sets. 

[0023] FIG. 12 shows OMI of CD69+ and CD69- NK 
cells in both unstimulated and IL-12+ IL-15+ IL-18 activated 
culture conditions. Both CD69+ and CD69- NK cells in 
both conditions (control and IL-12+IL-15+IL-18 activated) 
for each OMI parameter: (A) optical redox ratio, (B) NAD 
(P)H mean lifetime -cm, (C) FAD mean lifetime -cm, (D) 
unbound NAD(P)H fraction a 1 , (E) unbound NAD(P)H 
lifetime 1:1 , (F) protein-bound NAD(P)H lifetime 1:2 , (G) 
protein-bound FAD fraction a 1 , (H) protein-bound FAD 
lifetimei:1 , (I) unbound FAD lifetimei:2 . Plots display single 
cell values (dots) overlaid on box- and whisker plots dis
playing the median, interquartile range (IQR), and mini
mum/maximum value. n=1642 cells (554 activated CD69+ 
cells, 372 activated CD69- cells, 49 control CD69+ cells, 
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667 control CD69- cells). ** p<0.01, *** p<0.001, **** 
p<0.0001, Kruskal-Wallis with post-hoc comparisons. 
ns=not significant 
[0024] FIG. 13 shows additional UMAPs and classifier 
performance for single NK cell OMI. (A) UMAP of NK 
cells with labels for both CD69+ and CD69- cells in the 
control and activated (IL-12+IL-15+IL-18) groups. (B) 
UMAP of NK cells color-coded by donor (D, E, F) and 
activation status (CD69+, CD69-). (C) Confusion matrix of 
the 9 OMI parameter random forest classifier trained to 
classify NK cells as CD69+ activated or CD69- control 
cells. (D) Confusion matrix of a logistic regression classifier 
trained on 9 OMI parameters to classify NK cells as CD69+ 
activated or CD69- control. (E) Confusion matrix of SVM 
classifier trained on 9 OMI parameters to classify NK cells 
as CD69+ activated or CD69- control. (F) ROC curves for 
the random forest, logistic regression, and SVM classifiers 
trained on 9 OMI parameters, with operating points indi
cated. In (A), n=1642 cells (554 activated CD69+ cells, 372 
activated CD69-cells, 49 control CD69+ cells, 667 control 
CD69- cells). In (B)-(F), n=1221 cells (554 cells in the 
activated CD69+ condition, 667 cells in the control CD69-
condition) with a 70/30 split for training and test sets. 
[0025] FIG. 14 shows additional UMAPs and classifier 
performance for activation of lymphocytes (T cells, B cells 
and NKcells). (A) UMAP of single-cell OMI data from FIG. 
9C containing all T, B, and NK cells color-coded by acti
vation status. (B) Bar graph of% accuracy for a random 
forest classifier trained to distinguish CD69+ from CD69-
cells across the combined dataset of all lymphocyte sub
types. (C) Pie chart displaying the weights of OMI variables 
included in the random forest classifier using all 9 OMI 
features in FIG. 9D. (D) ROC curves of random forest, 
logistic regression, and support vector matrix (SVM) clas
sifiers using all 9 OMI variables to distinguish CD69+ from 
CD69- cells across all lymphocyte subtypes, with operating 
points indicated. (E) Confusion matrix for random forest 
classifier using all 9 OMI variables to classify cells as 
activated (CD69+) or quiescent (CD69-) in FIG. 9D. (F) 
Confusion matrix for logistic regression classifier. (G) Con
fusion matrix for SVM classifier. n=3127 cells (1747 CD69-
cells, 1380 CD69+ cells) with a 50/50 split for training and 
test sets. T cell data taken from previously published dataset. 
[0026] FIG. 15 shows additional UMAPs and classifier 
performance for lymphocyte subtype (T cells, B cells and 
NK cells). (A) UMAP of lymphocytes from FIG. 9C color
coded by lymphocyte subtype. (B) Variable weights of 9 
OMI parameters used for one-vs.-one random forest classi
fication by lymphocyte subtype in FIG. 9E. (C) Confusion 
matrix for 9 OMI parameter random forest classifier in FIG. 
SE. n=3127 cells (1210 B cells, 1221 NK cells, 696 T cells) 
with a 50/50 split for training and test sets. T cell data taken 
from previously published dataset. 
[0027] FIG. 16 shows UMAP and classifier performance 
for lymphocyte subtype classifier based on quiescent cells 
only (T cells, B cells and NK cells). (A) UMAP oflympho
cytes from quiescent (CD69- control) NK, B, and T cells 
color-coded by lymphocyte subtype. (B) Bar graph display
ing accuracy of random forest classifiers trained to separate 
lymphocytes based on lymphocyte subtype (one vs. one 
approach, quiescent cells only). (C) Feature weights of 9 
OMI parameters used for one-vs.-one random forest classi
fication by lymphocyte subtype in (B). (D) Confusion matrix 
for 9 OMI parameter random forest classifier in (B). n=l 747 
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cells (749 B cells, 667 NK cells, 331 T cells) with a 50/50 
split for training and test sets. T cell data taken from 
previously published dataset. 
[0028] FIG. 17 shows additional UMAPs and classifier 
performance for both lymphocyte subtype (T cells, B cells 
and NK cells) and activation. (A) UMAP of lymphocytes 
from FIG. 9C color-coded by lymphocyte subtype, activa
tion status, and donor. (B) Feature weights of 9 OMI 
parameters used for one-vs.-one random forest classification 
by lymphocyte subtype and activation status in FIG. 9F (C) 
Confusion matrix for 9 OMI parameter random forest clas
sifier in FIG. 9F. n=3127 cells (749 CD69- control B cells, 
461 CD69+ activated B cells, 667 CD69- control NK cells, 
554 CD69+ activated NK cells, 331 CD69- control T cells, 
365 CD69+ activated T cells) with a 50/50 split for training 
and test sets. T cell data taken from previously published 
dataset. 
[0029] FIG. 18 shows phasor-based classification of NK 
cell and B cell activation and lymphocyte subtype. (A) 
NAD(P)H phasorplot ofB cells from FIG. 5 (Red=activated 
CD69+ B cells, blue=quiescent CD69- B cells). Shaded 
areas show decision boundaries for logistic regression clas
sification ofB cell activation based on NAD(P)H phasor. (B) 
ROC curves and confusion matrix for random forest clas
sification of B cell activation. The NAD(P)H and FAD 
phasors at both the laser repetition frequency (80 MHz) and 
its second harmonic (160 MHz) predicted B cell activation 
with a classification accuracy of93.9%, n=1323 B cells (451 
cells in the activated CD69+ condition, 872 cells in the 
control CD69- condition) with a 50/50 split for training and 
test sets. (C) NAD(P)H phasor plot of NK cells from FIG. 
7 (Red=activated CD69+NK cells, blue=quiescent CD69-
NK cells). Shaded areas show decision boundaries for 
logistic regression classification ofNK cell activation based 
on NAD(P)H phasor. (D) ROC curves and confusion matrix 
for random forest classification of NK cell activation. The 
NAD(P)H and FAD phasors at both the laser repetition 
frequency (80 MHz) and its second harmonic (160 MHz) 
predicted NK cell activation with a classification accuracy of 
89.2%, n=l 742 cells (781 cells in the activated CD69+ 
condition, 961 cells in the control CD69- condition) with a 
50/50 split for training and test sets. (E) Phasor plots of 
NAD(P)H (top) and FAD (bottom) of B cells and NK cells 
at both the laser repetition rate (80 MHZ) and its second 
harmonic (160 MHZ). (F) ROC curve and confusion matrix 
for logistic regression classification ofB vs NK. Using both 
the NAD(P)H and FAD phasors at 80 MHz and 160 MHz, 
the logistic regression model could classify a cell as B or NK 
with a classification accuracy of 99.9%, n=3065 cells (1323 
B cells, 1742 NK cells) with a 50/50 split for training and 
test sets. Due to separate processing pipelines, the total 
number of cells in phasor analysis differs from that in the fit 
analysis. Both analysis pipelines use the same raw data. 
[0030] FIG. 19 shows phasor-based classification of NK 
cell, B cell, T cell lymphocyte subtype and activation. (A) 
NAD(P)H phasor plot of B cells, NK cells, and T cells. (B) 
Confusion matrix for random forest classification of lym
phocyte subtype. The classifier was trained on NAD(P)H 
phasors (at the laser repetition frequency 80 MHz and its 
second harmonic 160 MHz) and achieves a classification 
accuracy of 96.2%. (C) Confusion matrix for random forest 
classification of lymphocyte subtype and activation trained 
on NAD(P)H phasors achieves a classification accuracy of 
88.5%. The classifier predicted lymphocyte subtype and 
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activation with a total n=3653 lymphocytes including 
n=1323 B cells (451 B cells in the activated CD69+ condi
tion, 872 B cells in the control CD69- condition); n=l 742 
NK cells (781 cells in the activated CD69+ condition, 961 
cells in the control CD69- condition); n=588 T cells (263 
cells in the activated condition, 325 cells in the control 
condition); a 50/50 data split for training and test sets was 
used. Due to separate processing pipelines and exclusion 
criteria, the total number of cells in phasor analysis differs 
from that in the fit analysis. Both analysis pipelines use the 
same raw data. T cell data taken from previously published 
dataset. 
[0031] FIG. 20 shows accuracies for classifiers given in 
figures. Accuracies are given out of a maximum of 1. For 
main FIG. SD the top 1 feature is the redox ratio (RR). 

DETAILED DESCRIPTION 

[0032] Before the present invention is described in further 
detail, it is to be understood that the invention is not limited 
to the particular embodiments described. It is also under
stood that the terminology used herein is for the purpose of 
describing particular embodiments only, and is not intended 
to be limiting. The scope of the present invention will be 
limited only by the claims. As used herein, the singular 
forms "a", "an", and "the" include plural embodiments 
unless the context clearly dictates otherwise. 
[0033] Specific structures, devices and methods relating to 
modifying biological molecules are disclosed. It should be 
apparent to those skilled in the art that many additional 
modifications beside those already described are possible 
without departing from the inventive concepts. In interpret
ing this disclosure, all terms should be interpreted in the 
broadest possible manner consistent with the context. Varia
tions of the term "comprising" should be interpreted as 
referring to elements, components, or steps in a non-exclu
sive manner, so the referenced elements, components, or 
steps may be combined with other elements, components, or 
steps that are not expressly referenced. Embodiments refer
enced as "comprising" certain elements are also contem
plated as "consisting essentially of' and "consisting of' 
those elements. When two or more ranges for a particular 
value are recited, this disclosure contemplates all combina
tions of the upper and lower bounds of those ranges that are 
not explicitly recited. For example, recitation of a value of 
between 1 and 10 or between 2 and 9 also contemplates a 
value of between 1 and 9 or between 2 and 10. 
[0034] As used herein, the term "lymphocyte" refers to 
cells that are CD45+ and CD3+, CD19+, and/or CD56+. 
[0035] As used herein, the term "B cell" refers to cells that 
are CD45+ and CD19+. 
[0036] As used herein, the terms "natural killer" cell or 
"NK" cell refers to cells that are CD45+ and CD56+. 
[0037] As used herein, the term "T cell" refers to cells that 
are CD45+ and CD3+. 
[0038] As used herein, "cell size" refers to a measured 
geometric area of a cell of interest as determined by ana
lyzing an acquired image of the cell of interest. 
[0039] As used herein, the term "memory" includes a 
non-volatile medium, e.g., a magnetic media or hard disk, 
optical storage, or flash memory; a volatile medium, such as 
system memory, e.g., random access memory (RAM) such 
as DRAM, SRAM, EDO RAM, RAMBUS RAM, DR 
DRAM, etc.; or an installation medium, such as software 
media, e.g., a CD-ROM, or floppy disks, on which programs 
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may be stored and/or data communications may be buffered. 
The term "memory" may also include other types of 
memory or combinations thereof. 
[0040] As used herein, the term "FAD" refers to flavin 
adenine dinucleotide. 
[0041] As used herein, the term "NAD(P)H" refers to 
reduced nicotinamide adenine dinucleotide and/or reduced 
nicotinamide dinucleotide phosphate. 
[0042] As used herein, the term "processor" may include 
one or more processors and memories and/or one or more 
programmable hardware elements. As used herein, the term 
"processor" is intended to include any of types of proces
sors, CPUs, GPUs, microcontrollers, digital signal proces
sors, or other devices capable of executing software instruc
tions. 
[0043] As used herein, the term "redox ratio" or "optical 
redox ratio" refers to a ratio of NAD(P)H fluorescence 
intensity to FAD fluorescence intensity; a ratio of FAD 
fluorescence intensity to NAD(P)H fluorescence intensity; a 
ratio of NAD(P)H fluorescence intensity to any arithmetic 
combination including FAD fluorescence intensity; or a ratio 
of FAD fluorescence intensity to any arithmetic combination 
including NAD(P)H fluorescence intensity. In certain cases, 
the optical redox ratio or optical redox ratio refers to a ratio 
ofNAD(P)H fluorescence intensity to the sum ofNAD(P)H 
and FAD fluorescence intensity. 
[0044] Autofluorescence endpoints include photon counts/ 
intensity and fluorescence lifetimes. The fluorescence life
time of cells can be a single value, the mean fluorescence 
lifetime, or compromised from the lifetime values of mul
tiple subspecies with different lifetimes. In this case, mul
tiple lifetimes and lifetime component amplitude values are 
extracted. Both NAD(P)H and FAD can exist in quenched 
(short lifetime) and unquenched (long lifetime) configura
tions; therefore, the fluorescence decays of NAD(P)H and 
FAD are fit to two components. Generally, NADH and FAD 
fluorescence lifetime decays are fit to a two component 
exponential decay, I(t)=a1e-th;1 +a2e-th;2+C, where I(t) is the 
fluorescence intensity as a function of time, t, after the laser 
pulse, a 1 and a 2 are the fractional contributions of the short 
and long lifetime components, respectively (i.e., a 1 +a2 =1), 
i:1 and i:2 are the short and long lifetime components, 
respectively, and C accounts for background light. However, 
the lifetime decay can be fit to more components (in theory 
any number of components, although practically up to -5-6) 
which would allow quantification of additional lifetimes and 
component amplitudes. By convention lifetimes -c and 
amplitudes a are numbered from short to long, but this 
notation could be reversed. A mean lifetime -cm can be 
computed from the lifetime components, (1:m=a11:l+a21:2 .. 

. ). Fluorescence lifetimes and lifetime component ampli
tudes can also be approximated from frequency domain data 
collection and analysis and gated cameras/detectors. For 
gated detection, a 1 could be approximated by dividing the 
detected intensity at early time bins by later time bins. 
Alternatively, fluorescence anisotropy can be measured by 
polarization-sensitive detection of the autofluorescence, thus 
identifying free NAD(P)H as the short rotational diffusion 
time in the range of 100-700 ps. 
[0045] FAD a 1 refers to the contribution of bound FAD 
and is the shortest lifetime that is not dominated (i.e., greater 
than 50%) by instrument response and/or scattering. FAD a 1 

is the contribution associated with FAD lifetime values from 
50-1500 ps, from 50-1000 ps, or from 50-600 ps. For clarity, 
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a claim herein including features related to a "shortest" 
lifetime cannot be avoided by defining the lifetime values to 
include a sacrificial shortest lifetime that is dominated by 
instrument response and/or scattering. 
[0046] FAD i:1 refers to the bound FAD lifetime and is the 
shortest lifetime that is not dominated (i.e., greater than 
50%) by instrument response and/or scattering. FAD i:1 is 
the FAD lifetime values from 50-1500 ps, from 50-1000 ps, 
or from 50-600 ps. For clarity, a claim herein including 
features related to a "shortest" lifetime cannot be avoided by 
defining the lifetime values to include a sacrificial shortest 
lifetime that is dominated by instrument response and/or 
scattering. 
[0047] FAD i:2 refers to the free FAD lifetime and is the 
longest lifetime that is not dominated (i.e., greater than 50%) 
by instrument response and/or scattering. FAD i:2 is the FAD 
lifetime values from 1000-4000 ps, from 1000-3000 ps, or 
from 1500-3000 ps. For clarity, a claim herein including 
features related to a "longest" lifetime cannot be avoided by 
defining the lifetime values to include a sacrificial shortest 
lifetime that is dominated by instrument response and/or 
scattering. 

[0048] NAD(P)H a 1 refers to the contribution of free 
NAD(P)H and is the shortest lifetime that is not dominated 
(i.e., greater than 50%) by instrument response and/or scat
tering. NAD(P)H a 1 is the contribution associated with 
NAD(P)H lifetime values from 50-1500 ps, from 50-1000 
ps, or from 50-600 ps. For clarity, a claim herein including 
features related to a "shortest" lifetime cannot be avoided by 
defining the lifetime values to include a sacrificial shortest 
lifetime that is dominated by instrument response and/or 
scattering. 
[0049] NAD(P)H 1:1 refers to the free NAD(P)H lifetime 
and is the shortest lifetime that is not dominated (i.e., greater 
than 50%) by instrument response and/or scattering. NAD 
(P)H i:1 is the NAD(P)H lifetime values from 200-1500 ns, 
from 200-1000 ns, or from 200-600 ns. For clarity, a claim 
herein including features related to a "shortest" lifetime 
cannot be avoided by defining the lifetime values to include 
a sacrificial shortest lifetime that is dominated by instrument 
response and/or scattering. 
[0050] NAD(P)H 1:2 refers to the bound NAD(P)H lifetime 
and is the longest lifetime that is not dominated (i.e., greater 
than 50%) by instrument response and/or scattering. NAD 
(P)H i:2 is the NAD(P)H lifetime values from 1000-4000 ns, 
from 1000-3000 ns, or from 1500-3000 ns. For clarity, a 
claim herein including features related to a "longest" life
time cannot be avoided by defining the lifetime values to 
include a sacrificial shortest lifetime that is dominated by 
instrument response and/or scattering. 

NAD(P)H ,;m~ai",;1+(l-a1)·,;2 

[0051] The various aspects may be described herein in 
terms of various functional components and processing 
steps. It should be appreciated that such components and 
steps may be realized by any number of hardware compo
nents configured to perform the specified functions. 

Methods 

[0052] This disclosure provides a variety of methods. It 
should be appreciated that various methods are suitable for 
use with other methods. Similarly, it should be appreciated 
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that various methods are suitable for use with the systems 
described elsewhere herein. When a feature of the present 
disclosure is described with respect to a given method, that 
feature is also expressly contemplated as being useful for the 
other methods and systems described herein, unless the 
context clearly dictates otherwise. 
[0053] The methods described herein can provide predic
tions that relate to activation status and/or lymphocyte type 
of a given lymphocyte. Each of the described predictions can 
be performed in parallel with other predictions, so the 
descriptions are not intended to be mutually exclusive, 
unless the context clearly dictates otherwise. Given that the 
methods are non-destructive, all of the methods described 
herein can be performed on a given cell, unless expressly 
limited by the nature of the cell and method ( e.g., if a given 
cell is a B cell and the method is specific to cells that are 
known to be NK cells, then the method cannot be per
formed). 
[0054] In some cases, the methods described herein 
include predictions regarding identifying the activation sta
tus of a given lymphocyte. This prediction is a current 
activation prediction, which provides a computer-generated 
prediction for the current state of activation in a given 
lymphocyte of interest. For example, the current activation 
prediction may indicate that a given lymphocyte is activated 
or it may indicate that the cell is quiescent. The given 
lymphocyte may have an unknown lymphocyte type, so the 
methods may in some cases be unable to rely on parameters 
that depend on knowing whether the given cell is a B cell, 
a NK cell, or a T cell. 
[0055] In some cases, the methods described herein 
includes predictions regarding identifying the specific lym
phocyte identification of a given lymphocyte. The prediction 
is a current identification prediction, which provides a 
computer-generated prediction for the current lymphocyte 
identification of a given lymphocyte of interest. For 
example, the current identification prediction may indicate 
that a given lymphocyte is a T cell ( or a NK cell or a B cell). 
In this prediction the given lymphocyte can have an 
unknown lymphocyte type, so the methods cannot rely on 
parameters that depend on knowing whether the given cell 
is a B cell, a NK cell, or a T cell. 
[0056] Referring to FIG. 1, the present disclosure provides 
a method 100 of characterizing lymphocyte activation and/ 
or identification status. At optional process block 102, the 
method 100 optionally includes receiving a population of 
lymphocytes having unknown activation status and 
unknown lymphocyte type (i.e., unknown whether a given 
lymphocyte is a B cell, a NK cell, or a T cell). The 
population of lymphocytes can itself be contained within a 
broader population of cells that includes some cells that are 
not lymphocytes. At process block 104, the method 100 
includes acquiring an autofluorescence data set for each 
lymphocyte of the population of lymphocytes. At process 
block 106, the method 100 includes identifying a current 
activation and/or identification status of each of the lym
phocytes based on a current activation and/or identification 
prediction. The current activation and/or identification pre
diction is computed using at least a portion of the autofluo
rescence data set. The current activation and/or identifica
tion prediction is computed using at least one metabolic 
endpoint of the autofluorescence data set as an input. The at 
least one metabolic endpoint includes those described 
below. Following process block 106, the method 100 can 
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proceed to process block 108 or 110, depending on the 
desired outcome. In some cases, the method 100 proceeds to 
process block 108 and process block 110, in either order. 
While process blocks 108 and 110 are both illustrated and 
described as optional, the method 100 includes either pro
cess block 108 or process block 110. At optional process 
block 108, the method 100 optionally includes physically 
isolating a first portion of the population of lymphocytes 
from a second portion of the population of lymphocytes 
based on a current activation prediction, wherein each 
lymphocyte of the population of lymphocytes is placed into 
the first portion when the current activation prediction 
exceeds a predetermined threshold and into the second 
portion when the current activation prediction is less than or 
equal to the predetermined threshold. At optional process 
block 110, the method 100 optionally includes generating a 
report including the current activation prediction. The report 
optionally includes identifying a proportion of the popula
tion of lymphocytes having a current activation and/or 
identification prediction that exceeds a predetermined 
threshold. 
[0057] Referring to FIG. 2, the present disclosure provides 
a method 200 of characterizing lymphocyte activation sta
tus. At optional process block 202, the method 200 option
ally includes receiving a population of lymphocytes having 
unknown activation status. At process block 204, the method 
200 includes acquiring an autofluorescence data set from a 
lymphocyte of the population of lymphocytes. At process 
block 206, the method 200 includes computing a current 
activation prediction using at least a portion of the autofluo
rescence data set. The current activation prediction is com
puted using at least one metabolic endpoint. The at least one 
metabolic endpoint can include those outlined below. At 
process block 208, the method 200 includes identifying a 
current activation status of the lymphocyte based on the 
current activation prediction. 
[0058] Method 100 and method 200 are related to one 
another and can be utilized together. For example, method 
200 can be utilized within method 100. Aspects described 
with respect to method 100 can be utilized in method 200, 
unless the context clearly dictates otherwise, and vice versa. 
[0059] The autofluorescence data set acquired at process 
block 104 or 204 can be acquired in a variety of ways, as 
would be understood by one having ordinary skill in the 
spectroscopic arts with knowledge of this disclosure and 
their own knowledge from the field. For example, the 
autofluorescence data can be acquired from fluorescence 
decay data. As another example, the autofluorescence data 
can be acquired by gating a detector ( a camera, for instance) 
to acquire data at specific times throughout a decay in order 
to approximate the autofluorescence endpoints described 
herein. As yet another example, a frequency domain 
approach can be used to measure and analyze lifetime. 
Alternatively, fluorescence anisotropy can be measured by 
polarization-sensitive detection of the autofluorescence, thus 
identifying free NAD(P)H as the short rotational diffusion 
time in the range of 100-700 ps. The specific way in which 
autofluorescence data is acquired is not intended to be 
limiting to the scope of the present invention, so long as the 
lifetime information necessary to determine the autofluores
cence endpoints necessary for the methods described herein 
can be suitably measured, estimated, or determined in any 
fashion. One example of a suitable autofluorescence data set 
acquisition is described below in the Examples section. 
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[0060] The physical isolation operation of optional pro
cess block 108 is in response to a current activation predic
tion determined from the acquired autofluorescence data set. 
If the current activation prediction exceeds a predetermined 
threshold for a given lymphocyte, then that lymphocyte is 
placed into the first portion. If the current activation predic
tion is less than or equal to the predetermined threshold for 
the given lymphocyte, then that lymphocyte is placed into 
the second portion. The result of this physical isolation is 
that the first portion of the population of lymphocytes is 
significantly enriched in lymphocytes having a given acti
vation status ( e.g., activated or quiescent), whereas the 
second portion of the population of lymphocytes is signifi
cantly depleted of lymphocytes having that given activation 
status. 
[0061] In some cases, the physical isolation operation of 
optional process block 108 can include isolating cells into 
three, four, five, six, or more portions. In these cases, the 
different portions will be separated by a number of prede
termined thresholds that is one less than the number of 
portions (i.e., three portions=two predetermined thresholds). 
The portion whose current activation prediction exceeds all 
of the predetermined thresholds (i.e., exceeds the highest 
threshold) contains the greatest concentration of lympho
cytes with a given activation status. The portion whose 
current activation prediction fails to exceed any of the 
predetermined thresholds (i.e., fails to exceed the lowest 
threshold) contains the lowest concentration oflymphocytes 
with the given activation status. Using multiple predeter
mined thresholds can afford the preparation of portions of 
the population of lymphocytes that have extremely high or 
extremely low concentrations oflymphocytes with the given 
activation status. In some cases, the physical isolation opera
tion of optional process block 108 (or a totally separate 
aspect of method 100, as would be appreciated by those 
having ordinary skill in the cell isolation arts) can include 
isolating other kinds of cells, such as red blood cells or the 
like, or various kinds of debris so they are not included in the 
portions including lymphocytes. 
[0062] The current activation prediction is computed 
using at least one metabolic endpoint of the autofluorescence 
data set for each lymphocyte of the population of lympho
cytes as an input. The at least one metabolic endpoint 
typically includes reduced nicotinamide adenine dinucle
otide and/or reduced nicotinamide dinucleotide phosphate 
(NAD(P)H) shortest fluorescence amplitude component 
( a 1). The current activation prediction is computed using an 
equation that is generated by a machine learning process on 
data for a population of lymphocytes having a known 
activation status using the at least one metabolic endpoint 
and as variable(s). 

[0063] The at least one metabolic endpoint can include 
one or more of the following: NAD(P)H fluorescence inten
sity; NAD(P)H shortest lifetime amplitude component or 
NAD(P)H a 1 ; NAD(P)H mean fluorescence lifetime or 
NAD(P)H -cm; NAD(P)H shortest fluorescence lifetime or 
NAD(P)H i:1 ; NAD(P)H second shortest fluorescence life
time or NAD(P)H i:2 ; an optical redox ratio (e.g., NAD(P) 
H/[NAD(P)H+FAD], see definition above); FAD fluores
cence intensity; FAD mean fluorescence lifetime or FAD -cm, 
the FAD shortest fluorescence amplitude component or FAD 
a 1, the FAD shortest fluorescence lifetime component or 
FAD i:1 , the FAD longest fluorescence lifetime component 
or FAD i:2 , or a combination thereof. The relative weightings 
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of the at least one metabolic endpoints can vary based on the 
particular cell type and prediction and are discussed below 
with respect to more specific aspects. 
[0064] In certain cases, the at least one metabolic endpoint 
can include, in no particular order, the NAD(P)H mean 
fluorescence lifetime or NAD(P)H -cm; the FAD shortest 
fluorescence lifetime component (i:1); FAD mean fluores
cence lifetime (-cm); NAD(P)H shortest lifetime amplitude 
component or NAD(P)H a 1 ; the FAD shortest lifetime 
amplitude component (a1); an optical redox ratio (e.g., 
NAD(P)H/[NAD(P)H+FAD], see definition above); NAD 
(P)H shortest fluorescence lifetime or NAD(P)H i:1 ; the FAD 
longest fluorescence lifetime component (i:2 ), NAD(P)H 
second shortest fluorescence lifetime or NAD(P)H i:2 ; or a 
combination thereof. The at least one metabolic endpoint 
can also optionally include one or more of the following: 
NAD(P)H fluorescence intensity or FAD fluorescence inten
sity. 
[0065] The at least one morphological parameter can 
include solidity, eccentricity, an area of the lymphocyte, a 
perimeter of the lymphocyte, convex area which is the area 
of the convex hull (i.e., the smallest convex polygon that fits 
around the cell) that encloses a lymphocyte, major axis 
length or a combination thereof. 
[0066] In some cases, the current activation prediction can 
be computed using cell size as an input. However, the 
inventors unexpectedly discovered that including cell size in 
computing the current activation prediction provided little 
improvement in prediction quality. As a result, while the 
present disclosure is intended to encompass embodiments 
that do measure cell size and include that cell size measure
ment in the various predictions that are made, the present 
disclosure expressly contemplates excluding cell size. The 
exclusion of cell size can be preferential in some cases, 
because it allows predictions to be made in circumstances 
where measuring cell size may not be practical. 
[0067] In some cases, two, three, four, five, six, seven, 
eight, nine, ten, eleven, twelve, thirteen, fourteen, or more 
inputs are used. 
[0068] In some cases, a surprisingly small number of 
metabolic endpoints and morphological parameters can be 
used while still achieving an adequate level of classification 
accuracy, as described below. 
[0069] In some cases, the predictions described herein are 
computed using a phasor analysis, as described in Interna
tional Patent Application Pub. No. 2021/232011, which is 
incorporated herein in its entirety by reference for all pur
poses. Briefly, a first phasor at a first frequency and a second 
phasor at a second, different frequency are computed from 
the time-resolved autofluorescence decay, and then the acti
vation prediction can be computed using these phasors. 
[0070] The method 100 or method 200 can sort lympho
cytes into the categories of activated and quiescent based on 
the current activation status. 
[0071] The method 100 or method 200 can sort lympho
cytes into the categories of T cell, B cell, and NK cell based 
on the current identification status. 
[0072] The method 100 or method 200 can provide sur
prising accuracy of classifying lymphocyte current activa
tion or identification state. The accuracy can be at least 70%, 
at least 72.5%, at least 75%, at least 77.5%, at least 80%, at 
least 82.5%, at least 85%, at least 87.5%, at least 90%, at 
least 92.5%, at least 95%, at least 96%, at least 97%, at least 
98%, or at least 99%. One non-limiting example of mea-
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suring the accuracy includes executing the method 100 or 
method 200 on a given cell with unknown current activation 
status and then using one of the traditional methods for 
determining activation status (which will typically be a 
destructive method) for a number of cells that is statistically 
significant. 
[0073] The method 100 or method 200 can be performed 
without the use of a fluorescent label for binding the 
lymphocyte. The method 100 or method 200 can be per
formed without immobilizing the lymphocyte. 
[0074] In certain cases, the method 100 or method 200 is 
performed on lymphocytes having unknown identity status. 
[0075] In some cases, the method 100 or method 200 is 
used to perform a six-class classification, which can identify 
lymphocytes as activated T cells, quiescent T cells, activated 
B cells, quiescent B cells, activated NK cells, or quiescent 
NK cells. The six-class classification is computed using at 
least three six-class metabolic endpoints of the autofluores
cence data set. The at least three six-class metabolic end
points include reduced nicotinamide adenine dinucleotide 
and/or reduced nicotinamide dinucleotide phosphate (NAD 
(P)H) shortest fluorescence amplitude component (a1), 
NAD(P)H shortest fluorescence lifetime component (i:1), 
and NAD(P)H mean fluorescence lifetime (-cm). 
[0076] We used random forest classification to classify 
both cell type and activation simultaneously. A six-class 
classification was performed (one vs. one approach). Again, 
the classifier with all 9 metabolic endpoints had the highest 
accuracy (91.7%), but other classifiers also performed well. 
In one case, the top four parameters (NAD(P)H a 1 , NAD 
(P)H "ti, NAD(P)H -cm, FAD -cm) gave an accuracy of88.7%. 
In another case, the top three parameters (NAD(P)H a 1 , 

NAD(P)H i:1 , NAD(P)H -cm) gave an accuracy of at least 
86%. In another case, the NAD(P)H lifetime variables (-cm, 
1:1 , 1:2 , a 1 ) provided an accuracy of 87.2%. 
[0077] A confusion matrix reveals that the majority of 
misclassification was between whether a cell was activated 
or quiescent, while cell type was usually identified correctly. 
[0078] In some cases, the six-class classification is capable 
of being computed or is computed using only data secured 
with a single wavelength of light. In some cases, the 
six-class classification is capable of being computed or is 
computed using only NAD(P)H ai, NAD(P)H -cm, and 
NAD(P)H i:1 as the input to provide an accuracy of at least 
86%. In some cases, the six-class classification is capable of 
being computed or is computed using only NAD(P)H a 1 , 

NAD(P)H -cm, NAD(P)H 1:1 , and NAD(P)H 1:2 as the input to 
provide an accuracy of at least 87%. In some cases, the 
six-class classification is capable of being computed or is 
computed using only NAD(P)H a 1 , NAD(P)H -cm, NAD 
(P)H "ti, NAD(P)H 1:2 , FAD "ti, FAD -cm, FAD ai, FAD 1:2 , 

and optical redox ratio as the input to provide an accuracy 
of at least 91.5%. 
[0079] The six-class classification can in some cases be 
used purely for the data that is collected. In other words, the 
analyzed cells may be superfluous and can be discarded after 
their use. However, this will not always be the case, as one 
of the most exciting applications of this technology includes 
administering cells that have been identified by the predic
tions disclosed herein. This administering is discussed in 
greater detail below. 
[0080] In some cases, the method 100 or method 200 is 
used to distinguish between lymphocytes based on identity, 
which can identify lymphocytes as T cells, B cells, or NK 



US 2024/0219289 Al 

cells. The lymphocyte identification prediction is computed 
using at least two lymphocyte identification metabolic end
points as an input. The at least two lymphocyte identification 
metabolic endpoints include NAD(P)H a 1 . 

[0081] In one case, we investigated whether machine 
learning could be used to classify cell type with the com
bined lymphocyte data. Three-class random forest classifi
cation of lymphocyte cell type was performed ( one vs. one 
approach) using different combinations of metabolic end
points. In one example, classification with all nine metabolic 
endpoints provided an accuracy of 99.1 %. The feature 
weights are FAD-cm (28.5%), FADi:1 (26.3%), NAD(P)H -cm 
(16.5%), FAD a 1 (10.3%), NAD(P)H i:1 (8.3%), optical 
redox ratio (4.7%), NAD(P)H a 1 (3.7%), FAD i:2 (0.9%), 
and NAD(P)H i:2 (0.8%). In another example, the top four 
parameters resulted in a cell type identification accuracy of 
97 .1 %. In another example, NAD(P)H lifetime variables, 
NAD(P)H -cm, ai, i:1 , and i:2 gave an accuracy of 95.5%. 
[0082] In some cases, the lymphocyte identification pre
diction is capable of being computed or is computed using 
only a single wavelength of excitation light. In some cases, 
the lymphocyte identification prediction is capable of being 
computed or is computed using only NAD(P)H ai, NAD 
(P)H -cm, NAD(P)H "ti, and NAD(P)H 1:2 as the input to 
provide an accuracy of at least 95.5%. In some cases, the 
lymphocyte identification prediction is capable of being 
computed or is computed using only FAD -cm, FAD 1:1 , 

NAD(P)H -cm, and FAD a 1 as the input to provide an 
accuracy of at least 97%. In some cases, the lymphocyte 
identification prediction is capable of being computed or is 
computed using only NAD(P)H a 1 , NAD(P)H -cm, NAD 
(P)H "ti, NAD(P)H 1:2 , FAD "ti, FAD -cm, FAD ai, FAD 1:2 , 

and optical redox ratio as the input to provide an accuracy 
of at least 99%. 
[0083] In some cases, the method 100 or method 200 is 
used to distinguish between lymphocytes based on activity 
status, which can identify activated lymphocytes and quies
cent lymphocytes, without requiring knowledge of which 
specific type of lymphocyte is being analyzed. The lympho
cyte activation prediction is computed using at least two 
lymphocyte activation metabolic endpoints of the auto fluo
rescent data set as an input. The at least two lymphocyte 
activation metabolic endpoints include NAD(P)H a 1 and 
one of an optical redox ratio, NAD(P)H -cm, or NAD(P)H i:1 . 

[0084] In one case, we investigated whether machine 
learning could be used to classify activation with the com
bined lymphocyte data. First, random forest classification 
was used to identify whether cells were activated (CD69+) 
or quiescent (CD69-). Using all 9 metabolic endpoints, an 
accuracy of 92.7% was achieved. The feature weights were 
NAD(P)H a 1 (26.0%), NAD(P)H i:1 (17.8%), optical redox 
ratio (16.9%), NAD(P)H-cm (9.73%), NAD(P)Hi:2 (7.6%), 
FAD a 1 (7.3%), FAD -cl (5.9%), FAD i:2 (4.5%), and FAD 
-cm ( 4.3% ). In another example, classification of activation 
status based on NAD(P)H variables also had high perfor
mance (accuracy=90.5%). In yet another example, logistic 
regression and support vector machine classification of 
activation status provided accuracies of 81.4% and 82.2% 
respectively. 
[0085] In some cases, the lymphocyte activation predic
tion is capable of being computed or is computed using a 
single wavelength of excitation light. In some cases, the 
lymphocyte activation prediction is capable of being com
puted or is computed using only NAD(P)H a 1 and NAD 
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(P)H -cl as the input to provide an accuracy of at least 86%. 
In some cases, the lymphocyte activation prediction is 
capable of being computed or is computes using only 
NAD(P)H a 1 , NAD(P)H -cl, and an optical redox ratio as the 
input to provide an accuracy of at least 89%. In some cases, 
the lymphocyte activation prediction is capable of being 
computed or is computes using only NAD(P)H a 1 , NAD 
(P)H-cl, an optical redox ratio, and NAD(P)H -cm as the input 
to provide an accuracy of at least 90%. In some cases, the 
lymphocyte activation prediction is capable of being com
puted or is computes using only NAD(P)H a 1 , NAD(P)H 
-cm, NAD(P)H 1:1 , and NAD(P)H 1:2 as the input to provide 
an accuracy of at least 90%. In some cases, the lymphocyte 
activation prediction is capable of being computed or is 
computes using only NAD(P)H a 1 , NAD(P)H -cm, NAD 
(P)H "ti, NAD(P)H 1:2 , FAD ai, FAD -cm, FAD "ti, FAD 1:2 , 

and optical redox ratio as the input to provide an accuracy 
of at least 92%. 
[0086] In certain cases, the method 100 or method 200 is 
performed on B cells and can distinguish between activated 
and quiescent B cells. The B cell activation prediction is 
computed using at least two B cell activation metabolic 
endpoints of the autofluorescence data set as an input. The 
at least two B cell activation metabolic endpoints includes 
NAD(P)H a 1 and NAD(P)H -cm. 
[0087] In some cases, the B cell activation prediction is 
capable of being computed or is computed using only the 
NAD(P)H a 1 and the NAD(P)H -cm as the input to provide 
an accuracy of at least 86%. In some cases, the B cell 
activation prediction is capable of being computed or is 
computed using only the NAD(P)H ai, the NAD(P)H -cm, 
and the FAD i:2 as the input to provide an accuracy of at least 
89%. In some cases, the B cell activation prediction is 
capable of being computed or is computed using only the 
NAD(P)H ai, the NAD(P)H -cm, the FAD i:2 , and the 
NAD(P)H i:1 as the input to provide an accuracy of at least 
90%. In some cases, the B cell activation prediction is 
capable of being computed or is computed using only the 
NAD(P)H a 1 , the NAD(P)H -cm, the NAD(P)H "ti, the 
NAD(P)H 1:2 , the FAD a 1 , the FAD -cm, the FAD 1:1 , the FAD 
i:2 , and optical redox ratio as the input to provide an accuracy 
of at least 92%. 
[0088] In certain cases, the method 100 or method 200 is 
performed on NK cells. The NK cell activation prediction is 
computed using at least two NK cell activation metabolic 
endpoints of the autofluorescence data set as an input. The 
at least two NK activation metabolic endpoints include 
either: NAD(P)H a 1 and an optical redox ratio; or NAD(P)H 
ai, NAD(P)H -cm, and NAD(P)H second shortest lifetime 
(1:2 ), and NAD(P)H 1:1 . 

[0089] In some cases, the NK cell activation prediction is 
capable of being computed or is computed using only the 
NAD(P)H a 1 and an optical redox ratio as the input to 
provide an accuracy of at least 81 %. In some cases, the NK 
cell activation prediction is capable of being computed or is 
computed using only the NAD(P)H ai, an optical redox 
ratio, and the NAD(P)H i:2 as the input to provide an 
accuracy of at least 89%. In some cases, the NK cell 
activation prediction is capable of being computed or is 
computed using only the NAD(P)H ai, an optical redox 
ratio, the NAD(P)H 1:2 , and the NAD(P)H 1:1 as the input to 
provide an accuracy of at least 92%. In some cases, the NK 
cell activation prediction is capable of being computed or is 
computed using only the NAD(P)H ai, the NAD(P)H -cm, 
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the NAD(P)H i:1 , and the NAD(P)H i:2 as the input to 
provide an accuracy of at least 91.5%. In some cases, the NK 
cell activation prediction is capable of being computed or is 
computed using only the NAD(P)H ai, the NAD(P)H -cm, 
the NAD(P)H 1:1 , the NAD(P)H 1:2 , the FAD a 1 , the FAD -cm, 
the FAD i:1 , the FAD i:2 , and an optical redox ratio as the 
input to provide an accuracy of at least 92%. 
[0090] In yet another case, we classified B cell and NK 
cell activation and cell type based on phasors. Logistic 
regression classifiers were trained on NADH and FAD 
phasors at the laser repetition rate (80 MHz) and its second 
harmonic (160 MHZ). Classification based on the NADH 
phasor at the laser repetition frequency (80 MHz) predicted 
B cell activation with 93.4% accuracy and NK cell activa
tion with 89.2% accuracy. Classification using both NADH 
and FAD 80 MHz and 160 MHz phasors could classify cells 
as either B or NK cells with 99.9% accuracy. 
[0091] In some cases, two, three, four, five, six, seven, 
eight, nine, ten, eleven, twelve, thirteen, fourteen, or more 
inputs are used to classify lymphocyte cell type or activation 
status. 
[0092] Referring to FIG. 3, the present disclosure provides 
a method 300 of administering activated lymphocytes to a 
subject in need thereof. At process block 302, the method 
300 includes the method 100 or method 200 described 
above, which results in a first portion of the population of 
lymphocytes enriched for current activation and/or identifi
cation state (when optional process block 108 is utilized) or 
results in a report identifying the proportion of lymphocytes 
that have a given current activation and/or identification 
state (when optional process block 110 is utilized). At 
optional process block 304, the method 300 optionally 
includes modifying the first portion of the population of 
lymphocytes or the population of lymphocytes. The modi
fying can include gene editing. At process block 306, the 
method 300 includes administering the first portion of the 
population of lymphocytes, if the cells have been sorted, or 
the population of lymphocytes, if the cells have not been 
sorted, to the subject. 
[0093] The lymphocytes can be harvested from a donor or, 
alternatively, from the subject to which they are adminis
tered prior to sorting. The lymphocytes can be either directly 
introduced to the subject or can undergo additional process
ing prior to introduction to the subject. In a non-limiting 
example, lymphocytes can be modified by viral means or by 
CRISPR, or stimulated by factors that make them potent 
against disease when administered back to the patient. In 
another non-limiting example, tumor infiltrating lymphocyte 
therapy can use cytokine stimulation or metabolic manipu
lation to enhance lymphocyte activities. A skilled artisan 
will recognize that a variety of modifications can be made to 
the cells, either genetic modification or stimulation with 
factors, which make the cells potent against disease when 
administered back to patient. The degree or extent of modi
fication is not intended to be limiting to this disclosure, as 
the disclosure is principally related to identification of the 
cells earlier in the workflow. 
[0094] The methods described herein provided surprising 
results to the inventors. Prior measurements of autofluores
cence lifetimes in lymphocytes (Yakimov et al., Biomedical 
Optics Express 10(8) 1 Aug. 2019) show no separation 
between lymphocytes (T cells, B cells, NK cells) indicating 
it should not be possible to classify lymphocytes with 
autofluorescence lifetimes. Nothing in the literature reports 
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B cell or NK cell activation measured by autofluorescence 
lifetime imaging. However, T cells, B cells, and NK cells are 
activated through different mechanisms and have very dif
ferent functions, so it is surprising, based on prior T cell 
work by the inventors, that the NAD(P)H lifetimes would be 
sensitive to activation in B cells and NK cells. 
[0095] A surprising result is that T cells, NK cells, and B 
cells can be classified from each other, both in their quies
cent and activated states. All prior work indicates this is not 
likely. 

Systems 

[0096] This disclosure also provides systems. The systems 
can be suitable for use with the methods described herein. 
When a feature of the present disclosure is described with 
respect to a given system, that feature is also expressly 
contemplated as being combinable with the other systems 
and methods described herein, unless the context clearly 
dictates otherwise. 
[0097] Referring to FIG. 4, the present disclosure provides 
a lymphocyte activation status sensing device 400. The 
device 400 includes an observation zone 406. The observa
tion zone 406 is adapted to receive a cell analysis pathway 
402, a cell culture (not illustrated), or other device or system 
capable of presenting lymphocytes for optical interrogation. 
The device 400 includes a processor 412 and a non-transi
tory computer-readable medium 414, such as a memory. In 
some configurations, the processor 412 can be or otherwise 
include a field-programmable gate array (FPGA). In con
figurations where the processor 412 is an FPGA, an addi
tional processor (not shown) may be included to capture 
images. 
[0098] The device 400 optionally includes a cell analysis 
pathway 402. The cell analysis pathway 402 includes an 
inlet 404, the observation zone 406, and an outlet 405. The 
device 400 optionally includes a cell sorter 408. The obser
vation zone 406 is coupled to the inlet 404 downstream of 
the inlet 404 and is coupled to the outlet 405 upstream of the 
outlet 405. The device 400 also includes a single-cell 
autofluorescence spectrometer 410. The device 400 can 
further include an optional cell picker (not illustrated). 
[0099] The inlet 404 can be any nanofluidic, microfluidic, 
or other cell sorting inlet. A person having ordinary skill in 
the art of fluidics has knowledge of suitable inlets 404 and 
the present disclosure is not intended to be bound by one 
specific implementation of an inlet 404. 
[0100] The outlet can be any nanofluidic, microfluidic, or 
other cell sorting outlet. A person having ordinary skill in the 
art of fluidics has knowledge of suitable outlets 405 and the 
present disclosure is not intended to be bound by one 
specific implementation of an outlet 405. 
[0101] The observation zone 406 is configured to present 
lymphocytes for individual autofluorescence decay interro
gation. A person having ordinary skill in the art has knowl
edge of suitable observation zones 406 and the present 
disclosure is not intended to be bound by one specific 
implementation of an observation zone 406. 
[0102] The optional cell sorter 408 has a sorter inlet 416 
and at least two sorter outlets 418. The cell sorter is coupled 
to the observation zone 406 via the sorter inlet 416 down
stream of the observation zone 406. The cell sorter 408 is 
configured to selectively direct a cell from the sorter inlet 
416 to one of the at least two sorter outlets 418 based on a 
sort signal. 
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[0103] The inlet 404, observation zone 406, outlet 405, 
and optional cell sorter 408 can be components known to 
those having ordinary skill in the art to be useful in high
throughput cell screening devices or flow sorters, including 
commercial flow sorters. The cell analysis pathway 402 can 
further optionally include a flow regulator, as would be 
understood by those having ordinary skill in the art. The flow 
regulator can be configured to provide flow of cells through 
the observation zone at a rate that allows the autofluores
cence spectrometer 410 to acquire the autofluorescence data 
set. A useful review of the sorts of fluidics that can be used 
in combination with the present disclosure is Shields et al., 
"Microfluidic cell sorting: a review of the advances in the 
separation of cells from de bulking to rare cell isolation," Lab 
Chip, 2015 Mar. 7; 15(5): 1230-49, which is incorporated 
herein by reference in its entirety. 
[0104] The optional cell picker can serve a similar func
tion as the optional cell sorter 408, namely, isolating cells 
based on a sort signal. The cell picker can be automated. One 
example of a suitable cell picker includes anALS CellCelec
tor™, available commercially from ALS Automated Lab 
Solutions GmbH, Jena, Germany. 
[0105] The autofluorescence spectrometer 410 includes a 
light source 424, a photon-counting detector 426, and pho
ton-counting electronics 428. 
[0106] The autofluorescence spectrometer 410 can be any 
spectrometer suitable for acquiring autofluorescence data 
sets as understood by those having ordinary skill in the 
optical arts. 
[0107] Suitable light sources 424 include, but are not 
limited to, lasers, LEDs, lamps, filtered light, fiber lasers, 
and the like. The light source 424 can be pulsed, which 
includes sources that are naturally pulsed and continuous 
sources that are chopped or otherwise optically modulated 
with an external component. 
[0108] The light source 424 can provide pulses of light 
having a full-width at half maximum (FWHM) pulse width 
that is of a duration that is adequate to achieve the spectro
scopic goals described herein, as would be appreciated by 
one having ordinary skill in the spectroscopic arts. In some 
cases, the FWHM pulse width is at least 1 fs, at least 5 fs, 
at least 10 fs, at least 25 fs, at least 50 fs, at least 100 fs, at 
least 200 fs, at least 350 fs, at least 500 fs, at least 750 fs, 
at least 1 ps, at least 3 ps, at least 5 ps, at least 10 ps, at least 
20 ps, at least 50 ps, or at least 100 ps. In some cases, the 
FWHM pulse width is at most 10 ns, at most 1 ns, at most 
900 ps, at most 750 ps, at most 600 ps, at most 500 ps, at 
most 400 ps, at most 250 ps, at most 17 5 ps, at most 100 ps, 
at most 75 ps, at most 60 ps, at most 50 ps, at most 35 ps, 
at most 25 ps, at most 20 ps, at most 15 ps, at most 10 ps, 
or at most 1 ps. 
[0109] The light source 424 can emit wavelengths that are 
tuned to the absorption ofNAD(P)H and/or FAD. In some 
cases, the wavelength is at least 340 nm, at least 345 nm, at 
least 350 nm, at least 355 nm, at least 360 nm, at least 365 
nm, or at least 370 nm. In some cases, the wavelength is at 
most 415 nm, at most 410 nm, at most 405 nm, at most 400 
nm, at most 395 nm, at most 390 nm, at most 385 nm, or at 
most 380 nm. In some cases, the wavelength is between 360 
nm and 415 nm, between 350 nm and 410 nm, or between 
370 nm and 380 nm. In some cases, the wavelength is 375 
nm. In some cases, the wavelength is 2 times or 3 times these 
wavelength values (i.e., the frequency is½ or 1/2). It should 
be appreciated that pulsed light sources inherently have 

11 
Jul. 4, 2024 

some degree of bandwidth, so they are never exactly mono
chromatic. Thus, references herein to "wavelength" refer to 
either a wavelength at the peak intensity or a weighted 
average wavelength. In some cases, the pulsed light source 
424 is a UV pulsed diode laser. In some cases, the pulsed 
light source has a wavelength that is double the peak 
absorption wavelength of NAD(P)H and/or FAD, with an 
ultrashort pulse duration, such that fluorescence excitation is 
achieved through two-photon excitation events, as under
stood by those having ordinary skill in the optical arts. 
[0110] The photon-counting detector 426 can be any 
detector suitably capable of detecting single photons and 
delivering an analog or digital output representative of the 
detected photons. Examples of photon-counting detectors 
426 include, but are not limited to, a photomultiplier tube, a 
photodiode, an avalanche photodiode, a single-photon ava
lanche diode (SPAD), a charge-coupled device, combina
tions thereof, and the like. 
[0111] The photon-counting electronic 428 can include 
electronics understood by those having ordinary skill in the 
art to be suitable for use with single-photon detectors 426 to 
produce the data sets described herein. Examples of suitable 
photon-counting electronics 428 include, but are not limited 
to, a field-programmable gate array (FPGA), a dedicated 
digital signal processor (DSP) with a digitizer and a time
to-digital converter, a time-correlated single photon count
ing (TCSPC) electronic board with time-to-amplitude and 
analog-to-digital converter electronics (as implemented by 
Becker & Hick!, Berlin, Germany), combinations thereof, 
and the like. 
[0112] The autofluorescence spectrometer 410 can be 
directly (i.e., the processor 412 communicates directly with 
the spectrometer 410 and receives the signals) or indirectly 
(i.e., the processor 412 communicates with a sub-controller 
that is specific to the spectrometer 410 and the signals from 
the spectrometer 410 can be modified or unmodified before 
sending to the processor 412) controlled by the processor 
412. Autofluorescence data sets can be acquired by known 
spectroscopic methods. Fluorescence lifetime images can 
also be acquired by known imaging methods and those 
acquired images can be used by the systems and methods 
described herein, as would be understood by those having 
ordinary skill in the spectroscopic arts. The device 400 can 
include various optical filters tuned to isolate autofluores
cence signals of interest. The optical filters can be tuned to 
the autofluorescence wavelengths ofNAD(P)H and/or FAD. 
[0113] The autofluorescence spectrometer 410 can be con
figured to acquire the autofluorescence dataset from the 
detector's 426 electrical output at a repetition rate under
stood by those having ordinary skill in the spectroscopic arts 
to be suitable for providing adequate sampling to observe 
the dynamics disclosed herein. In some cases, the repetition 
rate can be at least 1 kHz, at least 5 kHz, at least 10 kHz, at 
least 30 kHz, at least 50 kHz, at least 100 kHz, at least 500 
kHz, at least 750 kHz, at least 1 MHZ, at least 4 MHZ, at 
least 7 MHz, at least 10 MHZ, at least 15 MHZ, at least 20 
MHZ, at least 50 MHz, at least 100 MHz, at least 500 MHZ, 
or at least 1 GHz. In some cases, the repetition rate can be 
at most 1 THz, at most 800 GHz, at most 500 GHz, at most 
250 GHz, at most 150 GHz, at most 100 GHz, at most 70 
GHz, at most 50 GHz, at most 25 GHZ, at most 15 GHZ, at 
most 10 GHz, at most 6 GHZ, at most 2 GHZ, at most 1 
GHz, at most 750 MHZ, at most 500 MHZ, at most 400 
MHZ, at most 250 MHz, at most 175 MHz, or at most 100 
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MHz. While there can be downside associated with over
sampling, in principle the present disclosure can function 
with as high of a sampling rate as can be achieved with 
existing technology. The repetition rates identified herein are 
based on the state of the art at the time the present disclosure 
was prepared and filed and are not intended to be limiting in 
the event that future developments facilitate a greater rep
etition rate. 
[0114] The pulsed light source 424 can be configured to 
operate at pulse repetition rates that are adapted to acquire 
the needed fluorescence lifetime information. The maximum 
pulse repetition rate is limited by the fluorescence lifetime of 
the fluorophore of interest. The fluorescence decay must 
have fully died down by the time the next pulse of light is 
introduced to the sample in order to avoid ambiguity about 
the sources of data sets (i.e., was this particular fluorescent 
photon initiated by the most recent excitation pulse of light 
or the one preceding it?). The pulsed light source 424 can 
have a pulse repetition rate of up to 100 MHz, up to 80 MHz, 
up to 60 MHz, or up to 40 MHz. The lower limit of the pulse 
repetition rate is more practical in a sense of reducing the 
overall sampling time, but theoretically the data can be taken 
very slowly if there is some reason to do so. 
[0115] The device 400 can optionally include an optical 
microscope 420 for acquiring visual images of cells that are 
located in the observation zone 406 or elsewhere along the 
cell analysis pathway 402. 
[0116] The device 400 can optionally include a cell size 
measurement tool 422. The cell size measurement tool 422 
can be any device capable of measuring the size of cells, 
including but not limited to, an optical microscope, such as 
optical microscope 420. In some cases, the optical micro
scope and the cell size measurement tool 422 are the same 
subsystem. 
[0117] In some cases, the autofluorescence spectrometer 
410 and the optical microscope 420 can be integrated into a 
single optical subsystem. In some cases, the autofluores
cence spectrometer 410 and the cell size measurement tool 
422 can be integrated into a single optical subsystem. While 
some aspects of the methods described herein can operate by 
not utilizing the cell size as an input to the convolutional 
neural network, it may be useful to measure the cell size for 
other purposes. 
[0118] The processor 412 is in electronic communication 
with the spectrometer 410. The processor 412 is also in 
electronic communication with, when present, the optional 
cell sorter 408, the optional optical microscope 420, and the 
optional cell size measurement tool 422. 
[0119] The non-transitory computer-readable medium 414 
has stored thereon instructions that, when executed by the 
processor, cause the processor to execute at least a portion 
of the methods described herein. Equations for which the 
first and second phasor coordinates are inputs can also be 
stored on the non-transitory computer-readable medium 
414. The non-transitory computer-readable medium 414 can 
be local to the device 400 or can be remote from the device, 
so long as it is accessible by the processor 412. 
[0120] The device 400 can be substantially free of fluo
rescent labels (i.e., the cell analysis pathway 402 does not 
include a region for mixing the cell(s) with a fluorescent 
label). The device 400 can be substantially free of immo
bilizing agents for binding and immobilizing lymphocytes. 
[0121] The present invention has been described in terms 
of one or more preferred embodiments, and it should be 
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appreciated that many equivalents, alternatives, variations, 
and modifications, aside from those expressly stated, are 
possible and within the scope of the invention. 
[0122] The invention will be more fully understood upon 
consideration of the following non-limiting examples. 

Example 1 

Abstract 

[0123] New non-destructive tools are needed to reliably 
assess lymphocyte function for immune profiling and adop
tive cell therapy. Optical metabolic imaging (OMI) is a 
label-free method that measures the autofluorescence inten
sity and lifetime of metabolic cofactors NAD(P)H and FAD 
to quantify metabolism at a single-cell level. Here, we 
investigate whether OMI can resolve metabolic changes 
between quiescent and activated primary human peripheral 
B cells and NK cells. We found that quiescent B and NK 
cells were more oxidized compared to activated cells. Addi
tionally, the NAD(P)H mean fluorescence lifetime decreased 
and the fraction of free NAD(P)H increased in the activated 
B and NK cells compared to quiescent cells. Machine 
learning classified B cells and NK cells according to acti
vation state (CD69+) based on OMI parameters with up to 
94.2% and 92.6% accuracy, respectively. We added our 
previously published OMI data from activated and quiescent 
T cells and found that the NAD(P)H fluorescence lifetime 
increased in NK cells compared to T cells, and further 
increased in B cells compared to NK cells. Random forest 
models based on OMI classified lymphocytes according to 
subtype (B, NK, T cell) with 99.1 % accuracy, and according 
to activation state ( quiescent or activated) and subtype (B, 
NK, T cell) with 92.7% accuracy. Our results demonstrate 
that autofluorescence lifetime imaging can accurately assess 
lymphocyte activation and subtype in a label-free, non
destructive manner. 

Teaser 

[0124] Label-free optical imaging can assess the meta
bolic state of lymphocytes on a single-cell level in a touch
free system. 

Introduction 

[0125] Lymphocytes consist of natural killer (NK) cells, B 
cells, and T cells, and constitute approximately 20-40% of 
circulating white blood cells. T cells have diverse cytotoxic 
and immune-modulating activities after activation, and 
therapies that modulate T cell function are in development 
or clinical use for a range of diseases, including cancer, HIV, 
autoimmune disease, and transplant rejection. NK cells are 
cytotoxic and surveil the body for unhealthy cells. However, 
NK cells are not antigen-specific, and instead rely on a 
balance of activating and inhibitory signals to initiate cyto
toxicity. Their cytotoxic function has led to particular inter
estin the role of NK cells in tumor cell clearance and in 
adoptive cell therapy for cancer. B cells, like T cells, are a 
part of the adaptive immune system, and their primary role 
is the production of antibodies. B cells are also antigen
presenting cells that can present peptides to T cells to 
promote their effector functions. Subtypes of B cells also 
secrete cytokines that can either attenuate or suppress the 
function of surrounding immune cells. The multiple func
tions of B cells provide several avenues for leveraging B 
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cells as a platform for cell-based therapies, including anti
gen-presenting B cells as a cancer immunotherapy and 
protein production for rare genetic diseases. Immune pro
filing measures activation ofNK, B, and T cells to astimulus 
(such as an antigen from a virus or bacterium), which can be 
used to identify individual response and potentially predict 
outcome. Therefore, the presence and activation of lympho
cytes is important for monitoring immune health and 
response to therapy across a range of diseases. 
[0126] New label-free and non-destructive tools are 
needed to assess lymphocyte activation and subtype in 
single cells. Single cell measurements capture lymphocyte 
heterogeneity within a patient, which significantly impacts 
prognosis. Non-destructive tools enable subsequent analysis 
and long-term study of cells, while label-free tools enable 
subsequent expansion and use of cells in patients, for 
example in adoptive cell therapy. Current methods to assess 
lymphocytes include flow cytometry, cytokine release, 
single-cell RNA sequencing, and cytometry by time of flight 
(CyTOF). Flow cytometry provides single-cell resolution, 
but requires labelling with fluorescent antibodies that can be 
time consuming, may be disruptive to cells, and complicates 
further use of cells. Bulk measurements of cytokine release 
are also popular but do not provide single-cell measure
ments, and ELISPOT, which provides single-cell cytokine 
release information also requires cell labeling. Additionally, 
cytokine based techniques cannot provide information about 
subsets of immune cells that do not secrete cytokines. 
Finally, single-cell RNA sequencing and CyTOF provide 
extensive single-cell information, but destroy the sample. 
[0127] Optical metabolic imaging (OMI) is an attractive 
label-free tool to assess the metabolic state of single cells. 
OMI measures the autofluorescence intensity and lifetime of 
metaboliccofactors reduced nicotinamide adenine dinucle
otide (phosphate) [NAD(P)H] and flavin adenine dinucle
otide (FAD). The fluorescence of NADPH and NADH 
overlap, and are jointly referred to as NAD(P)H. Since only 
the reduced form of NADPH and NADH and the oxidized 
form of FAD are fluorescent, the fluorescence intensity ratio 
ofNAD(P)H to FAD is defined as the "optical redox ratio", 
which provides information about the overall redox state of 
the cell. NAD(P)H and FAD each have two distinct fluo
rescence lifetimes due to their free and protein-bound states, 
so fluorescence lifetime imaging (FLIM) provides insight 
into changes in free and protein-bound pools for each 
co-enzyme, along with changes in lifetimes due to environ
mental factors and preferred binding partners. OMI relies on 
endogenous fluorophores already present in cells, so it is 
minimally invasive and can provide nondestructive moni
toring of cellular metabolism. Cell segmentation algorithms 
developed with OMI enable single-cell resolution, which 
provides insight into metabolic heterogeneity within the 
population. 
[0128] OMI is a promising technique to evaluate lympho
cyte activation and subtype because known metabolic shifts 
occur with activation and between NK, B, and T cells. 
Unstimulated NK, B, and T cells have low metabolic 
demands and largely rely on low levels of glycolysis and 
oxidative phosphorylation to generate ATP. Once activated, 
extra energy is needed to fuel the effector functions of 
lymphocytes. In order to fuel rapid proliferation and produce 
cytokines and other molecules, activated lymphocytes 
increase use of glucose through aerobic glycolysis and 
oxidative phosphorylation. Overnight stimulation with acti-
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vating cytokines (including IL-2, IL-12, and IL-15) 
increases rates of glycolysis and oxidative phosphorylation 
in NK cells. Similar increases in glycolytic metabolism and 
oxidative phosphorylation occur with activation in B and T 
cells. While these three cell types share a close lineage, the 
metabolism of NK, B, and T cells are unique. In a study of 
splenic mouse T and B cells, resting T cells were found to 
have higher glucose uptake and lactate generation compared 
to resting B cells, with B cells showing higher mitochondrial 
mass than T cells. In T effector cells, fatty acid synthesis is 
necessary for differentiation and proliferation, but inhibition 
of this pathway in NK cells does not substantially impact 
their proliferation. 
[0129] Previous work showed that OMI can classify pri
mary human CD3+ and CD3+CD8+ T cells based on acti
vation status. OMI has also been used to classify subsets of 
macrophages in monoculture, tumor coculture, and in vivo 
in zebrafish, and to distinguish between categories of blood 
cells (i.e. erythrocytes, monocytes, granulocytes, lympho
cytes). Prior work also showed that NADH autofluorescence 
intensity increases in activated B cells compared to unstimu
lated B cells. These results demonstrate that OMI is prom
ising for lymphocyte profiling, but to our knowledge, no 
prior study has built classifiers based on OMI for NK cell 
activation, B cell activation, or lymphocyte subtype. Given 
the relevance of NK cells, B cells, and T cells for cell 
therapy, immunotherapy, infectious disease, and immune 
profiling, this study investigates whether OMI can classify 
activation in NK cells and B cells, classify lymphocyte 
subtype (NK, B, T cells), and provide a six-group classifier 
for activation and lymphocyte subtype. These studies indi
cate that machine learning classifiers and label-free non
invasive OMI provide high accuracy for single cell classi
fication of activation and lymphocyte subtype from primary 
human peripheral blood samples. 

Results 

OMI Resolves Metabolic Differences Between Quiescent 
and Activated Human B Cells 

[0130] A graphical overview of the experiment is provided 
in FIG. SA. Isolated human B cells were activated using 
anti-CD40 antibody and IL-4 to mimic T cell mediated 
activation. After 72 hours of in vitro activation, media was 
collected for cytokine, glucose, and lactate assays, then cells 
were stained with anti-CD69 PerCP antibody to identify 
activated and quiescent cells in each condition for subse
quent OMI. To confirm that our protocol successfully acti
vated the B cells, the concentration ofIL-6 in the media was 
measured at 72 hours and found to significantly increase in 
the activated compared to the control condition (FIG. SB). 
Similarly, analysis of glucose and lactate levels at 72 hours 
show decreased glucose and increased lactate in the media 
of activated compared to control B cells (FIG. SC-D), 
confirming known metabolic changes with B cell activation. 
Representative images from OMI (FIG. SE) include NAD 
(P)H mean fluorescence lifetime C-tm), FAD -cm, optical redox 
ratio, and PerCP-CD69 fluorescence images in pseudocolor. 
Qualitatively, most B cells in the activated condition stain 
positive for CD69. 
[0131] The optical redox ratio was elevated in CD69+ B 
cells in the activated condition compared to CD69- B cells 
in the control condition (FIG. SF). Additionally, NAD(P)H 
-cm decreased and NAD(P)H a 1 (the fraction of free, 
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unbound NAD(P)H) increased in CD69+ activated B cells 
compared to the CD69- control cells (FIG. SG, SH). FAD -cm 

also decreased in the CD69+ activated cells compared to the 
CD69- control cells (FIG. 51). 
[0132] When comparing CD69+ and CD69- cells within 
the unstimulated or activated conditions, the CD69+ and 
CD69- B cells in the unstimulated condition did not show 
any significant differences in OMI parameters. However, in 
the activated condition, CD69+ cells were significantly 
different compared to CD69- cells for all OMI parameters 
besides the optical redox ratio (FIG. 19). 

Single Cell Clustering and Machine Learning Models Based 
on OMI Separate B Cells by Activation State 

[0133] Next, we investigated whether OMI could visualize 
single cell heterogeneity in B cells and whether machine 
learning models based on OMI can classify B cell activation 
state. Unsupervised clustering of 9 OMI parameters from 
single cells in the CD69+ activated condition and CD69-
control condition revealed that the CD69+ activated cells 
cluster separately from the CD69- control cells across all 
three donors (FIG. 6A). Uniform manifold approximation 
and projection (UMAP) was used to visualize the clustering 
of single B cells based on the same OMI parameters, which 
similarly revealed distinct clusters of CD69+ activated and 
CD69- control cells (FIG. 6B). Additional UMAPs colored 
by donor, condition ( control, stimulated), and CD69 status 
are provided in FIG. 6A-B. 
[0134] Next, a random forest classifier based on OMI 
parameters for each B cell was trained on 70% of the cells 
and tested on the remaining 30% of cells to identify acti
vated (CD69+ in activated condition) or quiescent (CD69-
in unstimulated condition) B cells. The OMI parameters 
with the greatest weight in the classification of CD69+ and 
CD69- B cells were NAD(P)H a 1 (40.33%), NAD(P)H -cm 

(21.01 % ), FAD protein-bound fluorescence lifetime (n) 
(9.88%), and NAD(P)H free fluorescence lifetime (n) 
(7.46%) (FIG. 6C). The resulting classifier has an accuracy 
of 94.2% (FIG. 6C), with a receiver operating characteristic 
(ROC) area under the curve (AUC) of 0.99 (FIG. 6D). 
Logistic regression and support vector machine (SVM) 
classification performed similarly to the random forest clas
sifier (FIG. 6C-F). Classification based on the NAD(P)H 
phasor at the laser repetition frequency (80 MHz) predicted 
B cell activation with 93.4% accuracy (FIG. 18A-B). 

OMI Resolves Metabolic Differences Between Quiescent 
and Activated Human NK Cells 

[0135] A graphical overview of the experiment is provided 
in FIG. 7. Isolated primary human NK cells were activated 
in vitro for 24 hours using IL-12, IL-15, and IL-18 as 
previously described. After 24 hours of in vitro activation, 
media was collected for cytokine, glucose, and lactate 
assays, then cells were stained with anti-CD69 PerCP anti
body to identify activated and quiescent cells in each con
dition for subsequent OMI. To confirm NK cell activation, 
the concentration ofIFN-y in the media was measured at 24 
hours and found to significantly increase in the activated 
compared to the control condition (FIG. 7B). Similarly, 
analysis of glucose and lactate levels at 24 hours show 
decreased glucose and increased lactate in the media of 
activated compared to control NK cells (FIG. 7C-D), con
firming known metabolic changes with NK cell activation. 
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Representative images of NAD(P)H -cw FAD -cw optical 
redox ratio, and PerCP-CD69 are presented in pseudocolor 
(FIG. 7E). Qualitatively, most NK cells in the activated 
condition stain positive for CD69. 
[0136] OMI of NK cells revealed several changes in the 
CD69+ NK cells in the activated condition compared to 
CD69- cells in the control condition. The optical redox ratio 
significantly increased in the CD69+ activated NK cells 
compared to CD69- control cells (FIG. 7F). NAD(P)H -cm 

decreased, and NAD(P)H a 1 and FAD -cm increased in 
activated NK cells compared to the quiescent control cells 
(FIG. 7G-I). 
[0137] OMI parameters were compared across both 
CD69+ and CD69- NK cells in the activated and control 
conditions. Most OMI parameters did not change with CD69 
status within the activated or control conditions, besides the 
optical redox ratio ( control and activated conditions) and 
NAD(P)H 1:1 (control condition) (FIG. 12). 

Single Cell Clustering and Machine Learning Models Based 
on OMI Separate NK Cells by Activation State 

[0138] Next, we investigated whether OMI could visualize 
single cell heterogeneity in NK cells and whether machine 
learning models based on OMI can classify NK cell activa
tion state. Unsupervised clustering of 9 OMI parameters 
from single cells in the CD69+ activated condition and 
CD69- control condition revealed that NK cells were some
what heterogeneous, resulting in the emergence of a domi
nant cluster with several smaller clusters of activated and 
quiescent cells (FIG. 4A). A UMAP was used to visualize 
the clustering of single NK cells based on the same OMI 
parameters, which demonstrated a cluster of CD69+ NK 
cells away from a cluster of a mixed CD69- and CD69+ NK 
cell population (FIG. SB). Further color-coding by donor 
reveals that NK cells from all three donors overlap in these 
clusters (FIG. 13B). 
[0139] A random forest classifier based on single-cell OMI 
parameters was trained and tested on 70% and 30%, respec
tively, of the NK cells to identify activated (CD69+ in 
activating conditions) or quiescent (CD69- in unstimulated 
conditions) states. The highest weighted OMI parameters 
were the control-normalized optical redox ratio (20.45%), 
NAD(P)H a 1 (20.15%), protein-bound NAD(P)H fluores
cence lifetime (i:2) (17.45%), and unbound NAD(P)H fluo
rescence lifetime (i:1) (13.35%) (FIG. SC). The resulting 
classifier had an accuracy of 92.6% (FIG. 13C, FIG. 20 FIG. 
20), and the AUC of the ROC curve was 0.96 (FIG. SD). 
Logistic regression and SVM classification had a slightly 
lower performance than random forest classification, with 
AUC of the ROC curves of0.95 and 0.94, respectively (FIG. 
SC-F). Classification based on the NAD(P)H and FAD 
phasors at both the laser repetition frequency (80 MHz) and 
its second harmonic (160 MHz) predicted NK cell activation 
with 89.2% accuracy (FIG. 18C-D). 

OMI Quantifies Lymphocyte Heterogeneity and Classifies 
Lymphocyte Subtype and Activation State 

[0140] Whether OMI parameters could distinguish activa
tion and/or lymphocyte subtype across a dataset containing 
multiple subtypes of lymphocytes was investigated. We 
combined the NK cell and B cell data with our previously 
published T cell data ( quiescent and activated for 48 h with 
CD2/3/28) and plotted several key OMI parameters, includ-
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ing the control-normalized optical redox ratio, NAD(P)H 'tm, 

and NAD(P)H a 1 (FIG. 9A). Across all three lymphocyte 
subtypes, these variables exhibited similar changes with 
activation: NAD(P)H -cm decreased with activation, while 
NAD(P)H a 1 and the optical redox ratio increased with 
activation. These changes with activation were statistically 
significant in all cases. In addition to activation-associated 
shifts in OMI parameters, there were also statistically sig
nificant differences between quiescent T, B, and NK cells 
(FIG. 9A). 
[0141] The combined data set of T, B, and NK cells was 
used to visualize heterogeneity between each group. Unsu
pervised clustering was performed across 9 OMI parameters 
using averages from CD69+ activated and CD69- control 
lymphocytes across activation state (CD69+, CD69-), 
donor, and lymphocyte subtype (B, NK, T cell) (FIG. 9B). 
This revealed distinct clusters of CD69- and CD69+ T cell 
and B cell groups. Within the NK cells, clustering was mixed 
across CD69- and CD69+ status and donors. A UMAP was 
also used to further visualize clustering, with T cells forming 
a distinct cluster from B cells and NK cells (FIG. 9C). 
[0142] A UMAP reveals that CD69+ lymphocytes clus
tered somewhat separately from CD69- lymphocytes (FIG. 
14A). Therefore, we investigated whether machine learning 
models could classify activation within the combined lym
phocyte data. First, random forest classification was used to 
identify whether cells were activated (CD69+) or quiescent 
(CD69-). Using all 9 OMI parameters, an ROCAUC of0.97 
(FIG. 9D) and accuracy of 92.2% (FIG. 14B, FIG. 20) was 
achieved. The top feature weights were NAD(P)H a 1 (27. 
10%), NAD(P)H i:1 (14.61%), control-normalized optical 
redox ratio (14.35%), and NAD(P)H 1:2 (12.60%) (FIG. 
13C). Classification based on NAD(P)H lifetime variables 
(-cm, 1:1 , 1:2 , a 1 ) alone also had a high ROC AUC of 0.96 
(FIG. SD) and performance (accuracy=90.3%) (FIG. 14B, 
FIG. 20). Logistic regression and support vector machine 
classification performance were somewhat diminished from 
the random forest classification performance, with accura
cies of 84.8% and 81.5% respectively (FIG. 14D-G). 
[0143] Similarly, a UMAP reveals that T cells, B cells, and 
NK cells clustered separately (FIG. 15A). Therefore, three
class random forest classification of lymphocyte subtype 
was then performed ( one vs. one approach) using different 
combinations of OMI parameters. Feature weights are pro
vided (FIG. 15B). Classification with all nine OMI param
eters performed the best (accuracy=97.8%) (FIG. 9E, FIG. 
14C, FIG. 20). However, other random forest classifiers with 
fewer parameters also demonstrated strong performance. 
The top four parameters (FAD -c,, FAD -cm, NAD(P)H -cm, 
and FAD a 1) had an accuracy of 96.4%, while NAD(P)H 
lifetime variables (-cm, i:1 , i:2 , a 1 ) had an accuracy of 89.9% 
(FIG. 9E, FIG. 20 FIG. 20). Classification using both 
NAD(P)H and FAD 80 MHz and 160 MHz phasors classi
fied cells as either B or NK cells with 99.9% accuracy (FIG. 
18E-F), while the NAD(P)H 80 MHz and 160 MHz phasor 
classified cells as B, NK, or T cells with 96.2% accuracy 
(FIG. 19A-B). Classification was also tested on a subset of 
the combined lymphocyte data that contained only quiescent 
(CD69-) cells (UMAP, FIG. 16A), and had similarly high 
performance with all nine OMI parameters (accuracy=98. 
4%) (FIG. 16B-D, FIG. 20). 
[0144] Finally, a UMAP shows that quiescent and acti
vated T cells, B cells, and NK cells clustered separately 
(FIG. 17 A). Therefore, random forest classification was 
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used to classify both lymphocyte subtype and activation 
simultaneously. A six-class classification was performed 
(one vs. one approach). Feature weights are provided (FIG. 
17B). Again, the classifier with all 9 OMI parameters had the 
highest accuracy (accuracy=90.0%) (FIG. 9F, FIG. 20), and 
misclassification was highest between quiescent vs. acti
vated cells within a lymphocyte subtype, with lymphocyte 
subtype usually identified correctly (FIG. 17C). Other clas
sifiers also performed well, including the top four param
eters (NAD(P)H a 1 , FAD 1:1 , NAD(P)H 1:1 , FAD -cm) with an 
accuracy of83.2%, and NAD(P)H lifetime variables (-cm, 1:1 , 

i:2 , a 1) with an accuracy of 83.3% (FIG. 9F, FIG. 20). 
Classification using NAD(P)H 80 MHz and 160 MHz pha
sor classified both lymphocyte subtype and activation simul
taneously with an accuracy of 88.5% (FIG. 19C). A sum
mary of the accuracies of all random forest classifiers is 
provided (FIG. 20). 

Discussion 

[0145] Several areas of research and clinical care rely on 
lymphocyte assessments, but these efforts would benefit 
from a non-destructive, single-cell, touch-free technology to 
assess lymphocyte subtype and activation state, which 
would reduce the cost and time for analysis of heterogeneity 
within a patient while enabling subsequent study and use of 
unperturbed cells. In this report, we have demonstrated that 
OMI is sensitive to metabolic changes that occur with 
activation in primary human B cells and NK cells. Addi
tionally, machine learning models trained on single-cell 
OMI parameters can reliably classify quiescent cells in both 
CD40/IL4 activated B cells and IL12/IL15/IL18 activated 
memory-like NK cells, as well as distinguish lymphocyte 
subtypes (NK, B, T cells) and activation within a combined 
dataset of NK, B, and T cells. 
[0146] Interestingly, both B cells and NK cells had similar 
changes in OMI parameters under activation compared to 
quiescent cells. The optical redox ratio increased, NAD(P)H 
-cm decreased, and NAD(P)H a 1 increased in the activated 
cells (FIGS. 5, 7). These trends are consistent with our prior 
work with primary human T cell activation 47. The simi
larity of changes between the B cells, NK cells, and T cells 
is likely related to similar shifts in metabolism when all three 
lymphocyte subtypes are activated. All three types of lym
phocytes upregulate oxidative phosphorylation and aerobic 
glycolysis when activated to fuel rapid growth and prolif
eration. 
[0147] Previous studies have demonstrated that alterations 
to glycolysis significantly affect OMI measurements. Spe
cifically, inhibition of glycolysis with 2DG selectively 
reduced the optical redox ratio in activated T cells, indicat
ing that glycolysis is a key regulator of the optical redox 
ratio in these cells 47. Further, the optical redox ratio has a 
positive correlation (Pearson's R=0.89) with the glycolytic 
index of breast cancer cells. In this study, measurements of 
glucose and lactate levels in media from control and acti
vated B and NK cells revealed that the glucose concentration 
significantly decreased and the lactate concentration signifi
cantly increased with activation (FIGS. 5, 7). This observa
tion is consistent with upregulation of aerobic glycolysis 
noted in the literature, as well as our observed increase in the 
optical redox ratio with activation. 
[0148] The single-cell resolution of OMI makes it a pow
erful tool for studying and characterizing population hetero
geneity. Here, we characterized heterogeneity within acti-



US 2024/0219289 Al 

vated and quiescent B cell and NK cell populations. Our 
results demonstrate that within a population of peripheral 
human B cells or NK cells exposed to the same conditions, 
cell outcomes may vary. Examination of CD69 expression 
revealed that there was a mixture of CD69+ and CD69- cells 
within each group despite exposure to the same media 
conditions. We chose to focus the analysis on cells that we 
could confirm to be quiescent (i.e., CD69- cells in the 
quiescent condition) and cells that we could confirm to be 
activated (i.e., CD69+ cells in the activated condition) to 
better characterize the ability of OMI to assess these cells 
without complications that could arise from differing cell 
states. However, OMI did capture differences in NAD(P)H 
and FAD autofluorescence between activated and quiescent 
cells within each condition (FIGS. 10, 12). Overall, this 
study demonstrates the sensitivity of OMI to metabolic 
differences within a heterogenous cell population. 

[0149] Classifiers based on single-cell OMI accurately 
identified activation state with up to 93.4% accuracy for B 
cells and up to 92.6% accuracy for NK cells (FIG. 20). In 
addition to classifying activation within a lymphocyte sub
type, OMI also classified activation with high accuracy from 
a combined dataset of T cells, B cells, and NK cells 
(accuracy=92.2%, 9 OMI parameters) (FIG. 14B, 14E, FIG. 
20). We also found that all 9 OMI parameters accurately 
classified lymphocyte subtype (accuracy of 97 .8%, FIG. 9E, 
FIG. 15C, FIG. 20), which reflects the distinct fluorescence 
lifetimes of NAD(P)H and FAD for different lymphocyte 
subtypes (FIG. 9A). Indeed, a previous study has shown that 
NAD(P)H and FAD autofluorescence differs between dif
ferent types of murine white blood cells (including B cells 
and T cell subtypes). OMI parameters also distinguished 
between lymphocyte subtypes when only quiescent (CD69-
control) cells were used (accuracy of 98.4%, FIG. 16B, FIG. 
20). Differences in NAD(P)H and FAD fluorescence life
times between quiescent lymphocytes may be explained by 
differences in resting cell metabolism between T cells, B 
cells, and NK cells, which has been observed in previous 
human and murine studies. Surprisingly, even a six-group 
classifier of both activation state and lymphocyte subtype 
achieved high accuracy (90.0%, FIG. 9F, FIG. 17C, FIG. 20) 
which reflects subtle changes in metabolic state for these six 
classes. 

[0150] Although a complete set of NAD(P)H and FAD 
intensities and lifetimes were collected in this study, all 9 
OMI parameters may not be necessary for accurate classi
fication. NAD(P)H lifetime variables alone accurately clas
sified activation within B cells (92.6% accuracy), activation 
within NK cells (91.6%), activation within the combined 
dataset of B cells, NK cells, and T cells (90.3% accuracy), 
lymphocyte subtype (89.9% accuracy), and a six-class clas
sifier of both activation and lymphocyte subtype (83.3% 
accuracy) (FIG. 20), while the NAD(P)H phasor alone 
classified B cell activation and NK cell activation with 
accuracies of 93.9% and 88.1 % respectively (FIG. 18A-D), 
lymphocyte subtype with 96.2% accuracy (FIG. 19A-B), 
and both activation and lymphocyte subtype with an accu
racy of 88.5% (FIG. 19C). This indicates that simplified 
hardware with only NAD(P)H excitation and emission capa
bilities would perform as accurately as a two-color NAD 
(P)H and FAD imaging system, which is an important 
consideration in the design of simplified hardware for use in 
clinical labs. 
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[0151] Overall, these studies indicate that OMI can 
robustly classify lymphocyte activation status and discrimi
nate B cells, NK cells, and T cells. This label-free single-cell 
imaging and classification approach could have significant 
implications in cell manufacturing, where in-line technolo
gies are needed to maintain high potency and safety, or in 
clinical labs where immune cell profiling is needed to inform 
treatment decisions. The non-invasive nature of this 
approach also enables time-course studies of lymphocyte 
function and in vivo studies of lymphocytes in a native 
context. 

Limitations of Study 

[0152] Cells must remain viable (i.e., no fixation) for this 
method to succeed. Unlike flow cytometry, OMI does not 
provide surface marker expression or traditional phenotyp
ing based on surface markers. Therefore, OMI is not appro
priate for studies where high depth of molecular information 
is needed. High-content single-cell analysis is better per
formed with flow cytometry, CyTOF, and/or single-cell 
RNA sequencing. However, OMI is advantageous when 
touch-free, non-invasive, and rapid measurements are ben
eficial, such as continuous monitoring within unperturbed 
systems ( cell culture, 3 D culture, in vivo), cell therapy 
production where good manufacturing practice (GMP) must 
be maintained to generate cells for patient use, and when 
rapid reactivity tests are needed (e.g., immune profiling). 
[0153] Data and materials availability: All data and code 
used in the analyses is available for purposes of reproducing 
or extending the analyses through a GitHub repository 
(https://github.com/skalalab/schmitz_r-lymphocyte_activa
tion). 

Materials and Methods 

Isolation of Primary Human Lymphocytes 

[0154] Primary human lymphocytes were isolated from 
peripheral blood obtained from healthy adult donors under 
approval by the UW-Madison Institutional Review Board. 
After obtaining informed consent from the donors, 10 to 50 
mL whole blood was drawn using a sterile syringe with 
heparin. B cells and NK cells were then isolated from donor 
whole blood using negative isolation kits. 
[0155] For NK cells, blood was mixed in a 1: 1 ratio with 
lxPBS. The peripheral blood:PBS mixture was then over
layed dropwise onto 15 mL of Lymphoprep (STEMCELL 
Technologies) in 50 mL conical tubes and centrifuged at 
400xg for 30 minutes at 20° C. with slow acceleration and 
no breaks. After centrifugation, the PBMC layer was moved 
to a fresh 50 mL conical tube using a 10 mL serological 
pipette, with 35 mL lxPBS added to each tube. Cells were 
centrifuged at 400xg for 10 min at 20° C. with normal 
acceleration and breaks. After centrifugation supernatant 
was aspirated and cell pellets were resuspended in 5 mL of 
ACK lysing buffer (Quality Biological) and let sit at room 
temperature for 5 minutes. ACK lysis reaction was then 
quenched with 30 mL of 1 xPBS per 50 mL tube. Cells were 
centrifuged at 400xg for 10 min at 20° C. with normal 
acceleration and breaks. Supernatant was aspirated, with the 
pellets being combined in 40 mL lxPBS and passed through 
a 70 µm filter. PBMCs were counted on the Zl Particle 
Counter (Beckman Coulter) by adding 10 µL of the PBMC 
solution to 10 mL oflsoton II diluent (Beckman Coulter) in 
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a 20 mL cuvette. PBMCs were then labelled with the human 
NK Cell Isolation Kit (Miltenyi Biotec ), with subsequent 
NK cell isolation using the "depletes" program on an 
autoMACS Pro Separator and collecting the negative frac
tion. The isolated cells were then transferred to a cell culture 
flask or well plate for culture. 
[0156] For the B cell isolation (EasySep, STEMCELL 
Technologies), peripheral blood mononuclear cells 
(PBMCs) were first isolated by diluting the blood with an 
equal volume of DPBS+2% FBS, then centrifuging at 
1200xg for 10 minutes in SepMate tubes containing a layer 
of Lymphoprep. The isolated PBMCs were then washed 
with DPBS+2% FBS and centrifuged at l00xg for 10 
minutes. The resulting sample was resuspended to a con
centration of 50 million cells/mL in EasySep Buffer (STEM
CELL Technologies). 50 µL/mL isolation cocktail and 50 
µL/mL cocktail enhancer were added to the sample, accord
ing to the EasySep protocol. 50 µL/mL RapidSpheres solu
tion was then added, and the sample was transferred to a 
magnet for 3 minutes. The enriched B cells were poured into 
a new tube and the sample was again placed into a magnet 
for 1 minute. The enriched B cell population was then 
washed with culture medium and transferred to a cell culture 
flask or well plate for culture. 

Lymphocyte Activation and Culture 

[0157] NK cells were cultured in TheraPeak X-VIVO-10 
medium (Lonza) supplemented with 10% human serum AB 
(Sigma Aldrich) and 1 ng/mL IL-15 (Biolegend). B cells 
were cultured in RPMI containing 5% fetal bovine serum 
and 1 % penicillin-streptomycin. Following isolation, each 
cell population was divided into two groups: a control 
population cultured in normal medium, and an activated 
population cultured in control medium supplemented with 
additional components. NK cell activating medium was 
supplemented with 10 ng/mL IL-12 (Invivogen), 50 ng/mL 
IL-15, and 50 ng/mL IL-18 (Biolegend). B cell activating 
medium was supplemented with 5 µg/mL anti-CD40 anti
body (R&D systems) and 20 ng/ml IL-4 (R&D Systems). 
[0158] The cells were cultured separately in activating or 
control medium for a number of hours depending on the 
lymphocyte subtype; B cells were activated for 72 hours, 
and NK cells for 24 hours. Cells were seeded at a density of 
1 million cells/mL medium. At the end of the activation 
time, a sample of growth medium from each group was 
taken for cytokine analysis. A summary of the isolation and 
activation conditions used is provided in Table 1. 

TABLE 1 

Isolation and activation conditions for each lymphocyte subtype. 

Lymphocyte Negative Activation 
subtype Isolation Kit Control Medium Medium 

B cell Easy Sep Human RPM! + 5% FBS + 1 % Control medium + 
Naive B Cell penicillin/streptomycin 5 µg/mL anti-
Isolation Kit CD40 antibody + 

(StemCell 20 ng/mL IL-4 
Technologies) 

NKCell MACS Human TheraPeak X-VNO-10 Control medium+ 
NKCell medium (Lonza) + 10 ng/ml IL-12 + 

Isolation Kit 10% human serum 50 ng/ml IL-15 + 
(Miltenyi Biotec) AB+ 1 ng/mL IL-15 50 ng/ml IL-18 

Staining with PerCP Conjugated Anti-CD69 Antibody 

[0159] At the end of the activation period, cells were 
stained with anti-CD69 PerCP-conjugated antibody to dis
tinguish activated and quiescent cells within each popula
tion. The cells were centrifuged at 300xg for 8 minutes, then 
resuspended to a concentration of 10 million cells/mL 
medium. 5 µL/million cells PerCP-conjugated anti human 
CD69 antibody (Biolegend) was added to the sample. The 
cells were then incubated for 30 minutes at room tempera
ture. Following incubation, the cells were washed twice with 
media and centrifuged at 300xg for 8 minutes to remove 
excess antibody from the sample. 

Fluorescence Lifetime Imaging of Lymphocytes 

[0160] For imaging, B cells and NK cells were plated 1 
hour before imaging on poly-D-lysine coated glass-bot
tomed dishes (MatTek) at a seeding density of 200,000 cells 
in 50 µL media. The cells were imaged with a custom-built 
multiphoton fluorescence microscope (Ultima, Bruker) 
using a l00x (NA=l.45) oil immersion objective and time
correlated single photon counting electronics (SPC-150, 
Becker & Hick! GbH, Berlin, Germany). The laser (Insight 
DS+, Spectra-Physics Inc., Santa Clara, CA, USA) was 
tuned to 750 nm for NAD(P)H excitation, 890 nm for FAD 
excitation, and 980 nm or 1040 nm excitation for PerCP. 
Fluorescence emission was detected using a H7422PA-40 
GaAsP photomultiplier tube (Hamamatsu Corporation, 
Bridgewater, NK, USA) and isolated using a 440/80 band
pass filter for NAD(P)H, 550/50 (NK cells) or 550/100 (B 
cells) bandpass filter for FAD, and 690/50 bandpass filter for 
PerCP. In the B cell experiments, the laser power at the 
sample was 1.5 mW-2.0 mW for NAD(P)H, 3.0 mW-4.0 
mW for FAD, and 3.0 mW for PerCP. In the NK-cell 
experiments, the laser power at the sample was 2.0 mW for 
NAD(P)H, 5.0 mW for FAD, and 3.5 mW for PerCP. The 
laser power was maintained at a consistent value within each 
experiment. 

[0161] 300 µmx300 µm fluorescence lifetime images 
(256x256 pixels) were collected consecutively for NAD 
(P)H and FAD in the same field of view, with a pixel dwell 
time of 4.8 us and an integration time of 60 s. An instrument 
response function was collected during imaging from the 
second harmonic generation of a urea crystal, and photon 
count rates were maintained around lxl05 photons. An 
intensity image of PerCP fluorescence was collected for the 
same field of view. Images were collected from three to six 
fields of view for each sample. 

Activation 
time 

72 hours 

24 hours 
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Image Analysis 

[0162] Fluorescence lifetimes were extracted through 
analysis of the fluorescence decay at each pixel in SPCim
age (Becker & Hickl). To provide more robust calculations 
of the fluorescence lifetimes, a threshold was used to 
exclude background pixels with a low intensity, and images 
were binned up to a bin factor of 3 to reach a peak of at least 
100 photons in the decay. Both NAD(P)H and FAD can exist 
in a quenched and an unquenched configuration with distinct 
lifetimes. To extract these lifetimes, fluorescence decays 
were fit to a two-component exponential decay that was 
re-convolved with the instrument response function: 

t t 

J(t) = a,e-71 +a2 e-Tz -C 
(1) 

where I(t)=is the light intensity at time t following the laser 
pulse, t 1 and t 2 are the short (quenched) and long (un
quenched) lifetimes of the fluorophore, and a, and a 2 are the 
fractional component of each lifetime. C is included to 
account for background light. For NAD(P)H, the short 
lifetime (t1) corresponds to unbound NAD(P)H and the long 
lifetime (t2 ) corresponds to protein-bound NAD(P)H 29. 
The opposite is true of FAD: the short and long lifetime 
correspond to bound FAD and unbound FAD, respectively. 
A mean lifetime at each pixel was also computed as the 
weighted average of the short and long lifetime: 

(2) 

[0163] Following extraction of the fluorescence lifetimes, 
images were segmented to create single-cell masks using 
NAD(P)H intensity images. Segmentation was carried out in 
CellProfiler, resulting in masks of cells, cell nuclei, and cell 
cytoplasm. PerCP-conjugated CD69 fluorescence images 
were manually segmented by a trained observer. The 
observer was blinded to whether PerCP-CD69 images came 
from the activated or unstimulated condition. The resulting 
masks were used to identify activated and quiescent cells in 
each condition based on overlap between PerCP-CD69 
masks and cell masks. 

[0164] Fluorescent lifetime components for each cell were 
calculated in R. The values of NAD(P)H tm, NAD(P)H t 1, 

NAD(P)H t 2 , NAD(P)H a,, FAD tm, FAD t 1 , FAD t 2 , and 
FAD a, were calculated for each cell by averaging across all 
pixels in the cell cytoplasm. Cells with low photon counts 
( <5000 photons), small masks that are unlikely cells ( <350 
pixels or 75 µm2 whole cell area), and pixels with poor 
goodness-of-fit (X2 > 1.3) were not included in this analysis. 
a 2 was not computed, as the sum of a, and a 2 is equal to 1 
(100%). An additional parameter, the optical redox ratio, 
was computed for each cell, defined here as the NAD(P)H 
intensity divided by the sum of the NAD(P)H and FAD 
intensities. This definition of the redox ratio is bound 
between 0 and 1. To account for variations in intensity from 
day-to-day equipment and setting changes, the redox ratio of 
each cell was normalized to the mean redox ratio of the 
control group within each experiment. 
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Measurement of Cytokines and Glucose/Lactate Levels in 
Primary Cell Media 

[0165] To validate the activation of lymphocytes in each 
condition, cytokine levels were measured in media samples 
collected from both the unstimulated and activated condi
tions during plating (24 hours post activation for NK cells, 
and 72 hours post activation for B cells). IFN-y levels were 
measured in NK cell media samples using the human IFN-y 
DuoSet ELISA kit (R&D Systems). IL-6 levels were mea
sured in B cell media samples using the human IL-6 DuoSet 
ELISA kit (R&D Systems). The ELISA assay was carried 
out according to the provided protocol. Plates were incu
bated overnight with 2 µg/mL IFN-y or IL-6 capture anti
body. The plates were then washed and blocked with a 1 % 
bovine serum albumin solution for 1 hour. Following wash
ing, media samples and standards were incubated on the 
plates for 2 hours at room temperature, followed by a 2 hour 
incubation with 200 ng/mL IFN-y or 50 ng/ml IL-6 detection 
antibody. Finally, the plates were incubated with streptavi
din-conjugated horseradish peroxidase B, then an H2 0 2 -

tetramethylbenzidine substrate solution. The color reaction 
was stopped at 20 minutes with a 4M H2 SO4 solution, and 
the plates were transferred to a plate reader, where they were 
read at 450 nm with wavelength correction at 570 nm. 
Standard curves were calculated from a serial dilution of the 
standards using a sigmoidal four parameter logistic model. 
The R2 of the standard curves for the IL-6 and IFN-yELISA 
experiments were 0.9993 and 0.9997, respectively. 
[0166] To validate that the cells were upregulating aerobic 
glycolysis in the activated cell populations, commercial kits 
were used to measure glucose and lactate levels in media 
samples collected from both the unstimulated and activated 
conditions during plating (24 hours post activation for NK 
cells, and 72 hours post activation for B cells). A sample of 
the growth media used for the B cells and NK cells described 
in the "Lymphocyte activation and culture" was also evalu
ated as a control. The glucose and lactate assays were carried 
out according to the respective protocols for the Glucose 
Colorimetric/Fluormetric Assay Kit (Bio Vision) or the Lac
tate Colorimetric/Fluormetric Assay Kit (Rio Vision). 0.5 µL 
of each sample was added to a 96-well plate were an 
additional 49.5 µL of assay buffer was added, yielding a 
lO0x dilution of the original samples. 50 µL of reaction mix 
(2 µL probe, 2 µL enzyme mix, and 46 µL assay buffer) was 
then added to each well to yield a total volume of 100 µL per 
well. The 96-well trays were left to incubate for 30 minutes 
in a dark box at room temperature (glucose assay) or 37° 0 

C. (lactate assay). The plates were then transferred to a plate 
reader where glucose or lactate levels were quantified by 
absorbance at OD 570. Standard curves were calculated 
from a serial dilution of the standards using an ordinary least 
squares regression model. The R2 of the standard curves for 
the glucose and lactate assays were 0.9973 and 0.9979, 
respectively. 

Previous CD3+ T Cell Data 

[0167] Previously published T cell data from Walsh. et. al. 
(2021) was used for the purposes of classifying lymphocyte 
subtypes in FIG. 9, FIGS. 14-17, FIG. 19, and FIG. 20. T 
cells were isolated from human blood and either left quies
cent or stimulated with CD2/3/28 for 48 hours for activation. 
Activation was confirmed with a CD69-PerCP label across 
three donors. This prior data was collected in the same 
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manner on the same two-photon fluorescence lifetime imag
ing system as the current NK cell and B cell data. 

Heatmap, UMAP, and Classification 

[0168] Z-score heatmaps were constructed in R using the 
Complex Heatmap package 55. Clustering of groups or 
single cells was performed based on the OMI parameters 
and calculated using Ward's method. Labels for activation, 
lymphocyte subtype, and donor were added afterwards and 
were not included in cluster analysis. 
[0169] Uniform Manifold Approximation and Projection 
(UMAP) is a non-linear dimension reduction technique that 
can be used to visualize high-dimensional data. UMAP 
projections were made in Python using scikit-learn, UMAP, 
and Holoviews. Unless otherwise noted, each UMAP is a 
two-dimensional visualization of 9 variables (normalized 
optical redox ratio; NAD(P)H -cm, "ti, 1:2 , a 1 ; FAD -cm, "ti, 1:2 , 

a 1). The UMAP projection was computed using Euclidean 
distance. The nearest neighbors parameter was set to 15 and 
the minimum distance was set to 0.4 unless otherwise noted. 
[0170] Random forest classification methods were trained 
in Python using scikit-leam to classify activation and/or 
lymphocyte subtype in the NK cell OMI parameters, the B 
cell OMI parameters, or combined OMI parameters from 
NK cells, B cells, and previously published T cell data 47. 
The classifier was trained on a random selection of 70% of 
the input data and tested on the remaining 30% for B cell or 
NK cell classifiers alone (i.e., FIGS. 6, 8, and FIGS. 11, 13). 
For the classifiers using a combined lymphocyte dataset of 
B, NK, and T cells (i.e., FIG. 9 and FIGS. 14-17), the 
classifier was trained on a random selection of 50% of the 
input data and tested on the remaining 50%. Multiple 
metrics were used to evaluate the robustness of the classifier, 
including the receiver operating characteristic (ROC) curve, 
accuracy, precision, and recall. Classifiers were trained and 
tested on different random sets of the data to check for 
consistency in these metrics. Equal cost was given to a 
misclassified cell regardless of category (i.e., misclassifica
tion was not weighted by sample size). 
[0171] Phasor-based classification was performed using 
the NAD(P)H and FAD phasor coordinates (G,S) at the laser 
repetition frequency (80 MHZ) and its second harmonic 
(160 MHz) as features. The phasor coordinates were aver
aged pixel-wise over each cell mask using pixel intensities 
as weights to calculate cell-level phasor coordinates. Logis
tic regression classifiers with a log it link function and 
random forest classifiers with 100 decision trees were used, 
and the classifiers were trained on a random selection of 
50% of the input data and tested on the remaining 50%. 
Again, equal cost was given to a misclassified cell regardless 
of category (i.e., misclassification was not weighted by 
sample size). Both the phasor and the fit analysis pipelines 
use the same raw FLIM data and cell masks to calculate 
cell-level phasor coordinates and fit parameters, respec
tively. However, the exclusion criteria for the two pipelines 
are not the same, which results in different final number of 
cells included in the phasor-based and fit-based classifiers. 
For example, the phasor pipeline removes low-count (with 
fewer than 5000 photons) or small (with fewer than 50 
pixels) cells, while the fit analysis also removes cells based 
on the goodness of the bi-exponential fit (x2> 1.3). 

Statistical Analysis 

[0172] Statistical analysis was performed using the statan
notations package v0.5.0 in Python. Differences between 
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groups were tested using Kruskal-Wallis with post-hoc 
comparisons test for multiple group comparisons, or a 
two-tailed unpaired T-test for comparisons of pairs of data. 
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We claim: 
1. A lymphocyte activation and/or identification status 

sensing device comprising: 
a cell analysis observation zone adapted to receive a 

lymphocyte and to present the lymphocyte for indi
vidual autofluorescence interrogation; 

an autofluorescence spectrometer configured to acquire an 
autofluorescence data set for the lymphocyte located in 
the cell analysis observation zone, the autofluorescence 
spectrometer comprising a light source, a photon
counting detector, and photon-counting electronics; 

a processor in electronic communication with the auto
fluorescence spectrometer; and 

a non-transitory computer-readable medium accessible to 
the processor and having stored thereon instructions 
that, when executed by the processor, cause the pro
cessor to: 
a) receive the autofluorescence data set; and 
b) identify a current activation and/or identification 

status of the lymphocyte based on a current activa
tion and/or identification prediction, wherein the 
current activation and/or identification prediction is 
computed using at least a portion of the autofluores
cence data set, 

wherein the current activation and/or identification pre
diction is: 

i) a six-class classification that predicts that the lympho
cyte is an activated T cell, a quiescent T cell, an 
activated B cell, a quiescent B cell, an activated NK 
cell, or a quiescent NK cell, wherein the six-class 
classification is computed using at least three six-class 
metabolic endpoints as an input, wherein the at least 
three six-class metabolic endpoints include reduced 
nicotinamide adenine dinucleotide and/or reduced 
nicotinamide dinucleotide phosphate (NAD(P)H) 
shortest fluorescence amplitude component (al), NAD 
(P)H shortest fluorescence lifetime component (ti), 
and NAD(P)H mean fluorescence lifetime (tm); 

ii) a lymphocyte identification prediction that predicts that 
the lymphocyte is a T cell, a B cell, or a NK cell, 
wherein the lymphocyte identification prediction is 
computed using at least two metabolic endpoints as an 
input, wherein the at least two lymphocyte identifica
tion metabolic endpoints include flavin adenine 
dinucleotide (FAD) -cm, FAD -cl, or NAD(P)H -cm; 

iii) a lymphocyte activation prediction that predicts that 
the lymphocyte is an activated lymphocyte or a quies
cent lymphocyte, wherein the lymphocyte activation 
prediction is computed using at least two lymphocyte 
activation metabolic endpoints as an input, wherein the 
at least two lymphocyte activation metabolic endpoints 
include NAD(P)H al and one of an optical redox ratio, 
NAD(P)H -cl, or NAD(P)H -cm; 
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iv) a B cell activation prediction that predicts that the 
lymphocyte is an activated B cell or a quiescent B cell, 
wherein the B cell activation prediction is computed 
using at least two B cell activation metabolic endpoints 
as an input, wherein the at least two B cell metabolic 
endpoints include NAD(P)H al and NAD(P)H -cm; or 

v) a NK cell activation prediction that predicts that the 
lymphocyte is an activated NK cell or a quiescent NK 
cell, wherein the NK cell activation prediction is com
puted using at least two NK cell activation metabolic 
endpoints as an input, wherein the at least two NK 
activation metabolic endpoints include either: NAD 
(P)H al and an optical redox ratio; or NAD(P)H al, 
NAD(P)H -cm, and NAD(P)H second shortest lifetime 
(-i:2), and NAD(P)H -cl. 

2. The lymphocyte activation and/or identification status 
sensing device of claim 1, the device further comprising a 
cell analysis platform adapted to receive a cell culture 
containing the B cell, the cell analysis platform adapted to 
position the cell culture containing the B cell in the obser
vation zone. 

3. The lymphocyte activation and/or identification status 
sensing device of claim 1, the device further comprising a 
cell analysis pathway comprising: (i) an inlet; (ii) the 
observation zone coupled to the inlet downstream of the 
inlet, the observation zone configured to present the lym
phocyte for individual autofluorescence interrogation; and 
(iii) an outlet coupled to the observation zone downstream of 
the observation zone. 

4. The lymphocyte activation and/or identification status 
sensing device of claim 3, wherein the cell analysis pathway 
comprises a microfluidic pathway or a nanofluidic pathway. 

5. The lymphocyte activation and/or identification status 
sensing device of claim 3, the lymphocyte activation and/or 
identification status sensing device further comprising a flow 
regulator coupled to the inlet. 

6. The lymphocyte activation and/or identification status 
sensing device of claim 5, wherein the flow regulator is 
configured to provide flow of cells through the observation 
zone at a rate that allows the autofluorescence spectrometer 
to acquire the autofluorescence data set for the lymphocyte 
when it is positioned in the observation zone. 

7. The lymphocyte activation and/or identification status 
sensing device of claim 3, wherein the cell analysis pathway 
does not include a fluorescent label for binding to the 
lymphocyte. 

8. The lymphocyte activation and/or identification status 
sensing device of claim 3, wherein the cell analysis pathway 
does not include an immobilization agent for binding and 
immobilizing the lymphocyte. 

9. The lymphocyte activation and/or identification status 
sensing device claim 3, the lymphocyte activation and/or 
identification status sensing device further comprising a cell 
sorter having a sorter inlet and at least two sorter outlets, the 
cell sorter coupled to the cell analysis pathway via the outlet 
downstream of the observation zone, the cell sorter config
ured to selectively direct a cell from the sorter inlet to one 
of the at least two sorter outlets based on a sort signal, the 
processor in electronic communication with the cell sorter, 
and the instructions, when executed by the processor, further 
cause the processor to provide the sort signal to the cell 
sorter based on the current activation prediction. 

22 
Jul. 4, 2024 

10. The lymphocyte activation and/or identification status 
sensing device of claim 3, the lymphocyte activation and/or 
identification status sensing device further comprising a cell 
picker. 

11. The lymphocyte activation and/or identification status 
sensing device of claim 10, wherein the cell picker auto
matically picks a cell based on the current activation and/or 
identification prediction. 

12. The lymphocyte activation and/or identification status 
sensing device of claim 3, the autofluorescence spectrometer 
comprising a detector-side filter configured to transmit fluo
rescence signals of interest. 

13. The lymphocyte activation and/or identification status 
sensing device of claim 3, the lymphocyte activation and/or 
identification status sensing device further comprising at 
least one of a cell size measurement tool configured to 
measure cell size and to communicate the cell size to the 
processor and a cell imager configured to acquire an image 
of a cell positioned within the observation zone and to 
communicate the image to the processor. 

14. The lymphocyte activation and/or identification status 
sensing device of claim 3, wherein the autofluorescence 
spectrometer is adapted to measure autofluorescence of the 
lymphocyte without requiring the use of a fluorescent label. 

15. The lymphocyte activation and/or identification status 
sensing device of claim 3, wherein the instructions, when 
executed by the processor, further cause the processor to 
generate a report including the current activation and/or 
identification prediction for lymphocytes analyzed by the 
device. 

16. A method of six-class classification of lymphocyte 
activation and identification status, the method comprising: 

a) receiving a population oflymphocytes having unknown 
activation and identification status; 

b) acquiring an autofluorescence data set for each lym
phocyte of the population of lymphocytes, each auto
fluorescence data set including autofluorescence life
time information; and 

either: 
cl) physically isolating the population of lymphocytes 

into at least six separate portions based on a six-class 
classification that predicts that each lymphocyte is an 
activated T cell, a quiescent T cell, an activated B cell, 
a quiescent B cell, an activated NK cell, or a quiescent 
NK cell; 

c2) generating a report including the six-class classifica
tion, the report optionally identifying a proportion of 
the population oflymphocytes having a given six-class 
classification, 

wherein the six-class classification is computed using at 
least a portion of the autofluorescence data set, wherein the 
six-class classification is computed using at least three 
six-class metabolic endpoints as an input, 
wherein the at least three six-class metabolic endpoints 
include reduced nicotinamide adenine dinucleotide and/or 
reduced nicotinamide dinucleotide phosphate (NAD(P)H) 
shortest fluorescence amplitude component (al), NAD(P)H 
shortest fluorescence lifetime component (-cl), and NAD 
(P)H mean fluorescence lifetime (-cm). 

17. A method of administering activated lymphocytes to 
a subject in need thereof, the method comprising: 

d) the method of claim 16, wherein the method compris
ing step cl); and 
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e) introducing one or more of the six separate portions to 
a subject, wherein the one or more of the six separate 
portions is predicted to be activated lymphocytes. 

18. The method of claim 17, wherein the one or more of 
the six separate portions is modified prior to step e ). 

19. A method of administering activated lymphocytes to 
a subject in need thereof, the method comprising: 

d) the method of claim 16, wherein the method comprises 
step c2); and 

e) in response to the proportion of the population of 
lymphocytes having a given six-class classification 
exceeding a predetermined threshold, introducing the 
population of lymphocytes to the subject. 

20. The method of claim 19, wherein the population of 
lymphocytes is modified prior to step e ). 

* * * * * 
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