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CFDNA FRAGMENTOMIC DETECTION OF
CANCER

FIELD OF THE INVENTION

[0001] The invention is directed to the detection of cancer,
including specific types and/or subtypes of cancer, in a
subject using cell-free deoxyribonucleic acid (cfDNA) frag-
mentomic methods and, optionally, additional testing and
treatments of the detected cancer.

BACKGROUND

[0002] Profiling of genomic driver alterations in cancer
has become increasingly important, not only for studying the
biological underpinnings of cancer, but also in identifying
clinically actionable alterations for targeted therapies in
clinical trials and practice. Historically, tumor samples have
been required, but obtaining tissue specimens for molecular
profiling is not always feasible, and can be especially
challenging in the metastatic setting. Cell-free DNA
(cfDNA) from cancer patients provides a non-invasive
approach for assessing circulating tumor DNA (ctDNA) for
alterations (Diaz L A Jr, Bardelli A. Liquid biopsies: geno-
typing circulating tumor DNA. J Clin Oncol. 2014 Feb.
20;32(6):579-86). This is a mature technology, with multiple
commercially available next-generation sequencing (NGS)
ctDNA panels. These mainly profile the coding regions of
selected oncogenes and tumor suppressors for DNA altera-
tions in order to assist with clinical decision making.

[0003] In order to remain stable in circulation, cfDNA
usually must be bound to a protein. Most often, this is the
nucleosome complex, which is reflected in size distribution
of cfDNA fragments showing the largest peak at 167 bp (Lo
Y M, Chan K C, Sun H, Chen E Z, Jiang P, Lun F M, Zheng
Y W, Leung TY, Lau T K, Cantor C R, Chiu R W. Maternal
plasma DNA sequencing reveals the genome-wide genetic
and mutational profile of the fetus. Sci Transl Med. 2010
Dec. 8:;2(61):61ra91) (Snyder M W, Kircher M, Hill A J,
Daza R M, Shendure J. Cell-free DNA Comprises an In Vivo
Nucleosome Footprint that Informs Its Tissues-Of-Origin.
Cell. 2016 Jan. 14;164(1-2):57-68) corresponding to one
nucleosome, a smaller peak at 334 bp corresponding to two
nucleosomes, and so on. Other studies have also described
smaller peaks representing transcription factor binding (Ulz
P, Perakis S, Zhou Q, Moser T, Belic J, Lazzeri I, Wolfler A,
Zebisch A, Gerger A, Pristauz G, Petru E, White B, Roberts
CE S, John IS, Schimek M G, Geigl J B, Bauernhofer T, Sill
H, Bock C, Heitzer E, Speicher MR. Inference of transcrip-
tion factor binding from cell-free DNA enables tumor sub-
type prediction and early detection. Nat Commun. 2019 Oct.
11;10(1):4666). Distinct fragmentation patterns around the
transcription start site have been shown to reflect binding of
the transcriptional machinery, and correlate with gene
expression (Esfahani M S, Hamilton E G, Mehrmohamadi
M, Nabet BY, Alig S K, King D A, Steen C B, Macaulay C
W, Schultz A, Nesselbush M C, Soo I, Schroers-Martin ] G,
Chen B, Binkley M S, Stehr H, Chabon I J, Sworder B J, Hui
A B, Frank M J, Moding E J, Liu C L, Newman A M, Isbell
JM, Rudin C M, Li B T, Kurtz D M, Diehn M, Alizadeh A
A. Inferring gene expression from cell-free DNA fragmen-
tation profiles. Nat Biotechnol. 2022 April;40(4):585-597).
The study of cfDNA fragmentation patterns has been
referred to as “fragmentomics™ and cancer patients show

May 2, 2024

distinct fragmentomic patterns that have been used to non-
invasively inform the biology of the tumor.

[0004] Because cfDNA fragmentation patterns are a
genome-wide phenomenon, almost all clinical fragmen-
tomic studies to date have used whole-genome sequencing
(WGS) for fragmentomic analysis. The breadth advantage of
cfDNA WGS is traded off against low depth of sequencing
compared to cfDNA targeted panels. WGS is generally
unsuitable for cfDNA somatic alteration detection as it has
poor sensitivity, especially at low ctDNA fractions. How-
ever, the field has focused on WGS as traditional coding
targeted cfDNA panels would not capture the majority of
known fragmentomic regions of interest which predomi-
nantly occur in non-coding regions of the genome.

[0005] Targeted cfDNA fragmentomic methods that do not
require WGS and thereby permit high sequencing depth
and/or higher sensitivity and specificity for the detection of
diseases such as cancer are needed.

SUMMARY OF THE INVENTION

[0006] Some aspects of the invention are directed to
methods of detecting cancer or a particular type or subtype
thereof in a subject and, optionally, treating the cancer or
particular type or subtype thereof.

[0007] Insome versions, the methods comprise: determin-
ing fragmentation patterns of classifier cell-free deoxyribo-
nucleic acid (cfDNA) from the subject, wherein the classifier
cfDNA comprises cfDNA from the subject corresponding to
at least a portion of at least one exon of at least one classifier
gene in a panel of one or more classifier genes; and classi-
fying the fragmentation patterns to identify the subject as
being negative or positive for the cancer or the particular
type or subtype thereof.

[0008] In some versions, the classifier cfDNA comprises
cfDNA from the subject corresponding to at least a portion
of at least one exon of at least one classifier gene.

[0009] In some versions, the classifier cfDNA comprises
cfDNA from the subject corresponding to at least a portion
of a coding sequence of at least one exon of at least one
classifier gene.

[0010] In some versions, the at least the portion of the at
least one exon of the at least one classifier gene comprises
a coding sequence of a first exon of the at least one classifier
gene.

[0011] In some versions, at least the portion of the at least
one exon of the at least one classifier gene comprises one or
more predefined exon regions. In some versions, the pre-
defined exon regions are selected from the group consisting
of transcription factor binding sites, regions of open chro-
matin, and specific motifs.

[0012] In some versions, the classifier cfDNA excludes
cfDNA from the subject corresponding to one or more exons
of the at least one classifier gene other than the at least one
exon.

[0013] Insome versions, the classifier cfDNA corresponds
to less than 2,500 Mb of a genome of the subject.

[0014] In some versions, the method further comprises
isolating from the subject a biological sample comprising
the classifier cfDNA. In some versions, the method further
comprises isolating the classifier cfDNA from at least some
non-classifier cfDNA, wherein the non-classifier cfDNA is
cfDNA that is not classifier cfDNA.

[0015] In some versions, the method further comprises
sequencing the classifier cfDNA. In some versions, the
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sequencing comprises sequencing the classifier cfDNA at a
deduplicated sequencing depth of at least 100x. In some
versions, the method excludes sequencing at least some
non-classifier cfDNA from the subject. In some versions, the
method sequences cfDNA corresponding to no more than
2,500 Mb of a genome of the subject.

[0016] In some versions, the determining the fragmenta-
tion patterns comprises determining a fragment size distri-
bution of the classifier cfDNA. In some versions, determin-
ing the fragmentation patterns comprises determining a
separate fragment size distribution of the classifier cfDNA
corresponding to each classifier gene. In some versions, each
classifier gene comprises a coding region of an exon and the
determining the fragmentation patterns comprises determin-
ing a separate fragment size distribution of the classifier
cfDNA corresponding to the coding region of each exon. In
some versions, each classifier gene comprises a coding
region of a first exon and the determining the fragmentation
patterns comprises determining a separate fragment size
distribution of the classifier cfDNA corresponding to the
coding region of each first exon. In some versions, each
classifier gene comprises a coding region of multiple exons
and the determining the fragmentation patterns comprises
determining a separate fragment size distribution of the
classifier cfDNA corresponding to the coding region of each
of the multiple exons.

[0017] In some versions, the determining the fragmenta-
tion patterns comprises quantitating each fragment size
distribution. In some versions, the determining the fragmen-
tation patterns comprises quantitating each fragment size
distribution using size bins. In some versions, the quanti-
tating comprises quantitating an entropy value for each
fragment size distribution. In some versions, the quantitating
comprises quantitating the number of reads (depth) for each
fragment size distribution. In some versions, the determining
the fragmentation patterns comprises examining the
sequence motifs found on each fragment. In some versions,
the determining the fragmentation patterns comprises deter-
mining a motif diversity score. In some versions, the deter-
mining the fragmentation patterns comprises determining
the fragmentation patterns of one or more predefined exon
regions. In some versions, the predefined exon regions are
selected from the group consisting of transcription factor
binding sites, regions of open chromatin, and specific
motifs. In some versions, the determining the fragmentation
patterns comprises determining a separate fragment size
distribution of the classifier cfDNA corresponding to each
predefined exon region.

[0018] In some versions, the classifier genes comprise
cancer genes. In some versions, the one or more classifier
genes comprise at least 50 genes from Gene Set 1. In some
versions, the one or more classifier genes comprise at least
1 gene from Gene Set 2.

[0019] In some versions, the classifying identifies the
subject as being negative or positive for at least one type of
cancer. In some versions, at least one type of cancer com-
prises one or more tumor sites of origin. In some versions,
the one or more tumor sites of origin comprise one or more
of breast, bladder, lung, kidney, and prostate.

[0020] In some versions, the method is capable of identi-
fying the subject as being positive for cancer at an accuracy
of at least 90% in a biological sample from the subject
having a ct-fraction from 0.0001 to 0.001. In some versions,
the method is capable of identifying the subject as being
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positive for a cancer selected from the group consisting of
breast cancer, bladder cancer, lung cancer, prostate cancer,
and metastatic neuroendocrine prostate cancer at an accu-
racy of at least 70% in a biological sample from the subject
having a ct-fraction from 0.001 to 0.01

[0021] In some versions, the method further comprises
identifying the subject as having a cancer of a particular
tissue of origin and subjecting the subject to imaging or
biopsy of the particular tissue of origin. In some versions,
the particular tissue of origin is a solid tissue and wherein the
imaging or biopsy is of the solid tissue.

[0022] In some versions, the method further comprises
identifying the subject as having cancer and treating the
cancer. In some versions, the method further comprises
identifying the subject as having a cancer of a particular
tissue of origin and subjecting the subject to surgery on the
particular tissue of origin. In some versions, the particular
tissue of origin is a solid tissue and wherein the surgery is
on the solid tissue.

[0023] The objects and advantages of the invention will
appear more fully from the following detailed description of
the preferred embodiment of the invention made in conjunc-
tion with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] The patent or application file contains at least one
drawing executed in color. Copies of this patent or patent
application publication with color drawing(s) will be pro-
vided by the Office upon request and payment of the
necessary fee.

[0025] FIG. 1. Schematic of fragmentomics experimental
setup. Liquid biopsies from patients from two independent
cohorts with various cancer types are collected and cfDNA
is isolated using targeted exon panels. Unique histone dis-
tributions across cancer types lead to variable fragmentation
patterns at targeted exons. Exon 1 shows particular variabil-
ity due to its proximity to promoter regions and is correlated
with gene expression. The diversity of fragmentation distri-
butions at each coding exon 1 are measured via Shannon
entropy for each sample. Machine learning models are built
to predict tumor type for each cohort, with training per-
formed on 70% of the data and 30% withheld for validation.
Ten-fold cross validation performed on the training data. In
the UW cohort, samples are randomly selected for training
and validation, while the GRAIL cohort is trained on high
ctDNA samples and validated on low ctDNA samples.
[0026] FIGS. 2A-2H. cfDNA fragmentation patterns from
targeted panels. Average total fragment distribution across
tumor types in the (FIG. 2A) GRAIL and (FIG. 2B) UW
datasets respectively. Heatmap of the fragment size distri-
butions at exon 1 across all genes from the GRAIL targeted
panel (FIG. 2C) and UW targeted panel (FIG. 2D) in a single
representative sample from each cohort. Genes are ordered
by exon 1 Shannon entropy (E1SE) with high E1SE genes
at the top and low E1SE genes at the bottom. Fragment size
proportions are normalized within each fragment size across
all genes analyzed. Plot demonstrates that genes with high
E1SE are depleted for fragments near the mono-nucleosome
peak (167bp) and enriched for fragments at lower (<120 bp)
and higher (>200 bp) sizes, while genes with low EISE
display the opposite pattern. (FIG. 2E) Copy number calls
from the UW cohort compared to Shannon entropy. Copy
number was calculated for each gene for each patient. Each
point represents a single gene-patient pair. Copy number
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data was binned as shown, and Shannon entropy distribu-
tions are shown for each bin. E1SE was normalized by
centering and scaling on a per-gene basis before plotting.
This transforms the E1SE distribution for each gene such
that the mean is zero and the standard deviation is one,
eliminating inter-gene variability. Data from all genes and
patients are plotted. Only the UW cohort was used because
the exact panel design was required to accurately determine
CN, but this was not available for the GRAIL cohort (FIG.
2F) Shannon entropy as a function of fragments per exon in
the UW cohort at copy number neutral regions (Log2 ratio
between -0.5 and 0.5). Correlation between GC content and
mean Shannon entropy at each exon analyzed in the (FIG.
2G) GRAIL cohort and (FIG. 2H) UW cohort.

[0027] FIGS. 3A-3D. Predicting tumor type in the UW
panel and cohort. The UW data was split into 70% training
and 30% independent validation, the latter of which is
shown. Performance was assessed by (FIG. 3A) confusion
matrix of classifier accuracy in CV data comparing predicted
vs. actual phenotypes and (FIG. 3B) ROC curves of classi-
fier AUCs in CV data. (FIG. 3C) Accuracy as a function of
ctDNA fraction in CV data. ctDNA fractions ranged from
0.003-0.771. NEPC samples are not shown due to the lack
of germline sequencing for this cohort which are required
for ctDNA fraction estimation. Only samples with available
germline sequencing, and thus ctDNA fraction estimation,
are shown. The number of samples in each ctDNA fraction
bin are: <0.01: n=10; 0.01-0.1: n=21; 0.1-1.0: n=26. (FIG.
3D) Radar plots depicting the prediction score, where each
plot represents one pathologic diagnosis (noted in bold
above the plot), and each line in the plot represents model
prediction for a single patient. The vertices of each graph
represent the continuous prediction scores from the EISE
models for each of the predicted phenotypes, with the outer
ring denoting a prediction score of 1 and the inner ring a
prediction score of 0. For each patient, the final model
prediction is the highest-scoring predicted phenotype which
is correct in the majority of cases. The number of predictions
for each tumor type are noted next to the label of each vertex
(matching panel A). Correctly predicted patients are repre-
sented by colored lines, whereas incorrectly predicted
patients are represented by light gray lines.

[0028] FIGS. 4A-4D. Predicting tumor type in the GRAIL
panel and cohort. The GRAIL data was split into 70%
training and 30% independent validation, the latter of which
is shown. The validation data contained the lowest ctDNA
fraction samples, all <0.05. Performance was assessed by
(FIG. 4A) confusion matrix of classifier accuracy in valida-
tion data and (FIG. 4B) ROC curves of classifier AUCs in
validation data. (FIG. 4C) Accuracy as a function of ctDNA
fraction in validation data. ctDNA fractions ranged from
0.0003-0.925 for cancer samples. Light grey bars represent
normal samples with a ctDNA fraction of 0. The number of
samples in each ctDNA fraction bin are: 0 (Normal): n=33;
<0.25: n=28; 0.25-1.0: n=32. (FIG. 4D) Radar plots depict-
ing the prediction score, where each plot represents one
specific pathologic diagnosis (noted in bold above the plot),
and each line in the plot represents the model prediction for
a single patient. The vertices of each graph represent the
continuous prediction scores from the EISE models for each
of the predicted phenotypes, with the outer ring denoting a
prediction score of 1 and the inner ring a prediction score of
0. For each patient, the final model prediction is the highest-
scoring predicted phenotype which is correct in the majority
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of cases. The number of predictions for each tumor type are
noted next to the label of each vertex (matching FIG. 3A).
Correctly predicted patients are represented by colored lines,
whereas incorrectly predicted patients are represented by
light gray lines.

[0029] FIGS. 5A and 5B. Effect of downsampling on
model performance in the GRAIL cohort. Downsampling of
the GRAIL cohort was performed to levels ranging from 100
M to 1 M reads 10 times for each downsampling level. For
each replicate and downsampling level, Shannon entropies
were calculated for the fragment distributions at the first
exon of each gene in the panel as described previously.
Training and validation using the new downsampled feature
tables was performed and results for (FIG. 5SA) ROC AUC
and (FIG. 5B) accuracy are shown for each phenotype in the
cohort. Small points represent individual values, large solid
points represent mean values, and error bars represent +/-1
standard deviation.

[0030] FIGS. 6A and 6B. Fragment distribution of GRAIL
cohort samples stratified by ctDNA fraction. (FIG. 6A)
Distribution of cfDNA fragments from individual samples
colored by low ctDNA (<10% ctDNA fraction) or high
ctDNA (ctDNA fraction >=10%). Red line represents the
median of all normal healthy samples. (FIG. 6B) Proportion
of fragments below 150 bp in healthy, low ctDNA, and high
ctDNA samples. A Kruskal-Wallis test was performed to
compare all three categories, and a Wilcoxon rank sum test
was performed for individual comparisons (*p<0.05; ****
p<0.0001)

[0031] FIG. 7. Relative fragment coverage in first coding
exon by gene expression decile. Average plasma cell-free
DNA fragment coverage near the exon 1 coding sequence
(CDS) of 11748 genes annotated in MANE version 0.93,
calculated across 41 whole genome sequenced ctDNA-
positive samples from the NCT02125357 trial (Herberts et
al. Nature 2022). Genes were separated into ten quantile
groups based on their average expression in prostate cancer
tissue samples. Fragment coverage is normalized relative to
1 kb distant flanks. Only multi-exon genes with a CDS
containing exon 1 were included in the analysis. Gene
orientation and exon 1 CDS length were normalized
between the genes for visualization. One kilobase of
upstream and downstream flanking region is also shown
(without normalization).

[0032] FIGS. 8A and 8B. Exon 1 Shannon entropy of the
AR by cancer type. Normalized Shannon entropy was cal-
culated for the first coding exon of the androgen receptor
gene (AR) for all samples in the GRAIL cohort (FIG. 8A)
and UW cohort (FIG. 8B). AR E1SE displays significantly
higher normalized Shannon entropy in prostate cancer
samples compared to other cancer types and healthy normal
samples. Two-sided Student’s t-test was used for signifi-
cance testing (**** p<0.0001).

[0033] FIG. 9. Normalized AR Shannon entropy stratified
by ctDNA fraction. Within each cancer type, samples were
stratified into low and high ctDNA fraction using the median
ctDNA fraction as the cutoff. Normalized Shannon entropy
at the first coding exon of AR was calculated and plotted by
cancer type and ctDNA level. High ctDNA fraction prostate
cancer samples were found to have significantly higher AR
E1SE compared to low ctDNA {fraction prostate cancer
samples only. Two-sided Student’s t-test was used for sig-
nificance testing (*p<0.05; n.s. —non significant)
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[0034] FIG. 10. Model performance using alternative
exons. Model performance was assessed using Shannon
entropies calculated from reads overlapping either the first,
middle (mid), or last exons of the genes in each panel (see
bottom schematic). For genes with an even number of exons,
the exon closest to the TSS of the two middle exons was
used. Accuracy was calculated for the UW cohort (left) and
the GRAIL cohort (right). In both cohorts, Shannon entro-
pies calculated from the first exon had the highest accuracy.
[0035] FIGS. 11A-11D. ROC curves for E1SE models to
identify RCC in the UW cohort using all genes (FIG. 11A),
genes overlapping with the Tempus xF panel (FIG. 11B),
genes overlapping with the Guardant 360 CDx panel (FIG.
11C), genes overlapping with the Foundation One Liquid
CDx panel (FIG. 11D).

[0036] FIGS. 12A-12D. ROC curves for E1SE models to
identify hormone receptor positive vs. negative breast can-
cer in the UW cohort using all genes (FIG. 12A), genes
overlapping with the Tempus xF panel (FIG. 12B), genes
overlapping with the Guardant 360 CDx panel (FIG. 12C),
genes overlapping with the Foundation One Liquid CDx
panel (FIG. 12D).

[0037] FIGS. 13A-13H. ROC curves for E1SE models to
identify tumor types and subtypes in the UW cohort using all
genes (FIG. 13A), genes overlapping with the Tempus xF
panel (FIG. 13B), genes overlapping with the Guardant 360
CDx panel (FIG. 13C), genes overlapping with the Foun-
dation One Liquid CDx panel (FIG. 13D). ROC curves for
E1SE models to identify tumor types and subtypes in the
GRAIL cohort using all genes (FIG. 13E), genes overlap-
ping with the Tempus xF panel (FIG. 13F), genes overlap-
ping with the Guardant 360 CDx panel (FIG. 13G), genes
overlapping with the Foundation One Liquid CDx panel
(FIG. 13H).

[0038] FIGS. 14A-14H. ROC curves for exon 1 depth
models to identify tumor types and subtypes in the UW
cohort using all genes (FIG. 14A), genes overlapping with
the Tempus XF panel (FIG. 14B), genes overlapping with
the Guardant 360 CDx panel (FIG. 14C), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 14D).
ROC curves for exon 1 depth models to identify tumor types
and subtypes in the GRAIL cohort using all genes (FIG.
14E), genes overlapping with the Tempus xF panel (FIG.
14F), genes overlapping with the Guardant 360 CDx panel
(FIG. 14G), genes overlapping with the Foundation One
Liquid CDx panel (FIG. 14H).

[0039] FIGS. 15A-15H. ROC curves for full gene depth
models to identify tumor types and subtypes in the UW
cohort using all genes (FIG. 15A), genes overlapping with
the Tempus xF panel (B), genes overlapping with the
Guardant 360 CDx panel (FIG. 15C), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 15D).
ROC curves for full gene depth models to identify tumor
types and subtypes in the GRAIL cohort using all genes
(FIG. 15E), genes overlapping with the Tempus xF panel
(FIG. 15F), genes overlapping with the Guardant 360 CDx
panel (FIG. 15G), genes overlapping with the Foundation
One Liquid CDx panel (FIG. 15H).

[0040] FIGS. 16A-16H. ROC curves for exon 1 motif
diversity score models to identify tumor types and subtypes
in the UW cohort using all genes (FIG. 16A), genes over-
lapping with the Tempus xF panel (FIG. 16B), genes over-
lapping with the Guardant 360 CDx panel (FIG. 16C), genes
overlapping with the Foundation One Liquid CDx panel
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(FIG. 16D). ROC curves for exon 1 motif diversity score
models to identify tumor types and subtypes in the GRAIL
cohort using all genes (FIG. 16E), genes overlapping with
the Tempus xF panel (FIG. 16F), genes overlapping with the
Guardant 360 CDx panel (FIG. 16G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 16H).
[0041] FIGS. 17A-17H. ROC curves for exon 1 fragment
size bin models to identify tumor types and subtypes in the
UW cohort using all genes (FIG. 17A), genes overlapping
with the Tempus xF panel (FIG. 17B), genes overlapping
with the Guardant 360 CDx panel (FIG. 17C), genes over-
lapping with the Foundation One Liquid CDx panel (FIG.
17D). ROC curves for exon 1 fragment size bin models to
identify tumor types and subtypes in the GRAIL cohort
using all genes (FIG. 17E), genes overlapping with the
Tempus xF panel (FIG. 17F), genes overlapping with the
Guardant 360 CDx panel (FIG. 17G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 17H).
[0042] FIGS. 18A-18H. ROC curves for exon 1 small
fragment proportion models to identify tumor types and
subtypes in the UW cohort using all genes (FIG. 18A), genes
overlapping with the Tempus xF panel (FIG. 18B), genes
overlapping with the Guardant 360 CDx panel (FIG. 18C),
genes overlapping with the Foundation One Liquid CDx
panel (FIG. 18D). ROC curves for exon 1 small fragment
proportion models to identify tumor types and subtypes in
the GRAIL cohort using all genes (FIG. 18E), genes over-
lapping with the Tempus xF panel (FIG. 18F), genes over-
lapping with the Guardant 360 CDx panel (FIG. 18G), genes
overlapping with the Foundation One Liquid CDx panel
(FIG. 18H).

[0043] FIGS. 19A-19H. ROC curves for all exon Shannon
Entropy models to identify tumor types and subtypes in the
UW cohort using all genes (FIG. 19A), genes overlapping
with the Tempus xF panel (FIG. 19B), genes overlapping
with the Guardant 360 CDx panel (FIG. 19C), genes over-
lapping with the Foundation One Liquid CDx panel (FIG.
19D). ROC curves for all exon Shannon Entropy models to
identify tumor types and subtypes in the GRAIL cohort
using all genes (FIG. 19E), genes overlapping with the
Tempus xF panel (FIG. 19F), genes overlapping with the
Guardant 360 CDx panel (FIG. 19G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 19H).
[0044] FIGS. 20A-20H. ROC curves for all exon depth
models to identify tumor types and subtypes in the UW
cohort using all genes (FIG. 20A), genes overlapping with
the Tempus xF panel (FIG. 20B), genes overlapping with the
Guardant 360 CDx panel (FIG. 20C), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 20D).
ROC curves for all exon depth models to identify tumor
types and subtypes in the GRAIL cohort using all genes
(FIG. 20E), genes overlapping with the Tempus XF panel
(FIG. 20F), genes overlapping with the Guardant 360 CDx
panel (FIG. 20G), genes overlapping with the Foundation
One Liquid CDx panel (FIG. 20H).

[0045] FIGS. 21A-21H. ROC curves for all exon motif
diversity score models to identify tumor types and subtypes
in the UW cohort using all genes (FIG. 21A), genes over-
lapping with the Tempus xF panel (FIG. 21B), genes over-
lapping with the Guardant 360 CDx panel (FIG. 21C), genes
overlapping with the Foundation One Liquid CDx panel
(FIG. 21D). ROC curves for all exon motif diversity score
models to identify tumor types and subtypes in the GRAIL
cohort using all genes (FIG. 21E), genes overlapping with
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the Tempus xF panel (FIG. 21F), genes overlapping with the
Guardant 360 CDx panel (FIG. 21G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 21H).
[0046] FIGS. 22A-22H. ROC curves for all exons small
fragment proportion models to identify tumor types and
subtypes in the UW cohort using all genes (FIG. 22A), genes
overlapping with the Tempus xF panel (FIG. 22B), genes
overlapping with the Guardant 360 CDx panel (FIG. 22C),
genes overlapping with the Foundation One Liquid CDx
panel (FIG. 22D). ROC curves for all exons small fragment
proportion models to identify tumor types and subtypes in
the GRAIL cohort using all genes (FIG. 22E), genes over-
lapping with the Tempus xF panel (FIG. 22F), genes over-
lapping with the Guardant 360 CDx panel (FIG. 22G), genes
overlapping with the Foundation One Liquid CDx panel
(FIG. 22H).

[0047] FIGS. 23A-23H. ROC curves for EISE +depth
models to identify tumor types and subtypes in the UW
cohort using all genes (FIG. 23A), genes overlapping with
the Tempus xF panel (FIG. 23B), genes overlapping with the
Guardant 360 CDx panel (FIG. 23C), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 23D).
ROC curves for E1SE +depth models to identify tumor types
and subtypes in the GRAIL cohort using all genes (FIG.
23E), genes overlapping with the Tempus xF panel (FIG.
23F), genes overlapping with the Guardant 360 CDx panel
(FIG. 23G), genes overlapping with the Foundation One
Liquid CDx panel (FIG. 23H).

[0048] FIGS. 24A-24H. ROC curves for all exons Shan-
non Entropy +depth models to identify tumor types and
subtypes in the UW cohort using all genes (FIG. 24A), genes
overlapping with the Tempus xF panel (FIG. 24B), genes
overlapping with the Guardant 360 CDx panel (FIG. 24C),
genes overlapping with the Foundation One Liquid CDx
panel (FIG. 24D). ROC curves for all exons Shannon
Entropy +depth models to identify tumor types and subtypes
in the GRAIL cohort using all genes (FIG. 24E), genes
overlapping with the Tempus xF panel (FIG. 24F), genes
overlapping with the Guardant 360 CDx panel (FIG. 24G),
genes overlapping with the Foundation

[0049] One Liquid CDx panel (FIG. 24H).

[0050] FIGS. 25A-25B. ROC curves depicting the predic-
tion of high or low ctDNA fraction (CTF) in cancer samples
using exon 1 Shannon entropy (E1SE) in the UW cohort
(FIG. 25A) and the GRAIL cohort (FIG. 25B) using a
10-fold cross validation approach. The cutoff for “low” and
“high” ctDNA fraction was 0.05.

[0051] FIGS. 26A-26H. ROC curves for the Transcription
Factor Binding Site Shannon Entropy models to identify
tumor types and subtypes in the UW cohort using all genes
(FIG. 26A), genes overlapping with the Tempus xF panel
(FIG. 26B), genes overlapping with the Guardant 360 CDx
panel (FIG. 26C), genes overlapping with the Foundation
One Liquid CDx panel (FIG. 26D). ROC curves for the
Transcription Factor Binding Site Shannon Entropy models
to identify tumor types and subtypes in the GRAIL cohort
using all genes (FIG. 26E), genes overlapping with the
Tempus xF panel (FIG. 26F), genes overlapping with the
Guardant 360 CDx panel (FIG. 26G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 26H).
[0052] FIGS. 27A-27H. ROC curves for the open chro-
matin region (ATAC-seq) Shannon entropy models to iden-
tify tumor types and subtypes in the UW cohort using all
genes (FIG. 27A), genes overlapping with the Tempus XF
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panel (FIG. 27B), genes overlapping with the Guardant 360
CDx panel (FIG. 27C), genes overlapping with the Foun-
dation One Liquid CDx panel (FIG. 27D). ROC curves for
the open chromatin region (ATAC-seq) Shannon entropy
models to identify tumor types and subtypes in the GRAIL
cohort using all genes (FIG. 27E), genes overlapping with
the Tempus xF panel (FIG. 27F), genes overlapping with the
Guardant 360 CDx panel (FIG. 27G), genes overlapping
with the Foundation One Liquid CDx panel (FIG. 27H).

[0053] FIGS. 28A-28L.. AUROC values of model perfor-
mance in the UW cohort across E1SE, exon 1 depth, E1SE
and exon 1 depth, all exons Shannon entropy (SE), all exons
depth, combining all exons depth and Shannon entropy, full
gene depth, exon 1 MDS, all exon MDS, exon 1 small
fragment proportions, all exons small fragment proportions,
fragment size bins, TFBS entropy, and ATAC region
entropy. The UW cohort comprises bladder cancer, breast
cancer, lung cancer, renal cell cancer (RCC), prostate adeno-
carcinoma (Prostate), and neuroendocrine prostate cancer
(NEPC). UW breast cancer samples were further split into
ER positive (ERpos) and ER negative (ERneg) samples.
UW lung cancer samples were further split into small cell
lung cancer (SCLC) and non-small cell lung cancer
(NSCLC). Ten replicates of the 10-fold cross-validation
model were performed and boxplots using all ten replicates
are shown. Model performance to identify tumor types and
subtypes was determined using all genes in the UW panel
(FIGS. 28A-28C), genes overlapping with the Tempus XF
panel (FIGS. 28D-28F), genes overlapping with the Guar-
dant 360 CDx panel (FIGS. 28G-28I), genes overlapping
with the Foundation One Liquid CDx panel (FIGS. 28]-
28L).

[0054] FIGS. 29A-29H. AUROC values of model perfor-
mance in the GRAIL cohort across E1SE, exon 1 depth,
E1SE and exon 1 depth, all exons Shannon entropy (SE), all
exons depth, combining all exons depth and Shannon
entropy, full gene depth, exon 1 MDS, all exon MDS, exon
1 small fragment proportions, all exons small fragment
proportions, fragment size bins, TFBS entropy, and ATAC
region entropy. Ten replicates of the 10-fold cross-validation
model were performed and boxplots using all ten replicates
are shown. Model performance to identify tumor types and
subtypes was determined using all genes in the GRAIL panel
(FIGS. 29A and 29B), genes overlapping with the Tempus
XF panel (FIGS. 29C and 29D), genes overlapping with the
Guardant 360 CDx panel (FIGS. 29E and 29F), genes
overlapping with the Foundation One Liquid CDx panel
(FIGS. 29G and 29H).

[0055] FIGS. 30A-30L. AUROC values of model perfor-
mance in the UW cohort split by ctDNA fraction bin across
E1SE, exon 1 depth, EISE and exon 1 depth, all exons
Shannon entropy (SE), all exons depth, combining all exons
depth and Shannon entropy, full gene depth, exon 1 MDS,
all exon MDS, exon 1 small fragment proportions, all exons
small fragment proportions, fragment size bins, TFBS
entropy, and ATAC region entropy. Samples were split into
low ctDNA fraction samples (0-0.05) and high ctDNA
fraction samples (0.05-1). Cancer types with an insufficient
number of samples (less than 3) within each ctDNA fraction
bin were excluded from analysis. The cancer types which fit
these criteria were bladder cancer, ER positive breast cancer,
NSCLC, prostate adenocarcinoma, and RCC. Ten replicates
of the 10-fold cross-validation model were performed and
boxplots using all ten replicates are shown. Model perfor-
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mance to identify tumor types and subtypes was determined
using all genes in the UW panel (FIGS. 30-30C), genes
overlapping with the Tempus XF panel (FIGS. 30D-30F),
genes overlapping with the Guardant 360 CDx panel (FIGS.
30G-30I), genes overlapping with the Foundation One Lig-
uid CDx panel (FIGS. 30J-30L).

[0056] FIGS. 31A-31L. AUROC values of model perfor-
mance in the GRAIL cohort split by ctDNA fraction bin
across EISE, exon 1 depth, EISE and exon 1 depth, all
exons Shannon entropy (SE), all exons depth, combining all
exons depth and Shannon entropy, full gene depth, exon 1
MDS, all exon MDS, exon 1 small fragment proportions, all
exons small fragment proportions, fragment size bins, TFBS
entropy, and ATAC region entropy. Samples were split into
low ctDNA fraction samples (0-0.05) and high ctDNA
fraction samples (0.05-1). Only cancer types with a suffi-
cient number of samples (greater than or equal to 3) within
each ctDNA fraction bin were excluded from analysis. The
cancer types which fit these criteria were prostate cancer,
breast cancer, and lung cancer. Ten replicates of the 10-fold
cross-validation model were performed and boxplots using
all ten replicates are shown. Model performance to identify
tumor types and subtypes was determined using all genes in
the GRAIL panel (FIGS. 31A-31C), genes overlapping with
the Tempus XF panel (FIGS. 31D-31F), genes overlapping
with the Guardant 360 CDx panel (FIGS. 31G-311), genes
overlapping with the Foundation One Liquid CDx panel
(FIGS. 31J-31L).

[0057] FIGS. 32A-32H. AUROC values from models
trained on the UW cohort to predict ctDNA fraction across
E1SE, exon 1 depth, E1SE and exon 1 depth, all exons
Shannon entropy (SE), all exons depth, combining all exons
depth and Shannon entropy, full gene depth, exon 1 MDS,
all exon MDS, exon 1 small fragment proportions, all exons
small fragment proportions, fragment size bins, TFBS
entropy, and ATAC region entropy. Samples were split into
low ctDNA fraction (0-0.01), mid ctDNA fraction (0.01-0.
1), high ctDNA fraction (0.1-1), and healthy samples. Ten
replicates of the 10-fold cross-validation model were per-
formed and boxplots using all ten replicates are shown.
Model performance to identify ctDNA fraction bin was
determined using all genes in the UW panel (FIGS. 32A and
32B), genes overlapping with the Tempus xF panel (FIGS.
32C and 32D), genes overlapping with the Guardant 360
CDx panel (FIGS. 32E and 32F), genes overlapping with the
Foundation One Liquid CDx panel (FIGS. 32G and 32H).

[0058] FIGS. 33A-33H. AUROC values from models
trained on the GRAIL cohort to predict ctDNA fraction
across EISE, exon 1 depth, EISE and exon 1 depth, all
exons Shannon entropy (SE), all exons depth, combining all
exons depth and Shannon entropy, full gene depth, exon 1
MDS, all exon MDS, exon 1 small fragment proportions, all
exons small fragment proportions, fragment size bins, TFBS
entropy, and ATAC region entropy. Samples were split into
low ctDNA fraction (0-0.01), mid ctDNA fraction (0.01-0.
1), high ctDNA fraction (0.1-1), and healthy samples. Ten
replicates of the 10-fold cross-validation model were per-
formed and boxplots using all ten replicates are shown.
Model performance to identify ctDNA fraction bin was
determined using all genes in the GRAIL panel (FIGS. 32A
and 32B), genes overlapping with the Tempus xF panel
(FIGS. 32C and 32D), genes overlapping with the Guardant
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360 CDx panel (FIGS. 32E and 32F), genes overlapping
with the Foundation One Liquid CDx panel (FIGS. 32G and
32H).

DETAILED DESCRIPTION OF THE
INVENTION

[0059] One aspect of the invention is directed to methods
of detecting cancer in a subject. “Detecting cancer” as used
herein refers to detecting cancer or any particular type
thereof. The term “subject,” as used herein, generally refers
to any animal, mammal, or human. In some embodiments,
the subject has, potentially has, or is suspected of having
cancer or a symptom(s) associated with cancer. In some
embodiments, the subject asymptomatic with respect to
cancer. In some embodiments, the subject is undiagnosed
(e.g., not diagnosed for cancer).

[0060] The methods of detecting cancer can comprise
various isolation, sequencing, and/or analysis steps with
classifier cell-free deoxyribonucleic acid (cell-free DNA or
cfDNA) from the subject.

[0061] cfDNA comprises nucleic acid fragments not con-
tained within a cell that circulate in an subject’s body (e.g.,
bloodstream). cfDNA can originate from one or more
healthy cells and/or from one or more cancerous cells of the
subject’s body. cfDNA may come from other sources such
as viruses, fetuses, etc. cfDNA can include circulating tumor
DNA (ctDNA). ctDNA is cfDNA that originates from tumor
cells. ctDNA may be released into a subject’s bloodstream
as result of biological processes such as apoptosis or necro-
sis of dying tumor cells or by active release by viable tumor
cells.

[0062] Classifier cfDNA is cfDNA that is analyzed for
classification according to the methods described herein.
Classifier cfDNA is distinguished from non-classifier
cfDNA, the latter of which is cfDNA that is not classifier
cfDNA. The classifier cfDNA can comprise cfDNA that
corresponds to one or more regions of a genome. The term
“corresponds” (or grammatical variants thereof) refers to a
relationship between a first nucleic acid (e.g., a cfDNA, a
probe) and at least a region of a second nucleic acid (e.g., a
defined region in a chromosome of a genome) such that the
first nucleic acid comprises at least one base that aligns
(overlaps) with at least one base in the region when the
sequence of the first nucleic acid is aligned to that of the
second nucleic acid. The regions of the genome to which the
classifier cfDNA corresponds are referred to herein as “clas-
sifier regions.” Classifier regions are distinguished from
non-classifier regions, the latter of which are region that are
not classifier regions. The classifier regions can comprise
genic regions of the genome, intergenic regions of the
genome, or a combination thereof. In some embodiments,
the classifier regions comprise genes or specific parts thereof
(e.g, exons, introns, promoters, coding regions, regulatory
regions, enhancers, untranslated regions (5' untranslated
region, 3' untranslated region, etc.). A gene to which clas-
sifier cfDNA corresponds (i.e., a gene that comprises at least
one base that aligns to at least one base of classifier cfDNA)
is referred to herein as a “classifier gene.” Classifier genes
are distinguished from non-classifier genes, the latter of
which are genes that are not classifier genes. In some
embodiments, the classifier regions comprise exons. As is
known in the art, exons are contiguous portions of genes that
form the final mature RNA produced by genes after introns
have been removed by RNA splicing. Exons of classifier
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genes that correspond to classifier cfDNA are referred to
herein as “classifier exons.” Classifier exons are distin-
guished from non-classifier exons, the latter of which are
exons that are not classifier exons. In some embodiments,
the classifier exons comprise particular exons, such as first
exons. In some embodiments, the classifier exons comprise
coding regions of particular exons, such as coding regions of
first exons. “First exon” as used herein refers to a contiguous
portion of a given gene that forms the furthest 5' part of a
final mature RNA produced by that gene after introns have
been removed by RNA splicing. In some cases, a given gene
can have multiple first exons depending on the various
isoforms it is capable of generating due to alternative
splicing or alternative transcription start sites.

[0063] In some embodiments, the classifier regions com-
prise at least a portion of at least one exon of at least one
classifier gene. In some embodiments, the classifier regions
comprise at least a portion of the coding sequence of at least
one exon of at least one classifier gene. In some embodi-
ments, the classifier regions comprise at least a portion of the
first exon of at least one classifier gene. In some embodi-
ments, the classifier regions comprise at least a portion of the
coding sequence of the first exon of at least one classifier
gene. In some embodiments, the classifier regions comprise
the entirety of at least one exon of at least one classifier gene.
In some embodiments, the classifier regions comprise the
entirety of the coding sequence of at least one exon of at
least one classifier gene. In some embodiments, the classifier
regions comprise the entirety of the first exon of at least one
classifier gene. In some embodiments, the classifier regions
comprise the entirety of the coding sequence of the first exon
of at least one classifier gene. In some embodiments, the
classifier regions comprise the entirety of at least one exon
of each classifier gene. In some embodiments, the classifier
regions comprise the entirety of the coding sequence of at
least one exon of each classifier gene. In some embodiments,
the classifier regions comprise, consist, or consist essentially
of the entirety of the first exon of each classifier gene. In
some embodiments, the classifier regions comprise, consist,
or consist essentially of the entirety of the coding sequence
of the first exon of each classifier gene. Accordingly, the
classifier cfDNA of the invention can correspond to any of
the above-described classifier regions

[0064] In some embodiments, the non-classifier regions
comprise intergenic regions of the genome. In some embodi-
ments, the non-classifier regions comprise at least one intron
of at least one classifier gene. In some embodiments, the
non-classifier regions comprise at least one intron of each
classifier gene. In some embodiments, the non-classifier
regions comprise each intron of each classifier gene. In some
embodiments, the non-classifier regions comprise at least
one exon in at least one classifier gene. In some embodi-
ments, the non-classifier regions comprise at least one exon
in each classifier gene. In some embodiments, the non-
classifier regions comprise at least one exon other than the
first exon in at least one classifier gene. In some embodi-
ments, the non-classifier regions comprise at least one exon
other than the first exon in each classifier gene. In some
embodiments, the non-classifier regions comprise each exon
other than the first exon in at least one classifier gene. In
some embodiments, the non-classifier regions comprise each
exon other than the first exon in each classifier gene.
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Accordingly, the classifier cfDNA of the invention can
exclude cfDNA corresponding to any of the above-described
non-classifier regions.

[0065] In various embodiments, the classifier regions con-
stitute less than 2,999 Mb, less than 2,750 Mb, less than
2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb,
less than 200 Mb, less than 150 Mb, less than 100 Mb, less
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than
5 Mb of a reference genome or a genome of the subject.
Accordingly, the classifier cfDNA of the invention can
correspond to any of the above-referenced portions of the
genome.

[0066] In various embodiments, the classifier gene(s) in
total constitute less than 2,999 Mb, less than 2,750 Mb, less
than 2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb,
less than 200 Mb, less than 150 Mb, less than 100 Mb, less
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than
5 Mb of a reference genome or a genome of the subject.
Accordingly, the classifier ¢cfDNA of the invention can
correspond to classifier gene(s) constituting any of the
above-referenced portions of the genome.

[0067] In various embodiments, the number of classifier
gene(s) is at least 1, at least 5, at least 25, at least 50, at least
75, at least 100, at least 125, at least 150, at least 175, at least
200, at least 250, at least 250, at least 275, at least 300, at
least 325, at least 350, at least 375, at least 400, at least 450,
at least 475, or at least 500. In various embodiments, the
number of classifier gene(s) is no more than 25,000, no more
than 20,000, no more than 15,000, no more than 10,000, no
more than 5,000, no more than 2,500, no more than 2,000,
no more than 1,750, no more than 1,500, no more than
1,250, or no more than 1,000.

[0068] In preferred embodiments, the classifier gene(s)
comprise, consist, or consist essentially of cancer genes.
Cancer genes are genes involved in the etiology, mainte-
nance, or progression of cancer. In some embodiments, the
cancer genes comprise or consist of genes in which one or
more mutations in those genes are associated with cancer,
such as in a statistically significant manner. Exemplary types
of cancer genes include oncogenes, tumor suppressor genes,
and DNA repair genes. A number of databases are available
that catalog cancer genes. The COSMIC (the Catalogue of
Somatic Mutations in Cancer) database (cancer.sanger.ac.
uk/cosmic), for example, is a database of somatically
acquired mutations found in human cancer (Tate J G, et al.
COSMIC: the catalogue of somatic mutations in cancer.
Nucleic Acids Res. 2019;47:D941-D947). The DisGeNET
(disgenet.org) database is a platform containing one of the
largest publicly available collections of genes and variants
associated with human diseases (Pifiero J, Saiich J, Sanz F,
Furlong L. I. The DisGeNET cytoscape app: Exploring and
visualizing disease genomics data. Comput Struct Biotech-
nol J. 2021 May 11;19:2960-2967) (Piflero J, Ramirez-
Anguita J M, Satich-Pitarch J, Ronzano F, Centeno E, Sanz
F, Furlong L. I. The DisGeNET knowledge platform for
disease genomics: 2019 update. Nucleic Acids Res. 2020 Jan
8;48(D1):D845-D855) (Pifiero J, Bravo A, Queralt-Rosin-
ach N, Gutiérrez-Sacristan A, Deu-Pons J, Centeno E,
Garcia-Garcia J, Sanz F, Furlong L 1. DisGeNET: a com-
prehensive platform integrating information on human dis-
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ease-associated genes and variants. Nucleic Acids Res. 2017
Jan 4;45(D1):D833-D839) (Pifiero J, Queralt-Rosinach N,
Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F,
Furlong L I. DisGeNET: a discovery platform for the
dynamical exploration of human diseases and their genes.
Database (Oxford). 2015 Apr. 15;2015:bav028). A large
number of other databases are available (Babbi G, Martelli
P L, Profiti G, Bovo S, Savojardo C, Casadio R. eDGAR: a
database of Disease-Gene Associations with annotated Rela-
tionships among genes. BMC Genomics. 2017 Aug. 11;18
(Suppl 5):554) (Grissa D, Junge A, Oprea T I, Jensen L J.
Diseases 2.0: a weekly updated database of disease-gene
associations from text mining and data integration. Database
(Oxford). 2022 Mar. 28;2022:baac019).

[0069] In some embodiments, the classifier gene(s) com-
prise, consist, or consist essentially of one, some, or all of
the genes in Gene Set 1. In some embodiments, the classifier
gene(s) comprise, consist, or consist essentially of one,
some, or all of the genes in Gene Set 2. In some embodi-
ments, the classifier gene(s) comprise, consist, or consist
essentially of one, some, or all of the genes in Gene Set 3.
In some embodiments, the classifier gene(s) comprise, con-
sist, or consist essentially of one, some, or all of the genes
in Gene Set 4. In various embodiments, the classifier gene(s)
comprise, consist, or consist essentially of at least 1, at least
5, at least 25, at least 50, at least 75, at least 100, at least 125,
at least 150, at least 175, at least 200, at least 250, at least
250, at least 275, at least 300, at least 325, at least 350, at
least 375, at least 400, at least 450, at least 475, or at least
500 of the genes in any of Gene Set 1, Gene Set 2, Gene Set
3, or Gene Set 4.

[0070] Gene Set 1 is ABL1, ABL2, ABRAXAS1, ACKR3,
ACSL3, ACSL6, ACVRI, ACVRIB, ACVR2A,
ADAMTS20, ADGRA2, ADGRB3, ADGRL3, AFDN,
AFF1, AFF3, AFF4, AKAP9, AKT1, AKT2, AKT3,
ALDH2, ALK, ALOX12B, AMER1, ANK1, ANKRDI1,
ANKRD26, APC, APOBEC3B, AR, ARAF, ARFRPI,
ARHGAP26, ARHGAPS, ARHGEF10, ARHGEF10L,
ARHGEF12, ARID1A, ARID1B, ARID2, ARIDSB, ARNT,
ASPSCR1, ASXL1, ASXL2, ATF1, ATIC, ATM, ATP1Al,
ATP2B3, ATR, ATRX, AURKA, AURKB, AURKC,
AXIN1, AXIN2, AXL, B2M, BAPI, BARDI, BAX,
BAZ1A, BBC3, BCL10, BCL11A, BCL11B, BCL2,
BCL2L1, BCI2L11, BCL2L12, BCL2L.2, BCL3, BCLS,
BCL7A, BCL9, BCLIL, BCLAF1, BCOR, BCORL1, BCR,
BIRC2, BIRC3, BIRCS, BIRC6, BLM, BLNK, BMPS5,
BMPRI1A, BRAF, BRCA1, BRCA2, BRD3, BRD4, BRIP1,
BTG1, BTG2, BTK, BUBIB, Cl5orf65, CACNAID,
CALR, CAMTA1, CANT1, CARDI1, CARS1, CASP3,
CASPS8, CASP9, CBFA2T3, CBFB, CBL, CBLB, CBLC,
CCDC6, CCN6, CCNB1IP1, CCNC, CCND1, CCND2,
CCND3, CCNE1, CCR4, CCR7, CD209, CD22, CD274,
CD276, CD28, CD70, CD74, CD79A, CD79B, CDC73,
CDH1, CDH10, CDH11, CDH17, CDH2, CDH20, CDHS5,
CDK12, CDK4, CDK6, CDKS8, CDKNIA, CDKNIB,
CDKN2A, CDKN2B, CDKN2C, CDX2, CEBPA, CENPA,
CEP43, CEP89, CHCHD7, CHD2, CHD4, CHEKI,
CHEK2, CHIC2, CHST11, CIC, CIITA, CILK1, CKSIB,
CLIP1, CLP1, CLTC, CLTCL1, CMPK1, CNBD1, CNBP,
CNOT3, CNTNAP2, CNTRL, COLIAl, COL2Al,
COL3Al, COP1, COX6C, CPEB3, CRBN, CREBI,
CREB3L1, CREB3L2, CREBBP, CRKL, CRLF2,
CRNKLI, CRTC1, CRTC3, CSFIR, CSF3R, CSMD3,
CSNK1Al, CTCF, CTLA4, CTNNAI, CTNNAZ2,
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CTNNBI, CTNND1, CTNND2, CUL3, CUL4A, CUXI,
CXCR4,CYLD, CYP17A1, CYP2C19, CYP2CS8, CYP2DG6,
CYSLTR2, DAXX, DCAFI1212, DCC, DCTNI,
DCUNID1, DDB2, DDIT3, DDRI, DDR2, DDXI0,
DDX3x, DDX41, DDX5, DDX6, DEK, DGCRS, DHX15,
DICER1, DIS3, DNAJB1, DNM2, DNMT1, DNMT3A,
DNMT3B, DOTIL, DPYD, DROSHA, DST, E2F3, EBF1,
ECT2L, EED, EGFL7, EGFR, EIF1AX, EIF3E, EIF4A2,
EIF4E, ELF3, ELF4, ELK4, ELL, ELN, ELOC, EML4,
EMSY, EP300, EP400, EPAS1, EPCAM, EPHA3, EPHAS,
EPHA7, EPHB1, EPHB4, EPHB6, EPS15, ERBB2,
ERBB3, ERBB4, ERCI, ERCCl, ERCC2, ERCC3,
ERCC4, ERCCS, ERG, ERRFI1, ESR1, ETNKI, ETSI,
ETV1, ETV4, ETVS, ETV6, EWSR1, EXT1, EXT2, EZH2,
EZR, FAM131B, FAM135B, FAM47C, FANCA, FANCC,
FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL,
FAS, FAT1, FAT3, FAT4, FBLN2, FBXOI11, FBXW7,
FCGR2B, FCRL4, FENI, FES, FEV, FGF1, FGF10,
FGF12, FGF14, FGF19, FGF2, FGF23, FGF3, FGF4,
FGF5, FGF6, FGF7, FGF8, FGF9, FGFRI, FGFR2,
FGFR3, FGFR4, FGR, FH, FHIT, FIP1L1, FKBP9, FLCN,
FLI1, FLNA, FLT1, FLT3, FLT4, FN1, FNBP1, FOXAL,
FOXL2, FOXOl, FOXO03, FOXO4, FOXP1, FOXP4,
FOXR1, FRS2, FSTL3, FUBP1, FUS, FYN, FZR1, G6PD,
GABRAG, GAS7, GATAl, GATA2, GATA3, GATA4,
GATA6, GDNE, GEN1, GFRA1, GID4, GLIl, GMPS,
GNAI11, GNA13, GNAQ, GNAS, GOLGAS, GOPC, GPC3,
GPC5, GPHN, GPS2, GREM1, GRIN2A, GRM3, GRMS,
GSK3B, GUCY1A2, H1-2, H2BC5, H3-3A, H3-3B, H3-4,
H3-5, H3C1, H3C10, H3C11, H3C12, H3C13, H3Cl4,
H3C15, H3C2, H3C3, H3C4, H3C6, H3C7, H3CS, H4C9,
HCAR1, HDAC1, HERPUDI, HEY1, HGE, HIF1A, HIP1,
HLA-A, HLA-B, HLA-C, HLF, HMGAI, HMGA?2,
HNF1A, HNRNPA2B1, HNRNPK, HOOK3, HOXAII,
HOXA13, HOXA9, HOXBI3, HOXC1l, HOXCI3,
HOXDI11, HOXDI13, HRAS, HSD3B1, HSPO0AAL,
HSP90ABI, ICOSLG, ID3, IDH1, IDH2, IFNGR1, IGF1,
IGFIR, IGF2, IKBKE, IKZF1, 1110, IL2, IL.21R, IL6ST,
IL7R, ING4, INHA, INHBA, INPP4A, INPP4B, INSR,
IRF2, IRF4, IRS1, IRS2, IRS4, ISX, ITGA10, ITGAO9,
ITGAV, ITGB2, ITGB3, ITK, JAK1, JAK2, JAK3, JAZF1,
JUN, KAT6A, KAT6B, KAT7, KCNJ5, KDM5A, KDMS5C,
KDMG6A, KDR, KDSR, KEAP1, KEL, KIAA1549, KIFSB,
KIT, KLF4, KLF6, KLHL6, KLK2, KMT2A, KMT2B,
KMT2C, KMT2D, KNL1, KNSTRN, KRAS, KTNI,
LAMP1, LARP4B, LASP1, LATS1, LATS2, LCK, LCPI,
LEF1, LEPROTL1, LHFPL6, LIFR, LMNA, LMOI,
LMO2, LPP, LRIG3, LRP1B, LSM14A, LTF, LTK, LYL1,
LYN, LZTR1, MACC1, MAF, MAFB, MAGEA1, MAGI1,
MAGI2, MALTI, MAML2, MAP2KI, MAP2K2,
MAP2K4, MAP2K7, MAP3KI1, MAP3K13, MAP3K14,
MAP3K4, MAP3K7, MAPK 1, MAPK3, MAPKS, MARKI,
MARK4, MAX, MB21D2, MBD1, MCL1, MDC1, MDM2,
MDM4, MECOM, MEDI12, MEF2B, MENI, MERTK,
MET, MGA, MGMT, MITF, MKNK1, MLF1, MLHI,
MLLT1, MLLT10, MLLT11, MLLT3, MLLT6, MMP2,
MNI1, MNX1, MPL, MRE11, MRTFA, MSH2, MSH3,
MSH6, MSI2, MSN, MSTI, MSTIR, MTAP, MTCP1,
MTOR, MTR, MTRR, MUC1, MUC16, MUC4, MUTYH,
MYB, MYBL1, MYC, MYCL, MYCN, MYDS88, MYHI1,
MYH9, MYO5A, MYOD1, N4BP2, NAB2, NACA, NBEA,
NBN, NCKIPSD, NCOAI, NCOA2, NCOA3, NCOA4,
NCOR1, NCOR2, NDRG1, NEGR1, NF1, NF2, NFATC2,
NFE2L2, NFIB, NFKB1, NFKB2, NFKBIA, NFKBIE,
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NIN, NKX2-1, NKX3-1, NLRPI, NONO, NOTCHI,
NOTCH2, NOTCH3, NOTCH4, NPM1, NR4A3, NRAS,
NRG1, NSD1, NSD2, NSD3, NT5C2, NTHL1, NTRKI,
NTRK2, NTRK3, NUMA1, NUP214, NUP93, NUP9S,
NUTM1, NUTM2A, NUTM2B, NUTM2D, OLIG2, OMD,
P2RYS, PABPCI, PAFAHIB2, PAKI, PAK3, PAKS,
PALB2, PARPI, PARP2, PARP3, PATZ1, PAX3, PAXS5,
PAX7, PAXS8, PBRMI, PBX1, PCBP1, PCM1, PDCDI,
PDCDILG2, PDE4DIP, PDGFB, PDGFRA, PDGFRB,
PDK1, PDPK1, PER1, PGAP3, PGR, PHF6, PHOX2B,
PICALM, PIK3C2B, PIK3C2G, PIK3C3, PIK3CA,
PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3,
PIM1, PKHDI1, PLAG1, PLCGl, PLCG2, PLEKHGS,
PLK2, PMAIPI, PML, PMS1, PMS2, PNRC1, POLDI,
POLE, POLG, POLQ, POT1, POU2AF1, POUSFI,
PPARG, PPFIBP1, PPM1D, PPP2R1A, PPP2R2A, PPP6C,
PRCC, PRDMI, PRDM16, PRDM2, PREX2, PRFI,
PRKACA, PRKACB, PRKARIA, PRKCB, PRKCI,
PRKDC, PRKN, PRPF40B, PRRX1, PRSSS, PSIPI,
PTCHI, PTEN, PTGS2, PTK6, PTPN11, PTPN13, PTPNG6,
PTPRB, PTPRC, PTPRD, PTPRK, PTPRO, PTPRS,
PTPRT, PWWP2A, QKI, RAB35, RABEPI, RACI,
RADI17, RAD21, RAD50, RAD51, RAD51B, RAD5I1C,
RADS51D, RAD52, RADS4L, RAF1, RALGDS, RANBP2,
RAPIGDSI, RARA, RASA1, RB1, RBM10, RBMI5,
RECQL4, REL, RELA, RET, RFWD3, RGPD3, RGS7,
RHEB, RHOA, RHOH, RICTOR, RIT1, RMI2, RNASEL,
RNF2, RNF213, RNF43, ROBO2, ROS1, RPL10, RPL22,
RPL5, RPNI, RPS6KA2, RPS6KA4, RPS6KBI,
RPS6KB2, RPTOR, RRMI, RSPO2, RSPO3, RUNXI,
RUNXIT1, RYBP, SI00A7, SALL4, SAMD9, SBDS,
SDC4, SDHA, SDHAF2, SDHB, SDHC, SDHD, SEPTINS,
SEPTING, SEPTINO, SET, SETBP1, SETDIB, SETD2,
SETDBI, SF3B1, SFPQ, SFRP4, SGK1, SH2B3, SH2DIA,
SH3GL1, SHQI, SHTNI, SIRPA, SIX1, SIX2, SKI,
SLC34A2, SLC45A3, SLIT2, SLX4, SMAD2, SMAD3,
SMAD4, SMARCA4, SMARCBI, SMARCDI,
SMARCEL, SMCIA, SMC3, SMO, SMUG1, SNCAIP,
SNDI1, SNX29, SOCS1, SOX10, SOX11, SOX17, SOX2,
SOX21, SOX9, SPECCI, SPEN, SPOP, SPTAI, SRC,
SRGAP3, SRSF2, SRSF3, SS18, SS18L1, SSX1, SSX2,
SSX4, STAG1, STAG2, STAT3, STAT4, STATSA,
STAT5B, STAT6, STIL, STK11, STK36, STK40, STRN,
SUFU, SUZ12, SYK, SYNEL TAF1, TAF15, TAFIL, TAL,
TAL2, TBLIXR1, TBX22, TBX3, TCEA1, TCF12, TCF3,
TCF7L1, TCF7L2, TCL1A, TEC, TEK, TENTSC, TERC,
TERT, TET1, TET2, TFE3, TFEB, TFG, TFPT, TFRC,
TGFBR1, TGFBR2, TGM7, THBS1, THRAP3, TIMP3,
TIPARP, TLR4, TLX1, TLX3, TMEM127, TMPRSS2,
TNC, TNFAIP3, TNFRSF14, TNFRSF17, TNK2, TOPI,
TOP2A, TP53, TP63, TPM3, TPM4, TPR, TRAF2, TRAF?7,
TRIM24, TRIM27TRIM33, TRIP11, TRRAP, TSCI, TSC2,
TSHR, TYRO3, U2AF1, UBRS, UGT1A1, USP44, USP6,
USP8, USP9%, VAVI, VEGFA, VHL, VTCNI1, VTIIA,
WAS, WDCP, WIF1, WNK2, WRN, WT1, WWTR1, XIAP,
XPA, XPC, XPOl, XRCC2, YAPI, YES1, YWHAE,
7ZBTB16, ZBTB2, ZBTB7A, ZCCHCS, ZEB1, ZFHX3,
ZMYM2, ZMYM3, ZNF217, ZNF331, ZNF384, ZNF429,
ZNF479, ZNF521, ZNF703, ZNRF3, and ZRSR2.

[0071] Gene Set 2 is: ACKR3, ACSL3, ACSLG,
ACVR2A, ADAMTS20, ADGRB3, ADGRL3, AFDN,
AFF1, AFF3, AFF4, AKAP9, ALDH2, ANK1, APOBEC3B,
ARHGAP26, ARHGAPS, ARHGEF10, ARHGEF10L,
ARHGEF12, ARNT, ASPSCR1, ATF1, ATIC, ATP1Al,
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ATP2B3, AURKC, BAX, BAZIA, BCL11A, BCL11B,
BCL2L12, BCL3, BCL7A, BCLY9, BCLIL, BCLAFI,
BIRC2, BIRCS, BIRC6, BLNK, BMP5, BRD3, BUBIB,
Cl150rf65, CACNAID, CAMTAl, CANTI, CARSI,
CASP3, CASP9, CBFA2T3, CBLB, CBLC, CCDCS6,
CCNB1IP1, CCNC, CCR4, CCR7, CD209, CD28, CDH10,
CDHI11, CDH17, CDH2, CDH20, CDHS, CDX2, CEP43,
CEP89, CHCHD7, CHIC2, CHSTI1, CIITA, CILKI,
CKSI1B, CLIP1, CLP1, CLTC, CLTCL1, CMPK1, CNBDI,
CNBP, CNOT3, CNTNAP2, CNTRL, COL1A1, COL2AL,
COL3A1, COX6C, CPEB3, CRBN, CREB1, CREB3LI,
CREB3L2, CRNKL1, CRTC1, CRTC3, CSMD3, CTNNAZ2,
CTNND1, CTNND2, CYP2C19, CYP2C8, CYP2D6, CYS-
LTR2, DCAF12L2, DCC, DCTN1, DDB2, DDIT3, DDX10,
DDX3x, DDX5, DDX6, DEK, DGCRS, DNM2, DROSHA,
DST, EBF1, ECT2L, EIF3E, ELF3, ELF4, ELK4, ELL,
ELN, EP400, EPAS1, EPHB6, EPS15, ERC1, ETNKI,
EXT1, EXT2, EZR, FAMI31B, FAMI35B, FAMA47C,
FAT3, FAT4, FBLN2, FBXO11, FCGR2B, FCRL4, FENT,
FES, FEV, FGR, FHIT, FIP1L1, FKBP9, FLNA, FNI1,
FNBP1, FOX03, FOX04, FOXP4, FOXR1, FSTL3, FUS,
FZR1, G6PD, GAS7, GDNF, GFRA1, GMPS, GOLGAS,
GOPC, GPC3, GPC5, GPHN, GRMS, GUCY1A2, H4C9,
HCAR1, HERPUDI1, HEY1, HIF1A, HIP1, HLF, HMGAL,
HMGA?2, HNRNPA2B1, HOOK3, HOXA11, HOXA13,
HOXA9, HOXC11, HOXC13, HOXDI11, HOXDI3,
HSP90ABL, IL.2, IL21R, IL6ST, ING4, IRS4, ISX, ITGA10,
ITGA9, ITGAV, ITGB2, ITGB3, ITK, JAZF1, KATGB,
KAT7, KCNJ5, KDSR, KIAA1549, KLF6, KLK2, KNLI,
KNSTRN, KTN1, LARP4B, LASP1, LCK, LCP1, LEF1,
LEPROTL1, LHFPL6, LIFR, LMNA, LMO2, LPP, LRIG3,
LSM14A, LTF, LYL1, MACCI, MAFB, MAGEALI,
MAGI1, MAML2, MAP2K7, MAP3K7, MAPKS, MARKI,
MARK4, MB21D2, MBD1, MECOM, MGMT, MLF1,
MLLT1, MLLT10, MLLT1l, MLLT6, MMP2, MNI,
MNX1, MRTFA, MSI2, MSN, MTCP1, MTR, MTRR,
MUC1, MUC16, MUC4, MYBL1, MYH11, MYHO9,
MYOSA, N4BP2, NACA, NBEA, NCKIPSD, NCOAL,
NCOA2, NCOA4, NCOR2, NDRG1, NFATC2, NFIB,
NFKB1, NFKB2, NFKBIE, NIN, NLRP1, NONO, NR4A3,
NTHL1, NUMA1, NUP214, NUP98, NUTM2A, NUTM2B,
NUTM2D, OLIG2, OMD, PABPC1, PAFAHIB2, PATZ1,
PBX1, PCBP1, PCM1, PDE4DIP, PDGFB, PER1, PGAP3,
PICALM, PKHDI, PLAG1, PLCG1, PLEKHG5, PML,
POLG, POLQ, POT1, POU2AF1, POUSF1, PPFIBPI,
PRCC, PRDM16, PRDM2, PRF1, PRKACA, PRKACB,
PRKCB, PRPF40B, PRRX1, PSIPI, PTGS2, PTKS,
PTPN13, PTPN6, PTPRB, PTPRC, PTPRK, PWWP2A,
RABEP1, RADI7, RALGDS, RAPIGDSI, RBMIS5,
RELA, RFWD3, RGPD3, RGS7, RHOH, RMI2, RNASEL,
RNF2, RNF213, ROBO2, RPL10, RPL22, RPL5, RPNI,
RPS6KA2, RRM1, RSPO2, RSPO3, S100A7, SALL4,
SAMD9, SBDS, SDC4, SEPTINS, SEPTING, SEPTINO,
SET, SETD1B, SETDBI1, SFPQ, SFRP4, SH3GL1, SHTNI,
SIRPA, SIX1, SIX2, SKI, SLC34A2, SLC45A3,
SMARCE1, SMUGI, SNDI, SNX29, SOX11, SOX21,
SPECC1, SRGAP3, SRSF3, SS18, SS18L1, SSX1, SSX2,
SSX4, STAT6, STIL, STK36, STRN, SYNE1, TAF15,
TAFIL, TAL1, TAL2, TBLIXR1, TBX22, TCEA1, TCF12,
TCF7L1, TCL1A, TEC, TFEB, TFG, TFPT, TGM7,
THBS1, THRAP3, TIMP3, TLR4, TLX1, TLX3, TNC,
TNFRSF17, TNK2, TPM3, TPM4, TPR, TRIM24,
TRIM27, TRIM33, TRIP11, TRRAP, UBRS, USP44, USP6,
USP8, USP9x, VAVI, VTI1A, WAS, WDCP, WIF1, WNK2,
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WRN, WWTR1, XPA, XPC, YWHAE, ZBTB16, ZCCHCS,
ZEBIL, ZMYM2, ZMYM3, ZNF331, ZNF384, ZNF429,
ZNF479, ZNF521, and ZNRF3.

[0072] Gene Set 3 is: ABL1, ABL2, ACKR3, ACSL3,
ACSL6, ACVR1, ACVR2A, ADAMTS20, ADGRA2,
ADGRB3, ADGRL3, AFDN, AFF1, AFF3, AFF4, AKAP9,
AKTI, AKT2, AKT3, ALDH2, ALK, AMERI, ANKI,
APC, APOBEC3B, AR, ARAF, ARHGAP26, ARHGAPS,
ARHGEF10, ARHGEF10L, ARHGEF12, ARIDIA,
ARIDIB, ARID2, ARNT, ASPSCR1, ASXL1, ASXL2,
ATF1, ATIC, ATM, ATP1Al, ATP2B3, ATR, ATRX,
AURKA, AURKB, AURKC, AXIN1, AXIN2, AXL, B2M,
BAPI, BARDI, BAX, BAZ1A, BCL10, BCL11A, BCL11B,
BCL2, BCL2L1, BCL2L12, BCL2L2, BCL3, BCLS6,
BCL7A, BCL9, BCLIL, BCLAF1, BCOR, BCORL1, BCR,
BIRC2, BIRC3, BIRCS, BIRC6, BLM, BLNK, BMPS5,
BMPRI1A, BRAF, BRCA1, BRCA2, BRD3, BRD4, BRIPI,
BTG1, BTK, BUBIB, Cl5orf65, CACNAID, CALR,
CAMTA1, CANTI, CARDIL, CARS1, CASP3, CASPS,
CASP9, CBFA2T3, CBFB, CBL, CBLB, CBLC, CCDCS6,
CCNB1IP1, CCNC, CCND1, CCND2, CCND3, CCNEL,
CCR4, CCR7, CD209, CD274, CD28, CD74, CD79A,
CD79B, CDC73, CDHI1, CDH10, CDH11, CDH17, CDH?2,
CDH20, CDHS, CDK 12, CDK4, CDK6, CDK8, CDKNT1A,
CDKNIB, CDKN2A, CDKN2B, CDKN2C, CDX2,
CEBPA, CEP43, CEP89, CHCHD7, CHD2, CHD4,
CHEK1, CHEK?2, CHIC2, CHST11, CIC, CIITA, CILKI,
CKS1B, CLIP1, CLPI, CLTC, CLTCL1, CMPK1, CNBDI,
CNBP, CNOT3, CNTNAP2, CNTRL, COL1A1, COL2AL,
COL3Al, COX6C, CPEB3, CRBN, CREB1, CREB3L1,
CREB3L2, CREBBP, CRKL, CRLF2, CRNKL1, CRTC],
CRTC3, CSFIR, CSF3R, CSMD3, CTCF, CTNNAL,
CTNNA2, CTNNB1, CTNND1, CTNND2, CUL3, CUXI,
CXCR4, CYLD, CYP2C19, CYP2C8, CYP2D6, CYS-
LTR2, DAXX, DCAF12L2, DCC, DCTN1, DDB2, DDIT3,
DDR2, DDX10, DDX3x, DDX5, DDX6, DEK, DGCRS,
DICER1, DNAJB1, DNM2, DNMT3A, DPYD, DROSHA,
DST, EBF1, ECT2L, EED, EGFR, EIFIAX, EIF3E,
EIF4A2, ELF3, ELF4, ELK4, ELL, ELN, EML4, EP300,
EP400, EPAS1, EPHA3, EPHA7, EPHB1, EPHB4, EPHB6,
EPS15, ERBB2, ERBB3, ERBB4, ERC1, ERCC1, ERCC2,
ERCC3, ERCC4, ERCCS, ERG, ESR1, ETNKI, ETSI,
ETV1, ETV4, ETVS, ETV6, EWSR1, EXT1, EXT2, EZH2,
EZR, FAM131B, FAM135B, FAM47C, FANCA, FANCC,
FANCD?2, FANCE, FANCF, FANCG, FAS, FAT1, FAT3,
FAT4, FBLN2, FBXOll, FBXW7, FCGR2B, FCRL4,
FENI1, FES, FEV, FGFR1, FGFR2, FGFR3, FGFR4, FGR,
FH, FHIT, FIP1L1, FKBP9, FLCN, FLI1, FLNA, FLT1,
FLT3, FLT4, FN1, FNBP1, FOXAl, FOXL2, FOXOI,
FOXO03, FOXO4, FOXPI, FOXP4, FOXRI, FSTL3,
FUBPL, FUS, FZRI, G6PD, GAS7, GATAl, GATA2,
GATA3, GDNF, GFRAIL, GLI1, GMPS, GNA1l, GNAQ,
GNAS, GOLGAS, GOPC, GPC3, GPC5, GPHN, GRIN2A,
GRM3, GRMS, GUCY1A2, H3-3A, H3-3B, H3C2, H4C9,
HCARI1, HERPUDI, HEY1, HIF1A, HIP1, HLA-A, HLF,
HMGA1, HMGA2, HNF1A, HNRNPA2BI, HOOK3,
HOXAll, HOXAI13, HOXA9, HOXCI, HOXCI3,
HOXDI11, HOXD13, HRAS, HSP90AA1, HSP90AB1, ID3,
IDH1, IDH2, IGFIR, IKZF1, 112, IL21R, IL6ST, IL7R,
ING4, IRF4, IRS2, IRS4, ISX, ITGA10, ITGA9, ITGAV,
ITGB2, ITGB3, ITK, JAKI, JAK?2, JAK3, JAZF1, JUN,
KATGA, KATG6B, KAT7, KCNJ5, KDMS5A, KDMSC,
KDMG6A, KDR, KDSR, KEAP1, KIAA1549, KIF5B, KIT,
KLF4, KLF6, KLK2, KMT2A, KMT2C, KMT2D, KNL1,
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KNSTRN, KRAS, KTN1, LAMPI, LARP4B, LASPI,
LATS1, LATS2, LCK, LCP1, LEF1, LEPROTL1, LHFPLS6,
LIFR, LMNA, LMOIl, LMO2, LPP, LRIG3, LRPIB,
LSMI14A, LTF, LTK, LYL1, LZTRI, MACCI, MAF,
MAFB, MAGEA1, MAGI1, MALT1, MAML2, MAP2K1,
MAP2K2, MAP2K4, MAP2K7, MAP3K1, MAP3K13,
MAP3K7, MAPK1, MAPKS, MARK1, MARK4, MAX,
MB21D2, MBD1, MCL1, MDM2, MDM4, MECOM,
MED12, MEN1, MET, MGMT, MITF, MLF1, MLHI,
MLLT1, MLLT10, MLLT11, MLLT3, MLLT6, MMP2,
MNI1, MNX1, MPL, MRE11, MRTFA, MSH2, MSHS6,
MSI2, MSN, MTCP1, MTOR, MTR, MTRR, MUCI,
MUC16, MUC4, MUTYH, MYB, MYBL1, MYC, MYCL,
MYCN, MYD88, MYH11, MYH9, MYOSA, MYODI,
N4BP2, NAB2, NACA, NBEA, NBN, NCKIPSD, NCOALI,
NCOA2, NCOA4, NCOR1, NCOR2, NDRG1, NF1, NF2,
NFATC2, NFE2L2, NFIB, NFKB1, NFKB2, NFKBIE,
NIN, NKX2-1, NLRP1, NONO, NOTCHI, NOTCH2,
NOTCH4, NPMI, NR4A3, NRAS, NRG1, NSD1, NSD2,
NSD3, NT5C2, NTHLI, NTRKI, NTRK2, NTRK3,
NUMAI, NUP214, NUP98, NUTMI, NUTM2A,
NUTM2B, NUTM2D, OLIG2, OMD, P2RYS, PABPCI,
PAFAHIB2, PAK3, PALB2, PARP1, PATZ1, PAX3, PAXS5,
PAX7, PAX8, PBRMI, PBXI, PCBPl, PCMI,
PDCDILG2, PDE4DIP, PDGFB, PDGFRA, PDGFRB,
PER1, PGAP3, PHF6, PHOX2B, PICALM, PIK3C2B,
PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2,
PIM1, PKHDI, PLAG1, PLCG1, PLEKHGS5, PML, PMS,
PMS2, POLDI, POLE, POLG, POLQ, POT1, POU2AFI,
POUSF1, PPARG, PPFIBP1, PPM1D, PPP2R1A, PPP6C,
PRCC, PRDMI, PRDMI16, PRDM2, PREX2, PRFI,
PRKACA, PRKACB, PRKARIA, PRKCB, PRKDC,
PRPF40B, PRRX1, PSIP1, PTCHI, PTEN, PTGS2, PTKS,
PTPN11, PTPN13, PTPN6, PTPRB, PTPRC, PTPRD,
PTPRK, PTPRT, PWWP2A, QKI, RABEPI, RACI,
RAD17, RAD21, RAD50, RAD51B, RAF1, RALGDS,
RANBP2, RAPIGDS1, RARA, RB1, RBM10, RBM15,
RECQL4, REL, RELA, RET, RFWD3, RGPD3, RGS7,
RHOA, RHOH, RIT1, RMI2, RNASEL, RNF2, RNF213,
RNF43, ROBO2, ROSI1, RPL10, RPL22, RPLS5, RPNI,
RPS6KA2, RRM1, RSPO2, RSPO3, RUNX1, RUNXITI,
S100A7, SALL4, SAMDY, SBDS, SDC4, SDHA,
SDHAF2, SDHB, SDHC, SDHD, SEPTINS, SEPTING,
SEPTIN9, SET, SETBP1, SETDIB, SETD2, SETDBI,
SF3B1, SFPQ, SFRP4, SGK1, SH2B3, SH2D1A, SH3GL1,
SHTN1, SIRPA, SIX1, SIX2, SK1, SLC34A2, SLCA45A3,
SMAD2, SMAD3, SMAD4, SMARCA4, SMARCBI,
SMARCDI1, SMARCEL, SMCI1A, SMO, SMUG1, SNDI,
SNX29, SOCS1, SOX11, SOX2, SOX21, SPECC1, SPEN,
SPOP, SRC, SRGAP3, SRSF2, SRSF3, SS18, SSIS8LI,
SSX1, SSX2, SSX4, STAG1, STAG2, STAT3, STATSB,
STAT6, STIL, STK11, STK36, STRN, SUFU, SUZ12,
SYK, SYNEL TAFl, TAF15, TAFIL, TALl, TAL2,
TBLIXR1, TBX22, TBX3, TCEAl, TCF12, TCF3,
TCF7L1, TCF7L2, TCL1A, TEC, TENTSC, TERT, TET1,
TET2, TFE3, TFEB, TFG, TFPT, TFRC, TGFBR2, TGM7,
THBSI, THRAP3, TIMP3, TLR4, TLX1, TLX3,
TMEM127, TMPRSS2, TNC, TNFAIP3, TNFRSF14,
TNFRSF17, TNK2, TOP1, TP53, TP63, TPM3, TPM4,
TPR, TRAF7, TRIM24, TRIM27, TRIM33, TRIPII,
TRRAP, TSC1, TSC2, TSHR, U2AF1, UBRS, UGT1AL,
USP44, USP6, USPS, USP9x, VAVL, VHL, VTI1A, WAS,
WDCP, WIF1, WNK2, WRN, WT1, WWTR1, XPA, XPC,
XPO1, XRCC2, YWHAE, ZBTB16, ZCCHCS, ZEBI,
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7ZFHX3, ZMYM2, ZMYM3, ZNF331, ZNF384, ZNF429,
ZNF479, ZNF521, ZNRF3, and ZRSR2.

[0073] Gene Set 4 is: ABLI, ABL2, ABRAXASI,
ACVRI, ACVR1B, ADGRA2, AKT1, AKT2, AKT3, ALK,
ALOX12B, AMERI, ANKRDI11, APC, AR, ARAF,
ARFRP1, ARID1A, ARIDIB, ARID2, ARID5B, ASXL1,
ASXL2, ATM, ATR, ATRX, AURKA, AURKB, AXINI,
AXIN2, AXL, B2M, BAPI, BARDI, BBC3, BCL10,
BCL2, BCL2L1, BCL2L11, BCL2L2, BCL6, BCOR,
BCORL1, BCR, BIRC3, BLM, BMPR1A, BRAF, BRCAL,
BRCA2, BRD4, BRIP1, BTG1, BTK, CALR, CARDI],
CASPS, CBFB, CBL, CCN6, CCND1, CCND2, CCND3,
CCNEL CD274, CD276, CD74, CD79A, CD79B, CDC73,
CDHI, CDKI12, CDK4, CDK6, CDK8, CDKNIA,
CDKNIB, CDKN2A, CDKN2B, CDKN2C, CEBPA,
CENPA, CHD2, CHD4, CHEK1, CHEK2, CIC, COPI,
CREBBP, CRKL, CRLF2, CSFIR, CSF3R, CTCF, CTLA4,
CTNNA1, CTNNBI, CUL3, CXCR4, CYLD, DAXX,
DCUNIDI1, DDR2, DICERI, DIS3, DNAJB1, DNMTI,
DNMT3A, DNMT3B, DOTIL, E2F3, EED, EGFL7,
EGFR, EIF1AX, EIF4A2, EIF4E, ELOC, EML4, EMSY,
EP300, EPCAM, EPHA3, EPHAS, EPHA7, EPHBI
ERBB2, ERBB3, ERBB4, ERCCI, ERCC2, ERCC3,
ERCC4, ERCCS, ERG, ERRFII, ESR1, ETS1, ETVI,
ETV4, ETVS, ETV6, EWSR1, EZH2, FANCA, FANCC,
FANCD2, FANCE, FANCF, FANCG, FANC1, FANCL,
FAS, FAT1, FBXW7, FGF1, FGF10, FGF14, FGF19, FGF2,
FGF23, FGF3, FGF4, FGFS, FGF6, FGF7, FGFS, FGF9,
FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLI1, FLT1,
FLT3, FLT4, FOXAl, FOXL2, FOXO1, FOXP1, FRS2,
FUBP1, FYN, GABRAG, GATAl, GATA2, GATA3,
GATA4, GATA6, GEN1, GID4, GLI1, GNA1l, GNA13,
GNAQ, GNAS, GPS2, GREMI, GRIN2A, GRM3, GSK3B,
H1-2, H2BCS, H3-3A, H3-3B, H3-4, H3-5, H3C1, H3C10,
H3C11, H3C12, H3C13, H3C14, H3C2, H3C3, H3C4,
H3C6, H3C7, H3C8, HGF, HLA-A, HNF1A, HOXB13,
HRAS, HSD3B1, HSP90AA1, ICOSLG, ID3, IDH1, IDH2,
IFNGRI1, IGF1, IGFIR, IGF2, IKBKE, IKZF1, IL10, L 7R,
INHA, INHBA, INPP4A, INPP4B, INSR, IRF2, IRF4,
IRS1, IRS2, JAK1, JAK2, JAK3, JUN, KAT6A, KDM5A,
KDMS5C, KDM6A, KDR, KEAP1, KEL, KIF5B, KIT,
KLF4, KLHL6, KMT2A, KMT2B, KMT2C, KMT2D,
KRAS, LAMPI, LATS1, LATS2, LMOIL, LRPIB, LYN,
LZTR1, MAGI2, MALT1, MAP2K 1, MAP2K2, MAP2K4,
MAP3K1, MAP3K13, MAP3K14, MAP3K4, MAPKI,
MAPK3, MAX, MCL1, MDC1, MDM2, MDM4, MED12,
MEF2B, MEN1, MET, MGA, MITF, MLH1, MLLT3, MPL,
MRE11, MSH2, MSH3, MSH6, MST1, MSTIR, MTOR,
MUTYH, MYB, MYC, MYCL, MYCN, MYDS88, MYODI,
NAB2, NBN, NCOA3, NCORI, NEGRI, NFI, NF2,
NFE2L2, NFKBIA, NKX2-1, NKX3-1, NOTCHI,
NOTCH2, NOTCH3, NOTCH4, NPMI, NRAS, NRGI,
NSD1, NTRK1, NTRK2, NTRK3, NUP93, NUTM1, PAK1,
PAK3, PAKS, PALB2, PARP1, PAX3, PAXS5, PAX7, PAXS,
PBRMI, PDCDI, PDCDILG2, PDGFRA, PDGFRB,
PDK1, PDPK1, PGR, PHOX2B, PIK3C2B, PIK3C2G,
PIK3C3, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1,
PIK3R2, PIK3R3, PIM1, PLCG2, PLK2, PMAIP1, PMS],
PMS2, PNRCI, POLDI, POLE, PPARG, PPMID,
PPP2R1A, PPP2R2A, PPP6C, PRDMI, PREX2,
PRKARIA, PRKCI, PRKDC, PRKN, PRSSS, PTCHI,
PTEN, PTPN11, PTPRD, PTPRS, PTPRT, QK1, RAB3S,
RAC1, RAD21, RAD50, RAD51, RAD51B, RAD5IC,
RADS1D, RAD52, RADS4L, RAF1, RANBP2, RARA,
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RASAI, RB1, RBM10, RECQL4, REL, RET, RHEB,
RHOA, RICTOR, RIT1, RNF43, ROSI1, RPS6KA4,
RPS6KB1, RPS6KB2, RPTOR, RUNXI1, RUNXITI,
RYBP, SDHA, SDHAF2, SDHB, SDHC, SDHD, SETD2,
SF3B1, SH2B3, SH2D1A, SHQ1, SLIT2, SLX4, SMAD2,
SMAD3, SMAD4, SMARCA4, SMARCBI1, SMARCDI,
SMO, SNCAIP, SOCS1, SOX10, SOX17, SOX2, SOX9,
SPEN, SPOP, SPTA1l, SRC, SRSF2, STAG2, STAT3,
STAT4, STAT5A, STATSB, STK11, STK40, SUFU, SUZ12,
SYK, TAF1, TBX3, TCF3, TCF7L2, TENTSC, TERC,
TERT, TET1, TET2, TFE3, TFRC, TGFBR1, TGFBR2,
TMEM127, TMPRSS2, TNFAIP3, TNFRSF14, TOPI,
TOP2A, TP53, TP63, TRAF2, TRAF7, TSCI1, TSC2,
TSHR, U2AF1, VEGFA, VHL, VICNI1, WT1, XIAP,
XPO1, XRCC2, YAPI1, YES1, ZBTB2, ZFHX3, ZNF217,
ZNF703, and ZRSR2.

[0074] The classifier gene(s) in some embodiments com-
prise one or more genes tested in commercially available
gene panel assays, such as, for example, the GUAR-
DANT360® CDx assay from Guardant Health (Palo Alto,
CA), the Spotlight 59 oncology panel from Fluxion Biosci-
ences (Alameda, CA), the UltraSEEK lung cancer panel
from Agena Bioscience (San Diego, CA), the Foundation-
ACT liquid biopsy assay from Foundation Medicine (Bev-
erlyy, MA), the PlasmaSELECT assay from Personal
Genome Diagnostics (Baltimore, MD), the TruSight Oncol-
ogy 500 ctDNA assay from Illumina (San Diego, CA), the
FOUNDATION ONE® Liquid CDx assay from Foundation
Medicine, the Galleri assay from GRAIL (Menlo Park, CA),
and the Tempus xT and xF tests from Tempus (Chicago IL).
These panels can be used for other steps described herein,
including select steps in isolation and sequencing.

[0075] Some embodiments of the invention comprise
steps of isolating and/or sequencing the classifier cfDNA.
The steps of isolating and/or sequencing the cfDNA can
comprise isolating and/or sequencing at least the classifier
cfDNA but may also comprise isolating and/or sequencing at
least some non-classifier cfDNA.

[0076] The methods of isolating the classifier cfDNA can
comprise isolating cfDNA corresponding to one or more
target regions of the genome. The target regions preferably
comprise at least the classifier regions but may also com-
prise non-classifier regions. Target regions are distinguished
from non-target regions, the latter of which are regions that
are not target regions. The isolating can comprise using
capture nucleic acid probes having hybridization sequences
corresponding to the target regions to hybridize to cfDNA
from a subject. The hybridized constructs can then be
isolated from non-hybridized cfDNA and other elements to
thereby “fish out” or “pull down” the desired cfDNA.
Methods of isolating targeted cfDNA is known in the art.
See, e.g., US 2019/0287645 A1, US 2022/0259647 A1, and
US 2022/0090207 Al, which are incorporated herein by
reference in their entireties.

[0077] The isolated cfDNA can then be sequenced. The
sequencing can be performed using a first-generation
sequencing method, such as Maxam-Gilbert or Sanger
sequencing, or a high-throughput sequencing (e.g., next-
generation sequencing or NGS) method. A high-throughput
sequencing method may sequence simultaneously (or sub-
stantially simultaneously) at least 10,000, 100,000, 1 mil-
lion, 10 million, 100 million, 1 billion, or more polynucle-
otide molecules. Sequencing methods may include, but are
not limited to: pyrosequencing, sequencing-by-synthesis,
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single-molecule sequencing, nanopore sequencing, semi-
conductor sequencing, sequencing-by-ligation, sequencing-
by-hybridization, Digital Gene Expression (Helicos), mas-
sively parallel sequencing, e.g., Helicos, Clonal Single
Molecule Array (Solexa/Illumina), sequencing using
PacBio, SOLID, Ion Torrent, or Nanopore platforms.

[0078] The target regions can comprise genic regions of
the genome, intergenic regions of the genome, or a combi-
nation thereof. In some embodiments, the target regions
comprise genes or specific parts thereof (e.g, exons, introns,
promoters, coding regions, untranslated regions (5' untrans-
lated region, 3' untranslated region, etc.)). A gene compris-
ing at least one base of a target region is referred to herein
as a “target gene.” The target genes preferably comprise at
least the classifier gene(s) but may also comprise one or
more non-classifier gene(s). Target genes are distinguished
from non-target genes, the latter of which are genes that are
not target genes. In some embodiments, the target regions
comprise exons. Exons comprising at least one base of a
target region are referred to herein as “target exons.” Target
exons are distinguished from non-target exons, the latter of
which are exons that are not target exons. In some embodi-
ments, the target exons comprise particular exons, such as
first exons.

[0079] In some embodiments, the target regions comprise
at least a portion of at least one exon of at least one target
gene. In some embodiments, the target regions comprise at
least a portion of the coding sequence of at least one exon
of at least one target gene. In some embodiments, the target
regions comprise at least a portion of the first exon of at least
one target gene. In some embodiments, the target regions
comprise at least a portion of the coding sequence of the first
exon of at least one target gene. In some embodiments, the
target regions comprise the entirety of at least one exon of
at least one target gene. In some embodiments, the target
regions comprise the entirety of the coding sequence of at
least one exon of at least one target gene. In some embodi-
ments, the target regions comprise the entirety of the first
exon of at least one target gene. In some embodiments, the
target regions comprise the entirety of the coding sequence
of the first exon of at least one target gene. In some
embodiments, the target regions comprise the entirety of at
least one exon of each target gene. In some embodiments,
the target regions comprise the entirety of the coding
sequence of at least one exon of each target gene. In some
embodiments, the target regions comprise, consist, or con-
sist essentially of the entirety of the first exon of each target
gene. In some embodiments, the target regions comprise,
consist, or consist essentially of the entirety of the coding
sequence of the first exon of each target gene. Accordingly,
the target cfDNA of the invention can correspond to any of
the above-described target regions.

[0080] Insome embodiments, the non-target regions com-
prise intergenic regions of the genome. In some embodi-
ments, the non-target regions comprise at least one intron in
a genome. In some embodiments, the non-target regions
comprise all introns in a genome. In some embodiments, the
non-target regions comprise at least one intron of at least one
target gene. In some embodiments, the non-target regions
comprise at least one intron of each target gene. In some
embodiments, the non-target regions comprise each intron
of each target gene. In some embodiments, the non-target
regions comprise at least one exon in at least one target gene.
In some embodiments, the non-target regions comprise at
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least one exon in each target gene. In some embodiments,
the non-target regions comprise at least one exon other than
the first exon in at least one target gene. In some embodi-
ments, the non-target regions comprise at least one exon
other than the first exon in each target gene. In some
embodiments, the non-target regions comprise each exon
other than the first exon in at least one target gene. In some
embodiments, the non-target regions comprise each exon
other than the first exon in each target gene. Accordingly, the
isolated and/or sequenced cfDNA of the invention can
exclude cfDNA corresponding to any of the above-described
non-target regions.

[0081] In various embodiments, the target regions consti-
tute less than 2,999 Mb, less than 2,750 Mb, less than 2,500
Mb, less than 2,250 Mb, less than 2,000 Mb, than 1,750 Mb,
less than 1,500 Mb, less than 1,250 Mb, less than 1,000 Mb,
than 750 Mb, less than 500 Mb, less than 250 Mb, less than
200 Mb, less than 150 Mb, less than 100 Mb, less than 50
Mb, less than 25 Mb, less than 10 Mb, or less than 5 Mb of
a reference genome or a genome of the subject. Accordingly,
the isolated and/or sequenced cfDNA of the invention can
correspond to any of the above-referenced portions of the
genome.

[0082] In various embodiments, the target genes in total
constitute less than 2,999 Mb, less than 2,750 Mb, less than
2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb,
less than 200 Mb, less than 150 Mb, less than 100 Mb, less
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than
5 Mb of a reference genome or a genome of the subject.
Accordingly, the isolated and/or sequenced cfDNA of the
invention can correspond to target genes constituting any of
the above-referenced portions of the genome.

[0083] In various embodiments, the number of target
genes is at least 1, at least 5, at least 25, at least 50, at least
75, at least 100, at least 125, at least 150, at least 175, at least
200, at least 250, at least 250, at least 275, at least 300, at
least 325, at least 350, at least 375, at least 400, at least 450,
at least 475, or at least 500. In various embodiments, the
number of target genes is no more than 25,000, no more than
20,000, no more than 15,000, no more than 10,000, no more
than 5,000, no more than 2,500, no more than 2,000, no
more than 1,750, no more than 1,500, no more than 1,250,
or no more than 1,000.

[0084] In preferred embodiments, the target genes com-
prise, consist, or consist essentially of cancer genes. In some
embodiments, the target genes comprise, consist, or consist
essentially of one, some, or all of the genes in Gene Set 1.
In some embodiments, the target genes comprise, consist, or
consist essentially of one, some, or all of the genes in Gene
Set 2. In some embodiments, the target genes comprise,
consist, or consist essentially of one, some, or all of the
genes in Gene Set 3. In some embodiments, the target genes
comprise, consist, or consist essentially of one, some, or all
of the genes in Gene Set 4. In various embodiments, the
target genes comprise, consist, or consist essentially of at
least 1, at least 5, at least 25, at least 50, at least 75, at least
100, at least 125, at least 150, at least 175, at least 200, at
least 250, at least 250, at least 275, at least 300, at least 325,
at least 350, at least 375, at least 400, at least 450, at least
475, or at least 500 of the genes in any of Gene Set 1, Gene
Set 2, Gene Set 3, or Gene Set 4.
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[0085] In some embodiments, the classifier cfDNA is
sequenced at a deduplicated sequencing depth of at least 1x,
at least 5x, at least 10x, at least 15x, at least 20x, at least
25x, at least 30x, at least 35x, at least 40x, at least 45x, at
least 50x, at least 75x, at least 100x, at least 125x, at least
150x%, at least 175x, at least 200x, at least 225x, at least
250x, at least 275x, at least 300x, at least 325x, at least
350%, at least 375x, at least 400x, at least 425x, at least
450x%, at least 475x, at least 500x, at least 525x, at least
550x, at least 575x, at least 600x, at least 1,000x, at least
2,000x, at least 3,000x, at least 4,000x, at least 5,000x, at
least 10,000x, at least 25,000x, or at least 50,000x. In some
embodiments, the classifier cfDNA is sequenced at a dedu-
plicated sequencing depth of no more than 25x, no more
than 50x, no more than 100x, no more than 200x, no more
than 300x, no more than 400x, no more than 500x, no more
than 600x, no more than 700x, no more than 800x, no more
than 900x, no more than 1,000x, no more than 2,000x, no
more than 3,000x, no more than 4,000x, no more than
5,000x, no more than 10,000x, no more than 25,000x, no
more than 50,000x, no more than 75,000x, or no more than
100,000x%. In some embodiments, cfDNA corresponding to
the target regions is sequenced at a deduplicated sequencing
depth of at least 1x, at least 5x, at least 10x, at least 15x, at
least 20x, at least 25x, at least 30x, at least 35x, at least 40x,
at least 45x, at least 50x, at least 75x, at least 100x, at least
125x%, at least 150x, at least 175x, at least 200x, at least
225x, at least 250x, at least 275x, at least 300x, at least
325x, at least 350x, at least 375x, at least 400x, at least
425x%, at least 450%, at least 475x, at least 500x, at least
525x, at least 550x, at least 575x, at least 600x, at least
1,000x%, at least 2,000x, at least 3,000x, at least 4,000x, at
least 5,000x, at least 10,000x, at least 25,000x, or at least
50,000%. In some embodiments, the cfDNA corresponding
to the target regions is sequenced at a deduplicated sequenc-
ing depth of no more than 25x, no more than 50x, no more
than 100x, no more than 200x, no more than 300x, no more
than 400x, no more than 500x, no more than 600x, no more
than 700x, no more than 800x, no more than 900x, no more
than 1,000x, no more than 2,000x, no more than 3,000x, no
more than 4,000x, no more than 5,000x, no more than
10,000x, no more than 25,000x, no more than 50,000x, no
more than 75,000x, or no more than 100,000x.

[0086] The term “deduplicated sequencing depth” as used
herein refers to the total number of sequenced bases among
all the sequenced classifier cfDNA molecules divided by the
total number of bases in the defined classifier regions (e.g.,
the coding regions of the first exons of the classifier genes).
The total number of sequenced bases among all the
sequenced classifier cfDNA molecules in some versions can
be determined by deduplicating raw sequence reads (the
output of a DNA sequencer), e.g., by generating a “consen-
sus” read for each sequenced cfDNA using start-stop posi-
tion and/or unique molecular identifiers and/or any other
methods to generate consensus reads, and multiplying the
number of deduplicated sequence reads by the average read
length. Other methods can be used. The total number of
bases in the defined classifier regions can be determined by
counting the number of bases in the defined classifier
regions. If the entire genome is defined as the classifier
region, the total number of bases in the defined classifier
region will be the length of the genome (~3.2 billion for
exemplary reference genomes). If subregions of the genome
are defined as the classifier regions (e.g., coding sequences
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of first exons of select cancer genes, as outlined in the
following examples), the total number of bases in the
defined classifier region will be much smaller (for example,
2.4 Mbp as covered in the custom panel of the following
examples).

[0087] Consensus sequences are sequences derived from
redundant sequences of a parent molecule intended to rep-
resent the sequence of the original parent molecule. Con-
sensus sequences can be produced by voting (wherein each
majority nucleotide, e.g., the most commonly observed
nucleotide at a given base position, among the sequences is
the consensus nucleotide) or other approaches such as
comparing to a reference genome. Consensus sequences can
be produced by tagging original parent molecules with
unique or non-unique molecular tags, which allow tracking
of the progeny sequences (e.g., after amplification) by
tracking of the tag and/or use of sequence read internal
information. Examples of tagging or barcoding, and uses of
tags or barcodes, are provided in, for example, U.S. Patent
Pub. Nos. 2015/0368708, 2015/0299812, 2016/0040229,
and 2016/0046986, which are entirely incorporated herein
by reference.

[0088] cfDNA from a subject may be obtained by isolating
a biological sample comprising the cfDNA from the subject.
The term “biological sample,” as used herein, generally
refers to a tissue or fluid sample derived from a subject. A
biological sample may be directly obtained from the subject.
A biological sample may optionally be processed before
being used in downstream steps described herein. The
biological sample can be derived from any organ, tissue or
biological fluid. A biological sample can comprise, for
example, a bodily fluid or a solid tissue sample. An example
of a solid tissue sample is a tumor sample, e.g., from a solid
tumor biopsy. Bodily fluids include, for example, blood,
serum, plasma, tumor cells, saliva, urine, lymphatic fluid,
prostatic fluid, seminal fluid, milk, sputum, stool, tears, and
derivatives of these. Preferred samples are samples derived
from bodily fluids.

[0089] The methods of the invention can comprise a step
of determining fragmentation patterns of the classifier
cfDNA. Fragmentations patterns of cfDNA can include any
quantifiable fragmentation characteristic of the cfDNA.
Nonlimiting examples of such characteristics include the
length of cfDNA fragments that align with one or more
regions of a genome, a number of cfDNA fragments that
align with one or more regions of a genome, a number of
cfDNA fragments that start or end at each of one or more
regions of a genome, a number of cfDNA fragments outside
a nucleosome region, a number of cfDNA fragments within
a nucleosome region, a size peak distribution of cfDNA
fragments relative to a mappable genomic location, a par-
ticular location of a size peak of cfDNA fragments, a
particular range of cfDNA fragment sizes associated with a
size peak, or any combination thereof. Exemplary methods
of determining such characteristics are described in further
detail below or are otherwise known in the art.

[0090] An exemplary fragmentation pattern that can be
used for analysis and classification is a fragment size dis-
tribution. “Fragment size distribution” as used herein with
respect to cfDNA refers to a quantitation of the number of
cfDNAs within each of one or more different size intervals.
The quantitation can be an absolute or relative quantitation.
The size of the cf{DNA is the length of the cfDNA, and each
size interval can be a single value (a single length) or range
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of values (a range of lengths). In some embodiments, a
single fragment size distribution is determined for all the
classifier cfDNAs. In some embodiments separate fragment
size distributions are determined for different subsets of the
cfDNAs. Separate size distributions, for example, can be
determined for cfDNAs corresponding to any of the various
classifier regions described herein. In some embodiments,
separate fragment size distributions are determined for the
classifier cfDNA corresponding to at least some of the
classifier genes. In some embodiments, a separate fragment
size distribution is determined for the classifier cfDNA
corresponding to each classifier gene. In some embodiments,
separate fragment size distributions are determined for the
classifier cfDNA corresponding to at least some of the
classifier exons. In some embodiments, a separate fragment
size distribution is determined for the classifier cfDNA
corresponding to each classifier exon. In some embodi-
ments, separate fragment size distributions are determined
for the classifier cfDNA corresponding to at least some of
the first exons of at least some of the classifier genes. In
some embodiments, a separate fragment size distribution is
determined for the classifier cfDNA corresponding to the
first exon of each classifier gene. In some versions, at least
the portion of the at least one exon of the at least one
classifier gene comprises one or more predefined exon
regions. Exemplary predefined exon regions comprise tran-
scription factor binding sites, regions of open chromatin, and
specific motifs. Other predefined exon regions can be used.

[0091] For downstream classification, the fragmentation
size distributions can be quantitated. “Quantitate” (and
grammatical variants thereof) in this context refers to char-
acterizing the fragmentation size distributions with a quan-
titative value. The quantitative value can be an absolute or
relative value and can be, without limitation, a number, a
statistical value (e.g., frequency, mean, median, standard
deviation, or quantile), or a degree or a relative quantity
(e.g., high, medium, and low). A quantitative value can be a
ratio of two quantitative values. A quantitative value can be
a linear combination of quantitative values. A quantitative
value may be a normalized value. Any of a number of
distribution quantitations can be used. These include but are
not limited to quantitation of entropy, sum, minimum, maxi-
mum, interquartile range, mean, median, mode, variance,
standard deviation, kurtosis, diversity, depth of sequencing,
bins, and/or Kolmogorov-Smirnov statistic. The DNA
sequence motifs present in fragments can also inform the
fragmentation patterns. In some versions, the determining
the fragmentation patterns comprises determining a motif
diversity score. In some versions, the determining the frag-
mentation patterns comprises determining the fragmentation
patterns of one or more predefined exon regions. In some
versions, the predefined exon regions are selected from the
group consisting of transcription factor binding sites,
regions of open chromatin, and specific motifs. In some
versions, the determining the fragmentation patterns com-
prises determining a separate fragment size distribution of
the classifier cfDNA corresponding to each predefined exon
region.

[0092] Exemplary versions of the invention employ an
entropy quantitation (Roach TNF. Use and Abuse of Entropy
in Biology: A Case for Caliber. Entropy (Basel). 2020 Nov
25;22(12):1335). An exemplary entropy quantitation is
Shannon entropy quantitation (Shannon, Claude E. (July
1948). “A Mathematical Theory of Communication”. Bell
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System Technical Journal. 27 (3): 379-423) (Shannon,
Claude E. (October 1948). “A Mathematical Theory of
Communication”. Bell System Technical Journal. 27 (4):
623-656). Other suitable entropy quantitations include
Rényi entropy (Rényi, Alfréd (1961). “On measures of
information and entropy” (PDF). Proceedings of the fourth
Berkeley Symposium on Mathematics, Statistics and Prob-
ability 1960. pp. 547-561) and Tsallis entropy (Tsallis, C.
(1988). “Possible generalization of Boltzmann-Gibbs statis-
tics”. Journal of Statistical Physics. 52 (1-2): 47-487),
among others.

[0093] Exemplary versions of the invention employ depth
of sequencing, as well as quantitation of the fragment size
distribution by measuring the number of fragments that fall
into various fragment size bins. Exemplary versions of the
invention employ motif diversity scores (Jiang P, Sun K,
Peng W et al. Plasma DNA End-Motif Profiling as a Frag-
mentomic Marker in Cancer, Pregnancy, and Transplanta-
tion. Cancer Discov 2020; 10 (5): 664-673). Once the
fragmentation patterns of the classifier cfDNAs are deter-
mined, the fragmentation patterns can be used to determine
a particular disease state of the subject from which the
cfDNAs are derived. The fragmentation patterns, for
example, can be classified to identify the subject as being
negative or positive for cancer or being negative or positive
for a particular type of cancer. “Type of cancer” (or “cancer
type”) as used herein generally refers to a cancer having a
particular characteristic that is distinct from other cancers,
such as a particular tissue of origin, etiological characteris-
tic, phenotypic characteristic, genotypic characteristic, ana-
tomical characteristic, physiological characteristic, clinical
characteristic, and/or treatment-response characteristic. The
term “tissue of origin” as used herein refers to the organ,
organ group, body region, or cell type that a cancer arises or
originates from. The identification of a tissue of origin
typically allows for identification of the most appropriate
next steps in the care continuum of cancer to further diag-
nose, stage, and decide on treatment. The term “subtype of
cancer” (or “cancer subtype™) generally refers to a cancer of
a particular cancer type having a particular characteristic
that distinguishes it from another cancer of the particular
cancer type. An example of a cancer subtype is a cancer from
a particular tissue of origin that has an etiological, pheno-
typic, genotypic, anatomical, physiological characteristic,
clinical characteristic, and/or treatment-response character-
istic that differs from another cancer of the particular tissue
of origin. The identification of a cancer type or subtype
typically allows for identification of the most appropriate
next steps in the care continuum of cancer to further diag-
nose, stage, and decide on treatment. The identification of a
subject as being negative or positive for cancer or a par-
ticular type or subtype thereof will typically occur by
determining a probability or numerical score from the frag-
mentation patterns and classifying the subject based on
certain thresholds thereof.

[0094] Various exemplary types of cancer include acute
lymphoblastic leukemia (ALL), acute myeloid leukemia
(AML), adrenocortical carcinoma, AIDS-related cancers
(Kaposi sarcoma (soft tissue sarcoma), AIDS-related lym-
phoma, primary CNS lymphoma), anal cancer, appendix
cancer, astrocytomas (a type of brain cancer), atypical
teratoid/rhabdoid tumor (a type of brain cancer), basal cell
carcinoma of the skin (see skin cancer), bile duct cancer,
bladder cancer, bone cancer (includes Ewing sarcoma,
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osteosarcoma, and malignant fibrous histiocytoma), brain
cancer, breast cancer, bronchial tumors (lung cancer), Bur-
kitt lymphoma (non-Hodgkin lymphoma), carcinoid tumor
(type of gastrointestinal caner), central nervous system can-
cer (atypical teratoid/rhabdoid tumor (brain cancer),
medulloblastoma and other CNS embryonal tumors (brain
cancer), germ cell tumor (brain cancer)), primary CNS
lymphoma, cervical cancer, cholangiocarcinoma (bile duct
cancer), chordoma (bone cancer), chronic lymphocytic leu-
kemia (CLL), chronic myelogenous leukemia (CML),
chronic myeloproliferative neoplasms, colorectal cancer,
craniopharyngioma (brain cancer), cutaneous T-cell lym-
phoma (mycosis fungoides and Sézary syndrome), ductal
carcinoma In Situ (DCIS) (type of breast cancer), endome-
trial cancer (uterine cancer), ependymoma (brain cancer),
esophageal cancer, esthesioneuroblastoma (head and neck
cancer), Ewing sarcoma (bone cancer), extracranial germ
cell tumor, extragonadal germ cell tumor, eye cancer (in-
traocular melanoma, retinoblastoma, fallopian tube cancer,
gallbladder cancer, gastric cancer (stomach cancer), gastro-
intestinal carcinoid tumor, gastrointestinal stromal tumors
(GIST) (soft tissue sarcoma), germ cell tumors (childhood
central nervous system germ cell tumors (brain cancer),
childhood extracranial germ cell tumors, extragonadal germ
cell tumors, ovarian germ cell tumors, testicular cancer),
gestational trophoblastic disease, hairy cell leukemia, head
and neck cancer, heart tumors, hepatocellular cancer (liver
cancer), histiocytosis, (langerhans cell), Hodgkin lym-
phoma, hypopharyngeal cancer (head and neck cancer),
intraocular melanoma, islet cell tumors (pancreatic neuroen-
docrine tumors, Kaposi sarcoma (soft tissue sarcoma), kid-
ney (renal cell) cancer, Langerhans cell histiocytosis, laryn-
geal cancer (head and neck cancer), leukemia, lip and oral
cavity cancer (head and neck cancer), liver cancer, lung
cancer (non-small cell, small cell, pleuropulmonary blas-
toma, pulmonary inflammatory myofibroblastic tumor, and
tracheobronchial tumor), lymphoma, male breast cancer,
melanoma, intraocular melanoma (eye cancer), Merkel cell
carcinoma (skin cancer), mesothelioma, metastatic cancer,
metastatic squamous neck cancer with occult primary (head
and neck cancer), midline tract carcinoma with NUT gene
changes, mouth cancer (head and neck cancer), multiple
endocrine neoplasia syndromes, multiple myeloma/plasma
cell neoplasms, mycosis fungoides (lymphoma), myelodys-
plastic syndromes, myelodysplastic/myeloproliferative neo-
plasms, myelogenous leukemia, chronic (CML), acute
myeloid leukemia (AML), myeloproliferative neoplasms,
nasal cavity and paranasal sinus cancer (head and neck
cancer), nasopharyngeal cancer (head and neck cancer),
neuroblastoma, non-Hodgkin lymphoma, non-small cell
lung cancer, oral cancer, lip and oral cavity cancer (head and
neck cancer), oropharyngeal cancer (head and neck cancer),
osteosarcoma, undifferentiated pleomorphic sarcoma of
bone treatment, ovarian cancer, pancreatic cancer, pancre-
atic neuroendocrine tumors (islet cell tumors), papillomato-
sis (childhood laryngeal), paraganglioma, paranasal sinus
cancer (head and neck cancer), nasal cavity cancer (head and
neck cancer), parathyroid cancer, penile cancer, pharyngeal
cancer, (head and neck cancer), pheochromocytoma, pitu-
itary tumor, plasma cell neoplasm/multiple myeloma, pleu-
ropulmonary blastoma (lung cancer), pregnancy and breast
cancer, primary central nervous system (CNS) lymphoma,
primary peritoneal cancer, prostate cancer (such as meta-
static neuroendocrine prostate cancer), pulmonary inflam-
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matory myofibroblastic tumor (lung cancer), rectal cancer,
recurrent cancer, renal cell (kidney) cancer, retinoblastoma,
rhabdomyosarcoma, salivary gland cancer (head and neck
cancer), sarcoma (childhood rhabdomyosarcoma (soft tissue
sarcoma), childhood vascular tumors (soft tissue sarcoma),
Ewing sarcoma (bone cancer), Kaposi sarcoma (soft tissue
sarcoma), osteosarcoma (bone cancer), soft tissue sarcoma,
uterine sarcoma), Sézary syndrome (lymphoma), skin can-
cer, small cell lung cancer, small intestine cancer, soft tissue
sarcoma, squamous cell carcinoma of the skin (skin cancer),
squamous neck cancer with occult primary (head and neck
cancer), stomach (gastric) cancer, T-cell lymphoma (myco-
sis fungoides and Sézary syndrome), testicular cancer, throat
cancer (head and neck cancer), nasopharyngeal cancer,
oropharyngeal cancer, hypopharyngeal cancer, thymoma
and thymic carcinoma, thyroid cancer, tracheobronchial
tumors (lung cancer), transitional cell cancer of the renal
pelvis and ureter (kidney (renal cell) cancer), ureter cancer,
renal pelvis cancer, transitional cell cancer (kidney (renal
cell) cancer), urethral cancer, uterine cancer, uterine sar-
coma, vaginal cancer, vascular tumors (soft tissue sarcoma),
and vulvar cancer. In some embodiments, classifying the
fragmentation patterns identifies the subject as being posi-
tive or negative for one or more of any one or more of the
above-referenced cancer types.

[0095] In some embodiments, classifying the fragmenta-
tion patterns identifies the subject as being positive or
negative for one or more of breast cancer (including hor-
mone receptor-positive or negative breast cancer), bladder
cancer, lung cancer, kidney cancer, prostate cancer, and
metastatic neuroendocrine prostate cancer. In some embodi-
ments, classifying the fragmentation patterns identifies the
subject as being positive or negative for one or more of
breast cancer, bladder cancer, lung cancer, prostate cancer,
and metastatic neuroendocrine prostate cancer.

[0096] In some embodiments, classifying the fragmenta-
tion patterns identifies the subject as being positive or
negative for a cancer treatable with a certain drug. Exem-
plary drugs in this regard include any one or more of the
following drugs, in any combination: Abiraterone, Enzalu-
tamide, Apalutamide, Darolutamide, Anastrozole, Erlotinib,
Rapamycin, Sunitinib, PHA-665752, MG-132, Paclitaxel,
Cyclopamine, AZ628, Sorafenib, Tozasertib, Imatinib,
NVP-TAE684, Crizotinib, Saracatinib, S-Trityl-L-cysteine,
Z-LLNle-CHO, Dasatinib, GNF-2, CGP-60474, CGP-
082996, A-770041, WH-4-023, WZ-1-84, BI-2536, BMS-
536924, BMS-509744, CMK, Pyrimethamine, JW-7-52-1,
A-443654, (GW843682x, Entinostat, Parthenolide,
GSK319347A, TGX221, Bortezomib, XMD8-85, Seliciclib,
Salubrinal, Lapatinib, GSK269962A, Doxorubicin, Etopo-
side, Gemcitabine, Mitomycin-C, Vinorelbine, NSC-87877,
Bicalutamide, QS11, CP466722, Midostaurin, CHIR-99021,
Ponatinib, AZD6482, INK-9L, PF-562271, HG6-64-1, JQ1,
JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT
inhibitor, VIII, Embelin, FH535, PAC-1 IPA-3,
GSK650394, BAY-61-3606, 5-Fluorouracil, Thapsigargin,
Obatoclax, Mesylate, BMS-754807, Linsitinib, Bexarotene,
Bleomycin, LFM-A13, GW-2580, Luminespib, Phenformin,
Bryostatin 1, Pazopanib, Dacinostat, Epothilone B,
GSK1904529A, BMS-345541, Tipifarnib, Avagacestat,
Ruxolitinib, AS601245, Ispinesib, Mesylate, TL-2-105,
AT-7519, TAK-715, BX-912, ZSTK474, AS605240, Genen-
tech, Cpd 10, GSK1070916, Enzastaurin, GSK429286A,
FMK, QL-XII-47, IC-87114, Idelalisib, UNCO0638, Cabo-
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zantinib, WZ3105, XMD14-99, Quizartinib, CP724714,
JW-7-24-1, NPK76-11-72-1, STF-62247, NG-25, TL-1-85,
VX-1le, FR-180204, ACY-1215, Tubastatin,A Zibotentan,
Sepantronium bromide, NSC-207895, VNLG/124, AR-42,
CUDC-101, Belinostat, I-BET-762, CAY 10603, Linifanib,
BIX02189, Alectinib, Pelitinib, Omipalisib, INJ38877605,
SU11274, KIN001-236, KIN001-244, WHI-P97, KIN0O1-
042, KINO001-260, KIN001-266, Masitinib, Amuvatinib,
MPS-1-IN-1, NVP-BHG712 OSI-930, OSI-027, CX-5461,
PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, Fedra-
tinib, Foretinib, Y-39983, YM201636, Tivozanib, WYE-
125132, GSK690693, SNX-2112, QL-X1-92, XMD13-2,
QL-X-138, XMD15-27, T0901317, Selisistat, Tenovin-6,
THZ-2-49, KIN001-270, THZ-2-102-1, AT7867, CI-1033,
PF-00299804, TWS119, Torin 2, Pilaralisib, GSK1059615,
Voxtalisib, Brivanib, BMS-540215, BIBF-1120, AST-1306,
Apitolisib, LIMK1,inhibitor, BMS4, kb NB 142-70, Sphin-
gosine Kinase 1 Inhibitor II, eEF2K Inhibitor A-484954,
MetAP2 Inhibitor A832234, Venotoclax, CPI-613,
CAY10566, Ara-G, Pemetrexed, Alisertib, Flavopiridol,
C-75, CAP-232 (CAP-232, TT-232, TLN-232), Trichostatin
A, Panobinostat, LCL161, IMD-0354, MIMI, ETP-45835,
CD532

[0097] NSC319726, ARRY-520, SB505124, A-83-01,
LDN-193189, FTY-720, BAM7 AGI-6780, Kobe2602,
LGK974, Wnt-C59, RU-SKI 43, AICA Ribonucleotide,
Vinblastine, Cisplatin, Cytarabine, Docetaxel, Methotrexate,
Tretinoin, Gefitinib, Navitoclax, Vorinostat, Nilotinib, Refa-
metinib, CI-1040, Temsirolimus, Olaparib, Veliparib, Bosu-
tinib, Lenalidomide, Axitinib, AZD7762, GW441756, Les-
taurtinib, SB216763, Tanespimycin, VX-702, Motesanib,
KU-55933, Elesclomol, Afatinib, Vismodegib, PL.X-4720,
BX795, NU7441, SLO101, Doramapimod, JNK Inhibitor
VIII, Weel Inhibitor, Nutlin-3a (-), Mirin, PD173074,
7M447439, RO-3306, MK-2206, Palbociclib, Dactolisib,
Pictilisib, AZD8055, PD0325901, SB590885, Selumetinib,
CCT007093, EHT-1864, Cetuximab, PF-4708671, Ser-
demetan, AZD4547, Capivasertib, HG-5-113-01, HG-5-88-
01, TW 37, XMD11-85h, ZG-10, XMD8-92, QL-VIII-58,
CCT-018159, Rucaparib, AZ20, KU-60019, Tamoxifen,
QL-XII-61, PFI-1, 10X2, YK-4-279, (5Z)-7-Oxozeaenol,
Piperlongumine, Daporinad, Talazoparib, rTRAIL,
UNCI1215, UNC0642, SGC0946, ICL1100013, XAV939,
Trametinib, Dabrafenib, Temozolomide, Bleomycin (50
uM), AZD3514, Bleomycin (10 uM), AZD6738, AZD5438,
AZD6094, Dyrklb_0191, AZD4877, EphB4_9721, Fulves-
trant, AZD8931, FEN1_3940, FGFR_0939, FGFR_3831,
BPTES, AZD7969, AZDS5582, IAP_5620, IAP_7638,
IGFR_3801, AZD1480, JAK1_3715, JAK3_7406, MCTI_
6447, MCT4 1422, AZD2014, AZD8186, AZD8835, PI3Ka
4409, AZD1208, PLK_6522, RAF 9304, PARP 9495, PARP
0108, PARP 9482, TANK 1366, AZD1332, TTK 3146,
SN-38, Pevonedistat, PFI-3, Camptothecin, Staurosporine,

Irinotecan,  Oxaliplatin, PRIMA-1MET, Niraparib,
MK-1775, Dinaciclib, EPZ004777, AZ960, Epirubicin,
Cyclophosphamide, Sapitinib, Uprosertib, Alpelisib,

Taselisib, EPZ5676, SCH772984, IWP-2,Leflunomide,
VE-822, WZ4003, CZC24832, GSK2606414, PFI3, PCI-
34051, RVX-208, OTX015, GSK343, ML323, Entosple-
tinib, PRT062607, Ribociclib, Picolinici-acid, AZD5153,
CDK9_5576, CDK9_5038, Eg5_9814, ERK_2440, ERK _
6604, IRAK4_4710, JAK1_8709, AZD5991, PAK_5339,
TAF1 5496, ULK1 4989, VSP34_8731,IGF1R_3801, JAK _
8517, Ibrutinib, Zoledronate, Acetalax, Carmustine, Topo-
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tecan, Teniposide, Mitoxantrone, Dactinomycin, Fludara-
bine, Nelarabine, Vincristine, Podophyllotoxin bromide,
Dihydrorotenone, Gallibiscoquinazole, Elephantin, Sinu-
larin, Sabutoclax, L[Y2109761, OF-1, MN-64, KRAS
(G12C) Inhibitor-12, BDP-00009066, Buparlisib, Ulixer-
tinib, Venetoclax, ABT737, Afuresertib, AGI-5198,
AZD3759, AZD5363, Osimertinib, Cediranib, Ipatasertib,
GDCO0810, GNE-317, GSK2578215A, I-BRD9Y, Telomerase
Inhibitor IX, MIRA-1, NVP-ADW742, P22077, Savolitinib,
UMI-77, WIKI4, WEHI-539, BPD-00008900, BIBR-1532,
Pyridostatin, AMG-319, MK-8776, LJI308, AZ6102,
GSK591, VE821, and AT13148.

[0098] Classifying the fragmentation patterns can be per-
formed with a classifier. A classifier is an algorithm com-
puter code that receives, as input, test data and produces, as
output, a classification of the input data as belonging to one
or another class. A classifier can be trained for the purposes
herein by determining the fragmentation patterns of cfDNA
from test subjects having particular known disease states
(e.g., cancer or particular types of cancer) and control
subjects not having those disease states, or model samples
representative of same. The classifier cfDNA can be cfDNA
corresponding to any classifier region or set of classifier
regions described herein, such as first exons of a set of
cancer genes. Machine learning can then be used to distin-
guish the fragmentation patterns of the cfDNA from subjects
having particular disease states from cfDNA from subjects
not having those particular disease states. Machine learning
employs algorithms, executed by computer, that automate
analytical model building, e.g., for clustering, classification
or pattern recognition. Machine learning algorithms may be
supervised or unsupervised. Machine learning algorithms
include, for example, artificial neural networks (e.g., back
propagation networks), discriminant analyses (e.g., Bayes-
ian classifier or Fischer analysis), support vector machines,
decision trees (e.g., recursive partitioning processes such as
CART - classification and regression trees, or random for-
ests), linear classifiers (e.g., multiple linear regression
(MLR), partial least squares (PLS) regression, and principal
components regression), hierarchical clustering, and cluster
analysis.

[0099] Invarious embodiments of the invention, the meth-
ods described herein are capable of identifying a subject as
being positive for cancer at an accuracy of at least about
50%, at least about 55%, at least about 60%, at least about
65%, at least about 70%, at least about 75%, at least about
80%, at least about 85%, at least about 90%, at least about
95%, at least about 99%, or about 100% using a sample from
the subject having a ct-fraction from about 0.000001 to
about 0.01, such as about 0.000005 to about 0.01, about
0.00001 to about 0.01, about 0.00005 to about 0.01, about
0.0001 to about 0.01, about 0.0005 to about 0.01, 0.000001
to about 0.005, about 0.000005 to about 0.005, about
0.00005 to about 0.005, about 0.00005 to about 0.005, about
0.0001 to about 0.005, about 0.0005 to about 0.005,
0.000001 to about 0.001, about 0.000005 to about 0.001,
about 0.00001 to about 0.001, about 0.00005 to about 0.001,
about 0.0001 to about 0.001, about 0.0005 to about 0.001,
about 0.000001 to about 0.0005, about 0.000005 to about
0.0005, about 0.00001 to about 0.0005, about 0.00005 to
about 0.0005, about 0.0001 to about 0.0005, about 0.0005 to
about 0.0005, about 0.000001 to about 0.0001, about
0.000005 to about 0.0001, about 0.00001 to about 0.0001,
about 0.00005 to about 0.0001, about 0.000001 to about
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0.00005, about 0.000005 to about 0.00005, about 0.00001 to
about 0.00005, about 0.000001 to about 0.00001, about
0.000005 to about 0.00001, or about 0.000001 to about
0.000005.

[0100] Invarious embodiments of the invention, the meth-
ods described herein are capable of identifying a subject as
being positive for a particular type of cancer (e.g., breast
cancer, bladder cancer, lung cancer, prostate cancer, and/or
metastatic neuroendocrine prostate cancer), at an accuracy
of at least about 50%, at least about 55%, at least about 60%,
at least about 65%, at least about 70%, at least about 75%,
at least about 80%, at least about 85%, at least about 90%,
at least about 95%, at least about 99%, or about 100% using
a sample from the subject having a ct-fraction from about
0.001 to about 0.25, such as from about 0.005 to about 0.25,
from about 0.01 to about 0.25, from about 0.05 to about
0.25, from about 0.1 to about 0.25, from about 0.001 to
about 0.1, from about 0.005 to about 0.1, from about 0.01 to
about 0.1, from about 0.05 to about 0.1, from about 0.001 to
about 0.05, from about 0.005 to about 0.05, from about 0.01
to about 0.05, from about 0.001 to about 0.01, from about
0.005 to about 0.01, or from about 0.001 to about 0.005.

[0101] “Accuracy” as used herein is defined as the number
of correct identifications (e.g., correct identification of sub-
jects as being positive for cancer or a particular type of
cancer according to the methods described herein) divided
by the total number of identifications made. A correct
identification is an identification that matches the true con-
dition of the subject. Methods of calculating ct-fractions can
be performed according to the method of Vandekerkhove et
al. 2021 (Vandekerkhove G, Lavoie ] M, Annala M, Murtha
A J, Sundahl N, Walz S, Sano T, Taavitsainen S, Ritch E,
Fazli L, Hurtado-Coll A, Wang G, Nykter M, Black P C,
Todenhofer T, Ost P, Gibb E A, Chi K N, Eigl B J, Wyatt A
W. Plasma ctDNA is a tumor tissue surrogate and enables
clinical-genomic stratification of metastatic bladder cancer.
Nat Commun. 2021 Jan. 8;12(1):184).

[0102] The methods described herein can be used for
screening subjects to identify those for diagnostic testing
and/or treatment. Exemplary types of diagnostic testing
include imaging and biopsy. Exemplary types of imaging
include computerized tomography scans (CT or CAT scans),
magnetic resonance imaging (MRI), nuclear scans, bone
scans, positron emission tomography (PET) scans, ultra-
sounds, X-rays, endoscopy (e.g., colonoscopy, bronchos-
copy). Biopsies include removal of tissue from the subject,
typically with a needle or surgery. Biopsies include solid
tissue biopsy and bodily fluid biopsy (liquid biopsy). In
some embodiments, the methods described herein identify a
subject as having a cancer of a particular tissue of origin, and
the subject then undergoes imaging or biopsy of the par-
ticular tissue of origin. In some embodiments, the particular
tissue of origin is a solid tissue, and the subject undergoes
imaging and/or biopsy of the solid tissue.

[0103] Insome embodiments, the subject is treated for the
cancer after being identified as being positive for cancer. In
some embodiments, the subject is treated for a particular
type of cancer after being identified as being positive for that
particular type of cancer. The treatment in some versions is
a treatment specific for that particular type of cancer, such as
a treatment that targets a particular tissue or specific cancer
type. Exemplary treatments include surgeries (e.g., resection
surgeries), radiation therapies, and drug therapies.
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[0104] Exemplary drug therapies include treatments with
chemotherapy agents, targeted cancer therapy agents, dif-
ferentiating therapy agents, hormone therapy agents, and
immunotherapy agents. Exemplary chemotherapy agents
include alkylating agents, antimetabolites, anthracyclines,
anti-tumor antibiotics, cytoskeletal disruptors (taxans),
topoisomerase inhibitors, mitotic inhibitors, corticosteroids,
kinase inhibitors, nucleotide analogs, and platinum-based
agents. Exemplary targeted cancer therapy agents include
signal transduction inhibitors (e.g. tyrosine kinase and
growth factor receptor inhibitors), histone deacetylase
(HDAC) inhibitors, retinoic receptor agonists, proteosome
inhibitors, angiogenesis inhibitors, and monoclonal antibody
conjugates. Exemplary differentiating therapy agents includ-
ing retinoids, such as tretinoin, alitretinoin and bexarotene.
Exemplary hormone therapy agents include anti-estrogens,
aromatase inhibitors, progestins, estrogens, anti-androgens,
and GnRH agonists or analogs. Exemplary immunotherapy
agents include monoclonal antibody therapies such as rit-
uximab (RITUXAN) and alemtuzumab (CAIVIPATH), non-
specific immunotherapies and adjuvants, such as BCG,
interleukin-2 (IL-2), and interferon-alfa, and immunomodu-
lating drugs, for instance, thalidomide and lenalidomide
(REVLIMID). Exemplary drugs that can be used in treat-
ment include any one or more of the following drugs, in any
combination: Abiraterone, Enzalutamide, Apalutamide,
Darolutamide, Anastrozole, Erlotinib, Rapamycin, Suni-
tinib, PHA-665752, MG-132, Paclitaxel, Cyclopamine,
AZ628, Sorafenib, Tozasertib, Imatinib, NVP-TAE684,
Crizotinib, Saracatinib, S-Trityl-L-cysteine, Z-LLNle-CHO,
Dasatinib, GNF-2, CGP-60474, CGP-082996, A-770041,
WH-4-023, WZ-1-84, BI-2536, BMS-536924, BMS-
509744, CMK, Pyrimethamine, JW-7-52-1, A-443654,
GW843682x, Entinostat, Parthenolide, GSK319347A,
TGX221, Bortezomib, XMDS8-85, Seliciclib, Salubrinal,
Lapatinib, GSK269962A, Doxorubicin, Etoposide, Gemcit-
abine, Mitomycin-C, Vinorelbine, NSC-87877, Bicaluta-
mide, QS11, CP466722, Midostaurin, CHIR-99021, Pona-
tinib, AZD6482, IJNK-9L, PF-562271, HG6-64-1, JQI,
JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT
inhibitor, VIII, Embelin, FH535, PAC-1 IPA-3,
GSK650394, BAY-61-3606, 5-Fluorouracil, Thapsigargin,
Obatoclax, Mesylate, BMS-754807, Linsitinib, Bexarotene,
Bleomycin, LFM-A13, GW-2580, Luminespib, Phenformin,
Bryostatin 1, Pazopanib, Dacinostat, Epothilone B,
GSK1904529A, BMS-345541, Tipifarnib, Avagacestat,
Ruxolitinib, AS601245, Ispinesib, Mesylate, TL-2-105,
AT-7519, TAK-715, BX-912, ZSTK474, AS605240, Genen-
tech, Cpd 10, GSK1070916, Enzastaurin, GSK429286A,
FMK, QL-XII-47, IC-87114, Idelalisib, UNC0638, Cabo-
zantinib, WZ3105, XMD14-99, Quizartinib, CP724714,
JW-7-24-1, NPK76-11-72-1, STF-62247, NG-25, TL-1-85,
VX-1le, FR-180204, ACY-1215, Tubastatin,A Zibotentan,
Sepantronium bromide, NSC-207895, VNLG/124, AR-42,
CUDC-101, Belinostat, I-BET-762, CAY 10603, Linifanib,
BIX02189, Alectinib, Pelitinib, Omipalisib, JNJ38877605,
SU11274, KIN001-236, KIN001-244, WHI-P97, KIN0O1-
042, KIN001-260, KIN001-266, Masitinib, Amuvatinib,
MPS-1-IN-1, NVP-BHG712 OSI-930, OSI-027, CX-5461,
PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, Fedra-
tinib, Foretinib, Y-39983, YM201636, Tivozanib, WYE-
125132, GSK690693, SNX-2112, QL-XI-92, XMD13-2,
QL-X-138, XMD15-27, T0901317, Selisistat, Tenovin-6,
THZ-2-49, KIN001-270, THZ-2-102-1, AT7867, CI-1033,
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PF-00299804, TWS119, Torin 2, Pilaralisib, GSK1059615,
Voxtalisib, Brivanib, BMS-540215, BIBF-1120, AST-1306,
Apitolisib, LIMK1,inhibitor, BMS4, kb NB 142-70, Sphin-
gosine Kinase 1 Inhibitor II, eEF2K Inhibitor A-484954,
MetAP2 Inhibitor A832234, Venotoclax, CPI-613,
CAY10566, Ara-G, Pemetrexed, Alisertib, Flavopiridol,
C-75, CAP-232 (CAP-232, TT-232, TLN-232), Trichostatin
A, Panobinostat, LCL161, IMD-0354, MIMI, ETP-45835,
CD532

[0105] NSC319726, ARRY-520, SB505124, A-83-01,
LDN-193189, FTY-720, BAM7 AGI-6780, Kobe2602,
LGK974, Wnt-C59, RU-SKI 43, AICA Ribonucleotide,
Vinblastine, Cisplatin, Cytarabine, Docetaxel, Methotrexate,
Tretinoin, Gefitinib, Navitoclax, Vorinostat, Nilotinib, Refa-
metinib, CI-1040, Temsirolimus, Olaparib, Veliparib, Bosu-
tinib, Lenalidomide, Axitinib, AZD7762, GW441756, Les-
taurtinib, SB216763, Tanespimycin, VX-702, Motesanib,
KU-55933, Elesclomol, Afatinib, Vismodegib, PL.X-4720,
BX795, NU7441, SLO101, Doramapimod, JNK Inhibitor
VIII, Weel Inhibitor, Nutlin-3a (-), Mirin, PD173074,
7M447439, RO-3306, MK-2206, Palbociclib, Dactolisib,
Pictilisib, AZD8055, PD0325901, SB590885, Selumetinib,
CCT007093, EHT-1864, Cetuximab, PF-4708671, Ser-
demetan, AZD4547, Capivasertib, HG-5-113-01, HG-5-88-
01, TW 37, XMD11-85h, ZG-10, XMD8-92, QL-VIII-58,
CCT-018159, Rucaparib, AZ20, KU-60019, Tamoxifen,
QL-XII-61, PFI-1, 10X2, YK-4-279, (5Z)-7-Oxozeaenol,
Piperlongumine, Daporinad, Talazoparib, rTRAIL,
UNCI1215, UNC0642, SGC0946, ICL1100013, XAV939,
Trametinib, Dabrafenib, Temozolomide, Bleomycin (50
uM), AZD3514, Bleomycin (10 uM), AZD6738, AZD5438,
AZD6094, Dyrklb_0191, AZD4877, EphB4_9721, Fulves-
trant, AZD8931, FEN1_3940, FGFR_0939, FGFR_3831,
BPTES, AZD7969, AZDS5582, IAP_5620, IAP_7638,
IGFR_3801, AZD1480, JAK1_3715, JAK3_7406, MCTI_
6447, MCT4 1422, AZD2014, AZD8186, AZD8835, PI3Ka
4409, AZDI1208, PLK_6522, RAF_9304, PARP 9495,
PARP 0108, PARP 9482, TANK 1366, AZD1332, TTK
3146, SN-38, Pevonedistat, PFI-3, Camptothecin, Stauro-
sporine, Irinotecan, Oxaliplatin, PRIMA-1MET,

[0106] Niraparib, MK-1775, Dinaciclib, EPZ004777,
AZ960, Epirubicin, Cyclophosphamide, Sapitinib, Upros-
ertib, Alpelisib, Taselisib, EPZ5676, SCH772984, TWP-2,
Leflunomide, VE-822, WZ4003, CZC24832, GSK2606414,
PFI3, PCI-34051, RVX-208, OTX015, GSK343, ML323,
Entospletinib, PRT062607, Ribociclib, Picolinici-acid,
AZD5153, CDK9_5576, CDK9_5038, Eg5_9814, ERK_
2440, ERK_6604, IRAK4 4710, JAK1_8709, AZD5991,
PAK_5339, TAF1 5496, ULK1 4989, VSP34_8731,
IGF1R_3801, JAK_8517, Ibrutinib, Zoledronate, Acetalax,
Carmustine, Topotecan, Teniposide, Mitoxantrone, Dactino-
mycin, Fludarabine, Nelarabine, Vincristine, Podophyllo-
toxin bromide, Dihydrorotenone, Gallibiscoquinazole,
Elephantin, Sinularin, Sabutoclax, [Y2109761, OF-1,
MN-64, KRAS (G12C) Inhibitor-12, BDP-00009066,
Buparlisib, Ulixertinib, Venetoclax, ABT737, Afuresertib,
AGI-5198, AZD3759, AZD5363, Osimertinib, Cediranib,
Ipatasertib, GDCO0810, GNE-317, GSK2578215A, I-BRD?9,
Telomerase Inhibitor IX, MIRA-1, NVP-ADW742, P22077,
Savolitinib, UMI-77, WIKI4, WEHI-539, BPD-00008900,
BIBR-1532, Pyridostatin, AMG-319, MK-8776, LIJI308,
AZ76102, GSK591, VE821, and AT13148.

[0107] It is within the capabilities of a skilled physician or
oncologist to select an appropriate cancer therapeutic agent
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based on characteristics such as the type of tumor, cancer
stage, previous exposure to cancer treatment or therapeutic
agent, and other characteristics of the cancer.

[0108] In some embodiments, the methods described
herein identify a subject as having a cancer of a particular
tissue of origin, and the subject then undergoes surgery on
the particular tissue of origin. In some embodiments, the
particular tissue of origin is a solid tissue, and the subject
undergoes surgery the solid tissue.

[0109] The correspondence of various elements described
herein can be determined by alignment of sequences using
an alignment algorithm, for example, Needleman-Wunsch
algorithm (see e.g., the EMBOSS Needle aligner available at
the URL ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.
html, optionally with default settings), the BLAST algorithm
(see e.g., the BLAST alignment tool available at the URL
blast.ncbi.nlm.nih.gov/Blast.cgi, optionally with default set-
tings), or the Smith-Waterman algorithm (see e.g., the
EMBOSS Water aligner available at the URL ebi.ac.uk/
Tools/psa/emboss_water/nucleotide.html, optionally with
default settings). Optimal alignment may be assessed using
any suitable parameters of a chosen algorithm, including
default parameters.

[0110] In some cases, a sequence may be aligned to a
reference genome or a reference sequence. A reference
genome (sometimes referred to as an “assembly”) is
assembled from genetic data and intended to represent the
genome of a species. Typically, reference genomes are
haploid. Typically, reference genomes do not represent the
genome of a single individual of the species but rather are
mosaics of the genomes of several individuals. A reference
genome can be publicly available or be a private reference
genome. Human reference genomes include, for example,
hgl9 or NCBI Build 37 or Build 38. A reference sequence is
generally a nucleotide sequence against which a subject’s
nucleotide sequences are compared. Typically, a reference
sequence is derived from a reference genome.

[0111] Any element disclosed or claimed herein can com-
prise, consist of, or consist essentially of the characteristics
herein described with respect thereto.

[0112] The elements and method steps described herein
can be used in any combination whether explicitly described
or not.

[0113] All combinations of method steps as used herein
can be performed in any order, unless otherwise specified or
clearly implied to the contrary by the context in which the
referenced combination is made.

[0114] As used herein, the singular forms “a,” “an,” and
“the” include plural referents unless the content clearly
dictates otherwise.

[0115] Numerical ranges as used herein are intended to
include every number and subset of numbers contained
within that range, whether specifically disclosed or not.
Further, these numerical ranges should be construed as
providing support for a claim directed to any number or
subset of numbers in that range. For example, a disclosure
of from 1 to 10 should be construed as supporting a range of
from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6
to 4.6, from 3.5 to 9.9, and so forth.

[0116] All patents, patent publications, and peer-reviewed
publications (i.e., “references™) cited herein are expressly
incorporated by reference to the same extent as if each
individual reference were specifically and individually indi-
cated as being incorporated by reference. In case of conflict
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between the present disclosure and the incorporated refer-
ences, the present disclosure controls.

[0117] Itis understood that the invention is not confined to
the particular construction and arrangement of parts herein
illustrated and described, but embraces such modified forms
thereof as come within the scope of the claims.

EXAMPLES

Fragmentomics of Targeted Circulating Tumor
DNA Sequencing Panels

Summary

[0118] The isolation of cell-free DNA (cfDNA) from the
bloodstream can be used to detect and analyze somatic
alterations in circulating tumor DNA (ctDNA), and multiple
cfDNA targeted sequencing panels are now commercially
available for FDA-approved biomarker indications to guide
treatment. More recently, cfDNA fragmentation patterns
have emerged as a tool to infer epigenomic and transcrip-
tomic information. However, most of these analyses used
whole-genome sequencing, which is insufficient to identify
FDA-approved biomarker indications in a cost-effective
manner. We used machine-learning models of fragmentation
patterns at the first coding exon in targeted cancer gene
cfDNA sequencing panels to distinguish between cancer vs.
non-cancer patients, as well as the specific tumor type and
subtype. We assessed this approach in two independent
cohorts: a published cohort from GRAIL (breast, lung, and
prostate cancers, non-cancer, N=198) and an institutional
cohort from the University of Wisconsin (UW; breast, lung,
prostate, bladder cancers, N=320). Each cohort was split
70/30% into training and validation sets. In the UW cohort,
training cross validated accuracy was 82.1%, and accuracy
in the independent validation cohort was 86.6% despite a
median ctDNA fraction of only 0.06. In the GRAIL cohort,
to assess how this approach performs in very low ctDNA
fractions, training and independent validation were split
based on ctDNA fraction. Training cross validated accuracy
was 80.6%, and accuracy in the independent validation
cohort was 76.3%. In the validation cohort where the ctDNA
fractions were all <0.05 and as low as 0.0003, the cancer vs.
non-cancer AUC was 0.99. To our knowledge, this is the first
study to demonstrate that sequencing from targeted cfDNA
panels can be utilized to analyze fragmentation patterns to
classify cancer types, dramatically expanding the potential
capabilities of clinical panels at minimal additional cost.

Introduction

[0119] Profiling of genomic driver alterations in cancer
has become increasingly important, not only for studying the
biological underpinnings of cancer, but also in identifying
clinically actionable alterations for targeted therapies in
clinical trials and practice. Historically, tumor samples have
been required, but obtaining tissue specimens for molecular
profiling is not always feasible and can be especially chal-
lenging in the metastatic setting. Cell-free DNA (cfDNA)
from cancer patients provides a minimally invasive
approach for assessing molecular events in the tumor by
detecting alterations in the tumor-derived cfDNA, also
called circulating tumor DNA (ctDNA)'. This is a mature
technology, with multiple commercially available next-gen-
eration sequencing (NGS) ctDNA panels®.
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[0120] The stability of cfDNA in circulation is dependent
on its association with proteins and protein complexes which
offer protection against DNAses found in the blood®>™. The
nucleosome complex is the most common protector of
cfDNA which is reflected in the size distribution of cfDNA
fragments showing a mode fragment size of 167 bp corre-
sponding to the wrapping of DNA around a single nucle-
osome, with a smaller proportion of fragments at 334 bp
corresponding to a di-nucleosome complex>-®. Other studies
have also described smaller peaks at a periodicity of
approximately 10 bp at lower fragment sizes representing
the accessibility of DNA minor grooves to endonuclease
cleavage as it wraps around the histone complex, as well as
the binding of transcription factors or other small DNA
binding proteins’ '*. The study of cfDNA fragmentation pat-
terns has been referred to as “fragmentomics.”

[0121] Almost all clinical fragmentomic studies to date
have utilized whole-genome sequencing (WGS) to assess
fragmentation patterns across the genome in an unbiased
manner’’. While WGS has the advantage of breadth of
coverage, there is generally low sequencing depth making it
unsuitable for cfDNA somatic alteration detection as it has
poor sensitivity, especially at low ctDNA fractions®®. Con-
versely, cfDNA targeted panels allow for deeper sequencing
at areas of interest, which are typically coding regions of
important cancer genes. Previous cfDNA fragmentomics
analyses have generally focused on WGS which affords
probing of fragmentation patterns at all genomic regions in
an unbiased manner, as the investigated biological phenom-
ena are typically not unique to regions profiled by target
panels (e.g. exonic regions). For example, many analyses of
fragmentation patterns have focused on the assessment of
histone binding, which requires relatively uniform read
support across large areas of the genome”>*' 7223, This type
of read support is not provided by targeted panel sequencing.

[0122] While previous studies have focused on fragmen-
tation patterns across the whole genome, we hypothesized
that cfDNA fragmentation patterns in the coding regions of
important oncogenes and tumor suppressors could provide
important insights for distinguishing between tumor and
normal samples, as well as between different tumor types
and subtypes. We specifically focused on fragmentation
patterns overlapping the first coding exon of targeted genes.
To evaluate this, we examined the fragmentomic patterns in
both a publicly available multi-cancer cfDNA dataset pro-
filed using the GRAIL c¢fDNA assay>®, as well as an insti-
tutional multi-cancer cohort profiled using a custom cfDNA
panel. We found that analysis of the fragmentation patterns
of first coding exons could distinguish between cancer types
as well as between cancer vs. normal. The use of fragmen-
tation patterns from targeted cfDNA panels would allow for
the advantages of both variant calling and fragmentomics in
a single assay which could be leveraged on any existing
panels that are already commercially available.

Methods

UW Patient Cohort

[0123] Peripheral blood samples were collected from
patients with metastatic cancer enrolled in an IRB-approved
liquid biopsy collection protocol at the University of Wis-
consin-Madison (2014-1214), as well as from two ongoing
clinical trials (NCT03090165, NCT03725761).
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UW cfDNA Sample Collection, Preparation, and Sequenc-
ing

[0124] Blood was collected in 10 ml. K2 EDTA (BD
Vacutainer) or CellSave™ preservative blood collection
tubes (Menarini Silicon Biosystems). Whole blood was
processed within 4 hours (EDTA) or 36 hours (CellSave)
from time of collection and was centrifuged at 300x g for 10
minutes. Plasma (3-6 mL) was harvested and centrifuged at
1500x g for 10 minutes, then stored at —-80° C. cfDNA was
isolated from 2-6mL plasma using the QlAamp Circulating
Nucleic Acid kit (Qiagen). Germline DNA (gDNA) was
isolated from matched peripheral blood mononuclear cells
using the DNeasy blood and tissue kit (Qiagen) and frag-
mented using the NEBNext Ultra II FS DNA module (New
England Biolabs). The Agilent Bioanalyzer high sensitivity
DNA chip was used to quantify and assess cfDNA and
fragmented gDNA quality. 50 ng cfDNA or 50 ng frag-
mented gDNA were subjected to library preparation with
unique molecular indexes using the xGen Prism DNA
library preparation kit (Integrated DNA technologies). For
samples with less than 50 ng available cfDNA, 1, 10, or 25
ng DNA input was used. 8-12 libraries were pooled at 500
ng per library followed by hybridization and capture with a
custom 822-gene panel using the xGen hybridization capture
of DNA libraries kit (Integrated DNA technologies). Paired
end sequencing (2x150 bp) was performed on a NovaSeq
6000 at the University of Wisconsin sequencing core, with
a target depth of 20 million reads per germline sample and
50 million reads per cfDNA sample.

Sequencing Data Processing

[0125] UW sequencing was aligned to the hg38 genome
using BWA-mem?>° (v0.7.17) followed by deduplication of
the aligned BAM files with Connor v0.6.1 (https://github.
com/umich-bref-bioinf/Connor) which uses both start-stop
position and UMIs along with filtering of low quality reads.
A minimum family size threshold of 1 (-s 1) was used to
keep all unique reads. BAM files were filtered for properly
paired reads (samtools flags -f3 -F2308), sorted by read
name, then converted to BEDPE files using bedtools®*
(v2.30.0) bamtobed using the -bedpe flag. The start and stop
positions of each read were extracted from the BEDPE file
to yield a BED file of the sequencing reads to use for
subsequent overlaps. GRAIL cfDNA sequencing data and
metadata®® were accessed and downloaded through the
European Genome Archive (Dataset D
EGADO00001005302). As raw FASTQ files were not avail-
able, the hgl9-prealigned BAM files were deduplicated
using start-stop position and UMI followed by BAM to BED
conversion as described above for the UW samples.

Fragmentomics

[0126] For each sample, a global fragmentation distribu-
tion was calculated from the BED file by extracting the read
insert size from the mapped end of the template and the
mapped start of the template (stop-start) and then counting
the number of reads at each size. The number of reads at
each size was divided by the total number of reads in the
sample to return the proportion of reads at each fragment
size. Individual fragment distributions were plotted using
the proportion of reads at each fragment size.
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Shannon Entropy for First Coding Exon

[0127] Canonical exon coordinates were downloaded as
BED files from the UCSC Genome Browser using the Table
Browser tool for both hg38 and hgl9 (https://genome.ucsc.
edu/cgi-bin/hgTables).

[0128] The BED file of each cfDNA sample was then
overlapped with the respective exon file (hg38 for UW data,
hg19 for GRAIL data) using bedtools intersect (v2.30.0) to
yield reads overlapping with canonical exons. A minimum
of 1 bp overlap was required for a read to be considered
overlapped with an exon of interest. Reads overlapping the
first coding exon of each gene were extracted, and a frag-
ment size distribution was calculated for each gene using
only the reads overlapping exon 1. Throughout the manu-
script, references to “exon 1” or “E1SE” refer to the first
coding exon of the respective gene or genes. Shannon
entropy was calculated with the entropy function from the
“entropy” package (v1.3.1) in R (v4.0.4) using the count of
read fragments at each fragment size. This returned a single
Shannon entropy value for reads overlapping the first exon
of each gene in each sample. Given the association between
the number of fragments analyzed and Shannon entropy
(FIG. 2F), with low fragment count leading to a less accurate
estimation of Shannon entropy, we required a minimum of
500 reads to overlap an exon across all samples to be
included in the final dataset.

GRAIL, Training, Cross Validation, and Independent
Validation

[0129] Using the E1SE values for each gene in the GRAIL
panel as features, multinomial regression using a general-
ized linear model with elastic net penalty (GLMNET) was
used to predict cancer types. Samples were split into 70%
training and 30% validation with low ctDNA fraction
samples placed in the validation cohort. For all model
training, a range of a and A values were selected using latin
hypercube sampling, and the best AUC on 10-fold cross
validation was used select the final parameters. To estimate
performance in the training cohort, 10-fold cross validation
was performed, and training and parameter fitting (using
10-fold cross validation nested within the training set of
each fold) was performed within each fold separately to
avoid any information leakage. Predictions from the hold-
out test sets for each fold were combined to calculate
accuracy and ROC curves. A final model was then trained
using the full training cohort. The independent validation
cohort was then entered into the model to yield prediction
scores, again with no information leakage between training
and validation. These prediction scores were used to calcu-
late accuracy and ROC curves.

UW training, Cross Validation, and Independent Validation
[0130] A similar approach was used for the UW cohort,
which was also split into 70% training and 30% training.
However, due to more missing ctDNA fraction data and
imbalanced tumor types, the split was random while strati-
fying by tumor type, such that the relative proportions were
similar across training and validation. Otherwise, training,
cross validation, and independent validation were all per-
formed the same as in GRAIL.

Identification of Somatic Mutations in the UW Cohort

[0131] Somatic variant identification was performed using
VarDictJava v1.8.3? in paired sample mode using standard
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filter settings. Somatic mutations were required to have a
minimum of 10 supporting reads, a minimum of 20 total
reads covering the position, and up to 2 mismatches in the
cfDNA samples, and a minimum of 20 total reads in the
matched gDNA samples. For SNVs, the average mapping
quality of mutation supporting reads was required to be at
least 50 and the average distance of the mutant allele from
the nearest read end was required to be at least 15 bases. We
then conservatively removed germline mutations and
somatic mutations related to clonal hematopoiesis of inde-
terminate potential (CHIP) by removing mutations to have
more than 1 supporting read in any gDNA sample and
removing any of 4,938 CHIP related mutations compiled by
Bick et al*’. Lastly, mutations in the low-complexity
genomic regions and shared common mutations in dbSNP
(dbSNP_G5) were discarded.

Copy Number Analysis in the UW Cohort

[0132] Deduplicated BAM files were further filtered for
uniquely mapped reads with high mapping quality using
sambamba v0.8.2 (-F “mapping quality >=30 and not ([XA]
!=null or [SA] !=null)’. Using the deduplicated, filtered,
sorted, and indexed bam files as input, we ran CNVKkit
v0.9.9%* to call somatic copy number alterations. CNVKkit is
a read-depth approach and utilizes both targeted and non-
targeted regions to infer copy number more evenly across
the genome. An accessibility bed file was created (cnvkit.py
access -s 10000) to remove unmappable regions (i.e. large
stretches of “N” characters) from the reference genome.
CNVKit was run in batch mode for all cfDNA samples with
a flat reference, which assumes equal coverage in all bins.
Bin-level read depth was corrected for GC content, sequence
repeats, and target density, and individually compared with
the flat reference to calculate read depth ratio (log2). Genes
with copy number gain or loss were identified using the
genemetrics command with minimum absolute log2 copy
ratio threshold (log2) of 0.5. Genes with less than three bins
(probes) and read depth (depth) less than 1000 in each
sample were discarded. CN was only used to compare
against E1SE in our analysis. As ctDNA fraction impacts
both fragmentomic patterns and copy number, copy number
was therefore not corrected for tumor content.

Estimation of ctDNA Fraction in the UW Cohort

[0133] The proportion of tumor-derived cfDNA (ctDNA
fraction) was estimated based on VAF of autosomal somatic
mutations. VAF in autosomes is elevated if a mutant allele
is accompanied by deletion of the other allele (i.e., loss of
heterozygosity, LOH). Assuming a diploid tumor model and
that the mutation with the highest VAF displays LOH,
ctDNA fraction and the highest VAF can be related as

ct DNA fraction =

— 1
VAF ©

To account for stochastic variation, we modeled the can be
related as mutant allele read count with a binomial distri-
bution as suggested by Vandekerkhove et al.** and calcu-
lated what the true VAF would be if the observed mutant
allele read count was a 95% quantile outlier. After calculat-
ing ctDNA fraction for each somatic mutation in a given
sample, the highest estimate of ctDNA fraction was used for
the given sample as the mutation with the highest VAF is the
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most likely to be clonal. While the classification of LOH for
the highest VAF is an assumption, many other reports utilize
this method when analyzing targeted cfDNA sequencing'™:
35-41. Data for ctDNA fraction for samples from the GRAIL
cohort were obtained from their previously published
report?® in the supplemental data (Source Data FIG. 2; tab
“FIG. 2£7)

Summary of Differences Between GRAIL and UW Cohorts

[0134] Patients:

GRAIL: Patients with metastatic cancer who were progress-
ing on stable doses of treatment. The normal (non-cancer)
blood samples were obtained from the San Diego Blood
Bank.

UW: Patients with metastatic cancer. While in general,
patients who were treatment naive or progressing were
preferred, this also included patients who were responding
to treatment. Neuroendocrine prostate cancer and bladder
cancer were also included, which were not in the GRAIL
dataset. No normal blood samples were included, as this was
not allowed on the institutional blood collection protocol.

Sample Tubes:

[0135] GRAIL: Streck tubes were used
UW: EDTA or CellSave tubes were used
cfDNA Extraction:

GRAIL: QIAamp Circulating Nucleic Acid Kit (Qiagen)
UW: QIAamp Circulating Nucleic Acid kit (Qiagen)

Library Preparation:

[0136] GRAIL: llumina TruSeq DNA nano protocol with
6 mer UMIs (Illumina)

UW: xGen Prism DNA library preparation kit with 8 mer
UMIs (Integrated DNA Technologies)

Target Capture:

[0137] GRAIL: Custom 2.1 Mb panel with 508 cancer
genes using Illumina Nextera Rapid Capture protocol (Illu-
mina)

UW: Custom 2.4 Mb panel with 822 cancer genes using the
xGen hybridization capture kit (Integrated DNA Technolo-

gies)
Sequencing Depth:

[0138] GRAIL: average raw cfDNA sequencing depth
71,749x
UW: average raw cfDNA sequencing depth 3,042x

Results

[0139] Overview of Two Independent Targeted ctDNA
Panels and Cohorts

[0140] We examined two cohorts of cfDNA profiled using
targeted cancer gene exon panels. The first was a previously
published multi-cancer cohort of 198 cfDNA samples
assessed using the commercial assay from GRAIL, covering
508 genes (~2 MB) at a sequencing depth of >60,000x
across breast, lung, and prostate cancer patients along with
healthy donors®. The second cohort was an institutional
multi-cancer cohort from the University of Wisconsin (UW)
with 320 samples across breast, lung, bladder, prostate, and
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neuroendocrine prostate cancers. Profiling was performed
using a custom panel broadly covering the exons of 822
cancer genes, covering ~2.4 MB of the genome at an average
sequencing depth of 3,042x. We hypothesized that cfDNA
fragmentation patterns at transcription start sites (TSSs),
such as exon 1 of genes, could be used to inform tumor of
origin using cfDNA sequencing from targeted panels which
cover these regions in greater depth. To quantify the cfDNA
fragmentation patterns at each exon 1 analyzed, the exon 1
Shannon entropy (E1SE) of the distribution was calculated
which summarizes the diversity of fragments in the region.
We then used these E1SEs to train models to predict tumor
type. Both the UW and GRAIL cohorts were split into 70%
training in which cross-validation was used to assess per-
formance, and 30% independent validation In the GRAIL
cohort, training was specifically performed on the 70%
samples with the highest ctDNA fraction, and validation was
performed on the lowest 30% by ctDNA fraction (FIG. 1).

Fragment Distributions in Targeted Panels

[0141] The narrow breadth of genomic coverage in tar-
geted panels compared to WGS may bias fragmentomic
patterns. When we assessed the total distribution of fragment
sizes from each targeted panel, the average global fragment
distributions within each phenotype across both cohorts and
assays were similar. In both, we observed a main peak at 167
bp corresponding to a single nucleosome, as well as a
smaller peak at 334 bp corresponding to two nucleosomes.
In addition, we observed subnucleosomal peaks at smaller
fragment sizes with roughly 10 bp periodicity which likely
corresponding to the accessibility of DNA minor grooves to
endonuclease digestion as the DNA wraps around the his-
tone core, as well as the binding of transcription factors and
other DNA-binding proteins” ® (FIGS. 2A, 2B). The frag-
ment distribution from these targeted panels was similar to
previously published cfDNA fragment patterns which used
WGS® 12 14 17, 21, 26, 42 qyo00sting that fragmentomics
might be successfully applied to targeted exon panels (FIGS.
3A, 3B).

[0142] Repressed genes contain high nucleosome occu-
pancy at their TSS, leading to a more uniform distribution of
fragment reads at 167 bp'® '® *-*% In contrast, actively
expressed genes have more open chromatin at their TSS,
allowing the cfDNA originating from this region to be
cleaved in a more random manner, leading to a more diverse
distribution of DNA fragment sizes'*® !¢ *3-%6 These
changes can be detected out to 2000 bp from the TSS, which
overlaps most first coding exons”* '* *7. When we compared
the fragment coverage around the TSS and first coding exon
in highly expressed vs. lowly expressed genes from deep
WGS in a separate cohort*®, we found that the lower
coverage observed at the TSS of highly expressed genes
extended well into the first coding exon, indicating that
fragmentation profiles in the first coding exon are linked to
gene expression (FIGS. 4A-4D). This is important because
the majority of targeted cancer gene panels, including the
GRAIL and UW panels, do not include the TSS in most
cases and instead start at the first coding exon of targeted
genes.

[0143] To assess the diversity of fragment sizes at the first
coding exon of each gene, Shannon entropies were calcu-
lated for each individual gene in the respective sequencing
panels for each patient using the distribution of fragment
sizes overlapping the first coding exon. We defined this
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metric as Exon 1 Shannon Entropy (E1SE). To visualize the
relationship between E1SE and fragment size distribution,
we plotted the fragment distributions of all analyzed genes
from highest to lowest E1SE within individual samples from
each cohort and noted that, as expected, high E1SE genes
were depleted in fragments around the mode of 167 bp with
an increased proportion of fragments at lower (<120 bp) and
higher (>200 bp) sizes (FIGS. 2C, 2D; individual represen-
tative sample shown for each cohort). Conversely, low E1SE
genes displayed a higher proportion of fragments at the
mono-nucleosome peak (167 bp), suggesting a more closed
chromatin structure at exon 1 of those genes. We addition-
ally noted that the E1SE of the androgen receptor gene (AR)
was significantly higher in prostate cancer samples com-
pared to all other cancer types and normal samples in both
the GRAIL and UW cohorts (FIGS. 8A, 8B). Further, AR
E1SE was observed to be higher in high c¢tDNA fraction
prostate cancer samples, but not lung cancer or breast cancer
samples, suggesting that the high AR E1SE originates from
tumor-derived cfDNA (FIG. 9). This example highlights
how differences in E1SE levels could help distinguish
between tumor types and subtypes.

[0144] Copy number alterations are common in cancer and
can affect the number of reads mapping to each gene, which
could potentially bias the measurement of fragment size
diversity via E1SE. However, we did not observe a clear
relationship between copy number and EISE (FIG. 2E).
E1SE did start to trend up at very high copy numbers, though
this should be interpreted with caution as there were only a
small number of high copy number genes across our
samples. Another possible influence on EISE is the total
number of observations used in its calculation, which cor-
responds in our application to the number of fragments
analyzed per exon. Variation in depth of sequencing at each
exon can occur through variations in targeted probe pull-
down efficiency and other technical factors. To isolate this
effect from copy number, we analyzed the effect of the
number of fragments per exon on E1SE only in copy number
neutral regions. The total number of reads mapped to an
exon did not affect E1SE above a count of ~100 (FIG. 2F).
GC content has also been shown to potentially bias cfDNA
sequencing and various studies have corrected for this bias
when performing fragmentomics analyses through shallow
whole genome sequencing'”> 3, However, we did not find
a significant correlation between exon 1 GC content and
E1SE in either cohort (FIGS. 2G, 2H), possibly because
these panels target a much smaller proportion of the genome
and are comprised primarily of coding DNA. Thus, we
sought to assess the potential utility of E1SE in classifying
and subtyping tumors using targeted panel fragmentomics,
while simultaneously allowing for standard ctDNA somatic
alteration identification.

E1SE Fragmentomics Distinguishes Tumor Subtypes

[0145] First, we examined if the E1SE fragmentation
patterns could be used to reliably classify different cancer
types in our institutional cohort and panel. The UW cohort
contained 320 samples from patients with metastatic disease
from six different tumor types: breast cancer (N=100),
bladder cancer (N=22), lung cancer (N=39), and prostate
cancer (N=144). In addition, we had samples from patients
with metastatic neuroendocrine prostate cancer (N=15,
NEPC), a molecularly and clinically distinct subtype of
prostate cancer.
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[0146] Fragmentomic differences are subtle, and many
studies use machine learning approaches to assess fragmen-
tomic biomarkers. We used elastic-net regression to train a
multi-class classifier to distinguish the different tumor types
in the UW cohort, which was split into 70% training and
30% independent validation. In the training cohort, we
utilized 10-fold cross validation to assess performance and
compared this to the independent validation. We found that
in the training cohort, the E1SE model was able to distin-
guish the different tumor types with an overall accuracy of
82.1% on cross-validation. The performance was similar in
the independent validation cohort, with an overall accuracy
0f'86.6% (FIG. 3A). We additionally tested the performance
of the model using the middle and last coding exon of each
gene and found that accuracy was highest when using the
first coding exon (FIG. 10). When we examined the ROC
curves for each tumor type, the AUCs for all tumor types
were =0.89 (bladder cancer=0.98, breast cancer=0.98, lung
cancer=0.89, prostate cancer=0.99, NEPC=1.00, FIG. 3B)
indicating that E1SE is able to distinguish between tumor
types and subtypes. These results were achieved despite a
median ctDNA fraction of only 0.06. Prediction accuracy
remained high across ctDNA fractions, though numbers are
small in some subgroups (FIG. 3C). We additionally ana-
lyzed the prediction scores for each sample within each
cancer type to determine if incorrect predictions within a
cancer type were biased toward a certain cancer. In all
cancer types, the majority of samples had prediction scores
matching the diagnosed cancer type for that patient (FIG.
3D).

E1SE Fragmentomics Distinguishes Tumor Types and
Tumor vs. Normal in Low ctDNA Fraction Samples

[0147] Given the multiplicity of targeted cfDNA sequenc-
ing platforms currently in clinical and research use that can
differ quite substantially in targeted genes and depth of
sequencing, we sought to test whether our approach was
reproducible, robust, and independent of the specific tar-
geted sequencing panel used. Due to differences in panel
construction, an independent model would be needed for
each platform of interest. We therefore performed a similar
approach in the GRAIL panel and cohort, which contained
198 samples from patients with lung cancer (N=49), breast
cancer (N=48), prostate cancer (N=54), as well as patients
without cancer (N=47)%°. Approximately 347 of the genes
overlap between the GRAIL and UW targeted sequencing
panels. Because of the different panel designs, model train-
ing was performed again using the GRAIL cohort and panel.
The median ctDNA fraction in the GRAIL cohort was 0.076
and the depth of sequencing was much higher than in our
institutional cohort allowing an order of magnitude greater
resolution of very low ctDNA fraction samples. Therefore,
we sought to investigate the sensitivity of E1SE in distin-
guishing tumor types and normal samples at low ctDNA
fractions. To assess this, we split the GRAIL cohort into 70%
training and 30% validation based on ctDNA fractions,
where the validation cohort consisted of the samples with
the lowest ctDNA fractions, all <0.0481, and the training
cohort contains all remaining samples.

[0148] We found that in the training cohort, the E1SE
model was able to distinguish the different tumor types with
an overall accuracy of 80.6% on cross-validation. Remark-
ably, in the independent validation, even at these low ctDNA
fractions, the E1SE model had an overall accuracy of 76.3%
(FIG. 4A). As with the UW cohort, we additionally tested
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model performance using the middle and last coding exon of
each gene and found that accuracy was highest when using
the first coding exon. (FIG. 10). When we examined the
ROC curves for each tumor type, the AUCs were all =0.83
(breast cancer=0.90, lung cancer=0.83, prostate cancer=0.
91, tumor vs. normal=0.99, FIG. 4B). Prediction accuracy
was high in ctDNA fractions down to 0.001, with an
accuracy of 85.7% in samples with ctDNA fractions from
0.001 to 0.01 (FIG. 4C). Unsurprisingly, accuracy was 0%
in predicting tumor type in ctDNA fractions <0.001, thus
identifying the lower limit of distinguishing different tumor
types with this approach. Notably, when considering the
three tumor types grouped together into a single “cancer”
category, the accuracy of distinguishing cancer samples
from normal samples was 100% in samples with ctDNA
fraction <0.001, with the lowest ctDNA fraction being
0.0003. When we analyzed the prediction scores for each
cancer type, as with the UW cohort, the majority of samples
were correctly predicted as their true cancer type (FIG. 4D).

Assessing Performance as a Function of Sequencing Depth

[0149] Since the cost of NGS is not trivial, we wanted to
evaluate how performance of the E1SE fragmentomics
model varied as a function of depth of sequencing. To do
this, we performed down-sampling of GRAIL cohort after
the de-duplication step as this assessed the effect of unique
read depth on model performance. Due to the increased
depth of sequencing from the GRAIL data, we were able to
down-sample all samples to 100, 50, 25, 10, 5, and 1 million
de-duplicated reads which correspond to sequencing depths
of roughly 15000x, 7500x, 3750%, 1500x, 750x, and 150x
respectively for a 2 Mb panel. After down-sampling, E1SE
were calculated as described above. This down-sampling
process was repeated ten times at each level to account for
variability, and the resulting E1SE tables were used for
model training, with assessment being performed in the
independent validation cohort as above. Interestingly, we
found that reduced sequencing had only a modest impact on
model performance, with AUCs between 100 million and 10
million reads remaining stable for breast (0.841 vs 0.888),
prostate (0.929 vs 0.942), lung (0.814 vs. 0.781), and tumor
vs. normal (1.00 vs 0.996) (FIG. 5A). Predicting tumor vs.
normal is particularly robust, with the mean AUC remaining
close to 1 when down-sampled to 1 M reads (AUC=0.996).
Similarly, down-sampling was found to have limited effect
on the accuracy of the model, both overall and within cancer
types down to 1 million reads (FIG. 5B). These results
indicate that high levels of depth are not required for tumor
type prediction using fragmentomics approaches within tar-
geted panels and allows for its application to sequencing
depths used in standard variant calling.

Discussion

[0150] Fragmentomic patterns of cfDNA are non-uniform
and may reflect transcriptional and epigenetic changes from
their cell of origin. A major challenge with current fragmen-
tomic approaches is the requirement for WGS, which cannot
be cost-effectively used to identify somatic alterations and
thus is not the current standard for clinical assays. Herein,
we describe the first fragmentomic approach that can use
targeted cancer gene cfDNA panels to accurately classify
tumor vs. normal as well as tumor types and subtypes, which
performs in the same range as commercial WGS fragmen-
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tomics approaches'”*'®, This approach remains accurate at
distinguishing different tumor types and subtypes down to a
ctDNA fraction of 0.001. At this ctDNA fraction, the GRAIL
assay only has a sensitivity for detecting variants of
65-75%"%. The ability to distinguish prostate cancer adeno-
carcinoma from NEPC suggests that fragmentomics on
targeted panels can also be useful in identifying clinically
relevant biological subtypes for other cancers. Remarkably,
this approach is nearly perfect at distinguishing tumor vs.
normal samples even in samples with ctDNA fractions
ranging from 0.001 to 0.0003. Sensitivity at such low
ctDNA fractions suggests potential clinical applications
such as multi-cancer early detection (MCED) and minimal
residual disease (MRD) detection.

[0151] The applicability of fragmentomics to targeted
ctDNA panels represents a tremendous practical advance-
ment to the field. A single assay could provide multiple
layers of information depending on ctDNA fraction. Tumor
type from fragmentomics can be identified reliably down to
0.1% ctDNA with high depth of sequencing, lower than
many assays can even reliably detect somatic alterations>®
52, 53. Below that, tumor vs. normal can still be identified
using fragmentomic approaches. Since ctDNA fraction is
unknown prior to sequencing, a single unified assay pro-
vides the maximum data regardless, and is also cost effec-
tive. In addition, a single targeted panel cfDNA sequencing
assay allows for maximal use of a plasma sample, as
splitting a sample for multiple assays can decrease the
sensitivity of each, especially at very low ctDNA quantities.
Of note, while ctDNA fraction is a useful metric for these
analyses, it is not always possible to obtain due to the lack
of germline sequencing, which is required for accurate
ctDNA fraction estimation. An advantage of our fragmen-
tomics approach is that it does not require germline sequenc-
ing.

[0152] In conclusion, fragmentomics of targeted ctDNA
panels is not only feasible, but can accurately distinguish
tumor site of origin, tumor subtypes, and tumor vs. normal
even in low ctDNA samples. A single assay combining
fragmentomics and somatic alteration detection provides
tremendous performance, logistical, and cost benefits com-
pared to separate assays for each. This approach merits
incorporation into all existing and future targeted ctDNA
studies.

[0153] Additional considerations are provided in Helzer et
al. 2023 (Helzer K T, Sharifi M N, Sperger ] M, Shi Y,
Annala M, Bootsma M L, Reese S R, Taylor A, Kaufmann
K R, Krause H K, Schehr J L, Sethakorn N, Kosoff D,
Kyriakopoulos C, Burkard M E, Rydzewski N R, Yu M,
Harari P M, Bassetti M, Blitzer G, Floberg J, Sjostrom M,
Quigley D A, Dehm S M, Armstrong A I, Beltran H, Mckay
R R, Feng FY, O’Regan R, Wisinski K B, Emamekhoo H,
Wyatt AW, Lang ] M, Zhao S G. Fragmentomic analysis of
circulating tumor DNA-targeted cancer panels. Ann Oncol.
2023 September;34(9):813-825), which is incorporated by
reference in its entirety and forms a part of the present
disclosure.
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Renal Cell Carcinoma

[0208] EI1SE was tested for its ability to distinguish renal
cell carcinoma (RCC) from other cancer types (FIGS. 11A-
11D). The UW cohort contained 44 RCC samples and 320
non-RCC samples which were split 70/30 into training and
validation cohort, respectively. Validation ROC AUC (which
will be referred to as just AUC below) for RCC using all
genes in the UW panel was 0.85. Validation AUC for RCC
using common genes between the UW panel and the Tempus
XF panel was 0.70. Validation AUC for RCC using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.78. Validation AUC for RCC using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.77.

Breast Cancer Subtypes

[0209] EI1SE was tested for its ability to distinguish hor-
mone receptor positive (HR+) breast cancer from triple
negative breast cancer (INBC) (FIGS. 12A-12D). The UW
cohort contained 81 samples with HR subtype information,
which was split 70/30 into training and validation cohort,
respectively. Validation AUC for HR subtyping using all
genes in the UW panel was 0.96. Validation AUC for HR
subtying using common genes between the UW panel and
the Tempus xF panel was 0.96. Validation AUC for HR
subtying using common genes between the UW panel and
the Guardant 360 CDx panel was 0.75. Validation AUC for
HR subtying using common genes between the UW panel
and the Foundation One Liquid CDx panel was 0.82.

Exon 1 Shannon Entropy Using Overlapping
Tempus/Guardant/Foundation Gene Lists

[0210] Using E1SE as above (FIGS. 13A-13H), validation
AUC in the UW cohort using common genes between the
UW panel and the Tempus xF panel was 0.91 for bladder
cancer, 0.95 for breast cancer, 0.76 for lung cancer, 0.96 for
NEPC, and 0.97 for prostate cancer. Validation AUC in the
UW cohort using common genes between the UW panel and
the Guardant 360 CDx panel was 0.9 for bladder cancer,
0.94 for breast cancer, 0.77 for lung cancer, 0.93 for NEPC,
and 0.97 for prostate cancer. Validation AUC in the UW
cohort using common genes between the UW panel and the
Foundation One Liquid CDx panel was 0.9 for bladder
cancer, 0.97 for breast cancer, 0.78 for lung cancer, 0.99 for
NEPC, and 0.97 for prostate cancer.

[0211] Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus XF
panel was 0.7 for breast cancer, 0.78 for lung cancer, 0.87 for
prostate cancer, and 0.98 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.74 for
breast cancer, 0.75 for lung cancer, 0.9 for prostate cancer,
and 0.97 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.76
for breast cancer, 0.83 for lung cancer, 0.9 for prostate
cancer, and 1.00 for cancer vs normal.

Exon 1 Depth of Sequencing

[0212] Depth of sequencing was calculated by counting
the number of fragments overlapping with each individual
exon across all genes in each respective panel. A minimum
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of 1 bp overlap was required to count as an overlap. Counts
for each exon were then normalized by dividing by the size
of the exon in base pairs and then dividing by the total reads
in the sample. This depth metric in the first coding exons of
each gene in each respective panel was used for model
training and validation as in the E1SE model (FIGS. 14A-
14H).

[0213] Validation AUC in the UW cohort using genes in
the UW panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.96 for lung cancer, 1.00 for NEPC, and 0.99 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.99 for bladder cancer, 0.98 for breast cancer,
0.91 for lung cancer, 0.99 for NEPC, and 0.98 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.97 for bladder cancer, 0.97 for breast cancer,
0.82 for lung cancer, 0.99 for NEPC, and 0.97 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.93 for lung cancer, 0.99 for NEPC, and 1.00 for
prostate cancer.

[0214] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.96 for breast cancer, 0.92 for lung
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.87 for breast cancer, 0.80 for lung cancer, 0.89
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.87 for
breast cancer, 0.68 for lung cancer, 0.89 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.93
for breast cancer, 0.86 for lung cancer, 0.99 for prostate
cancer, and 1.00 for cancer vs normal.

Full Gene Depth of Sequencing

[0215] Full gene depth of sequencing was calculated by
counting the number of fragments overlapping with any
exon for each gene in each respective panel. A minimum of
1 bp overlap was required to count as an overlap. Counts for
each gene were then normalized by dividing by the size of
the sum of the gene’s exons in base pairs and then dividing
by the total reads in the sample. This depth metric for each
gene in each respective panel was used for model training
and validation as in the EISE model (FIGS. 15A-15H).

[0216] Validation AUC in the UW cohort using genes in
the UW panel was 1.00 for bladder cancer, 0.97 for breast
cancer, 0.85 for lung cancer, 1.00 for NEPC, and 0.98 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.99 for bladder cancer, 0.99 for breast cancer,
0.88 for lung cancer, 0.99 for NEPC, and 0.98 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.97 for bladder cancer, 0.96 for breast cancer,
0.83 for lung cancer, 0.98 for NEPC, and 0.93 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
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CDx panel was 1.00 for bladder cancer, 0.97 for breast
cancer, 0.83 for lung cancer, 0.99 for NEPC, and 0.99 for
prostate cancer.

[0217] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.95 for breast cancer, 0.87 for lung
cancer, 0.95 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.89 for breast cancer, 0.76 for lung cancer, 0.96
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.86 for
breast cancer, 0.72 for lung cancer, 0.95 for prostate cancer,
and 0.99 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.87
for breast cancer, 0.75 for lung cancer, 0.96 for prostate
cancer, and 1.00 for cancer vs normal.

Exon 1 Motif Diversity

[0218] For each exon in each gene in each respective
panel, the motif diversity score (MDS) was calculated for
the set of fragments overlapping each exon. A minimum of
1 bp overlap was required to count as an overlap. MDS was
calculated as reported previously**. The MDS metric at the
first coding exon of all genes in the respective panels was
used for model training and validation as in the E1SE model
(FIGS. 16A-16H).

[0219] Validation AUC in the UW cohort using genes in
the UW panel was 0.99 for bladder cancer, 0.99 for breast
cancer, 0.92 for lung cancer, 0.97 for NEPC, and 0.99 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.98 for bladder cancer, 0.91 for breast cancer,
0.84 for lung cancer, 0.87 for NEPC, and 0.92 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.94 for bladder cancer, 0.86 for breast cancer,
0.83 for lung cancer, 0.89 for NEPC, and 0.88 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.97 for bladder cancer, 1.00 for breast
cancer, 0.94 for lung cancer, 0.91 for NEPC, and 0.97 for
prostate cancer.

[0220] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.89 for breast cancer, 0.78 for lung
cancer, 0.89 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.73 for breast cancer, 0.82 for lung cancer, 0.77
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.65 for
breast cancer, 0.72 for lung cancer, 0.77 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.89
for breast cancer, 0.82 for lung cancer, 0.87 for prostate
cancer, and 1.00 for cancer vs normal.

Exon 1 Fragment Size Bins

[0221] For each exon in each gene in each respective
panel, fragments overlapping each exon were extracted and
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then binned by fragment size. A minimum of 1 bp overlap
was required to count as an overlap. The fragment size bins
were 0-100 bp, 101-150 bp, 151-200 bp, 201-250 bp,
251-300 bp, and greater than 300 bp. The proportion of
fragments falling into each of these bins for each exon was
calculated by dividing the number of fragments in each bin
by the total number of fragments overlapping the respective
exon. Bach exon is represented by six fragment size bins.
The fragment bins for the first coding exon of all genes in the
respective panel was used for model training and validation
as in the E1SE model (FIGS. 17A-17H).

[0222] Validation AUC in the UW cohort using genes in
the UW panel was 0.98 for bladder cancer, 0.98 for breast
cancer, 0.87 for lung cancer, 0.99 for NEPC, and 0.97 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.94 for bladder cancer, 0.97 for breast cancer,
0.87 for lung cancer, 0.94 for NEPC, and 0.97 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.89 for bladder cancer, 0.96 for breast cancer,
0.89 for lung cancer, 0.99 for NEPC, and 0.96 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.96 for bladder cancer, 0.97 for breast
cancer, 0.82 for lung cancer, 0.95 for NEPC, and 0.96 for
prostate cancer.

[0223] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.90 for breast cancer, 0.85 for lung
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.88 for breast cancer, 0.78 for lung cancer, 0.92
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.90 for
breast cancer, 0.76 for lung cancer, 0.94 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.88
for breast cancer, 0.86 for lung cancer, 0.98 for prostate
cancer, and 1.00 for cancer vs normal.

Exon 1 Small Fragment Proportions

[0224] For each exon in each gene in each respective
panel, fragments overlapping each exon were extracted and
then the proportion of fragments less than or equal to 150 bp
was calculated for each individual exon. A minimum of 1 bp
overlap was required to count as an overlap. The proportion
of small fragments for the first coding exon of all genes in
the respective panel was used for model training and vali-
dation as in the E1SE model (FIGS. 18A-18H).

[0225] Validation AUC in the UW cohort using genes in
the UW panel was 0.92 for bladder cancer, 0.98 for breast
cancer, 0.79 for lung cancer, 0.98 for NEPC, and 0.93 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.76 for bladder cancer, 0.88 for breast cancer,
0.85 for lung cancer, 0.92 for NEPC, and 0.86 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.68 for bladder cancer, 0.85 for breast cancer,
0.65 for lung cancer, 0.98 for NEPC, and 0.83 for prostate
cancer. Validation AUC in the UW cohort using common
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genes between the UW panel and the Foundation One Liquid
CDx panel was 0.94 for bladder cancer, 0.91 for breast
cancer, 0.71 for lung cancer, 0.93 for NEPC, and 0.87 for
prostate cancer.

[0226] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.91 for breast cancer, 0.88 for lung
cancer, 0.90 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.86 for breast cancer, 0.78 for lung cancer, 0.82
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.82 for
breast cancer, 0.73 for lung cancer, 0.83 for prostate cancer,
and 0.98 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.89
for breast cancer, 0.89 for lung cancer, 0.93 for prostate
cancer, and 1.00 for cancer vs normal.

All Exons Shannon Entropy

[0227] Shannon entropy (SE) was calculated as described
above for all exons for all genes in each respective gene
panel. SE for all exons for all genes were used as features for
model training and validation (FIGS. 19A-19H).

[0228] Validation AUC in the UW cohort using genes in
the UW panel was 0.97 for bladder cancer, 0.99 for breast
cancer, 0.89 for lung cancer, 1.00 for NEPC, and 0.99 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.97 for bladder cancer, 0.98 for breast cancer,
0.87 for lung cancer, 1.00 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.96 for bladder cancer, 0.95 for breast cancer,
0.86 for lung cancer, 1.00 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.97 for bladder cancer, 0.99 for breast
cancer, 0.91 for lung cancer, 1.00 for NEPC, and 0.99 for
prostate cancer.

[0229] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.84 for breast cancer, 0.81 for lung
cancer, 0.97 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.77 for breast cancer, 0.76 for lung cancer, 0.91
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.78 for
breast cancer, 0.81 for lung cancer, 0.91 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.81
for breast cancer, 0.81 for lung cancer, 0.96 for prostate
cancer, and 1.00 for cancer vs normal.

All Exons Depth

[0230] Depth of sequencing was calculated by counting
the number of fragments overlapping with each individual
exon acorss all genes in each respective panel. A minimum
of 1 bp overlap was required to count as an overlap. Counts
for each exon were then normalized by dividing by the size
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of the exon in base pairs and then dividing by the total reads
in the sample. This depth metric in all coding exons of each
gene in each respective panel was used for model training
and validation (FIGS. 20A-20H).

[0231] Validation AUC in the UW cohort using genes in
the UW panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.97 for lung cancer, 1.00 for NEPC, and 1.00 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 1.00 for bladder cancer, 0.99 for breast cancer,
0.94 for lung cancer, 1.00 for NEPC, and 1.00 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.99 for bladder cancer, 0.98 for breast cancer,
0.93 for lung cancer, 0.99 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.95 for lung cancer, 1.00 for NEPC, and 1.00 for
prostate cancer.

[0232] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.95 for breast cancer, 0.91 for lung
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.95 for breast cancer, 0.90 for lung cancer, 0.98
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.92 for
breast cancer, 0.88 for lung cancer, 0.97 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.94
for breast cancer, 0.90 for lung cancer, 0.98 for prostate
cancer, and 1.00 for cancer vs normal.

All Exons Motif Diversity Score

[0233] For each exon in each gene in each respective
panel, the motif diversity score (MDS) was calculated for
the set of fragments overlapping each exon. A minimum of
1 bp overlap was required to count as an overlap. MDS was
calculated as reported previously24. The MDS metric at all
coding exon of all genes in the respective panels was used
for model training and validation as in the E1SE model
(FIGS. 21A-21H).

[0234] Validation AUC in the UW cohort using genes in
the UW panel was 0.99 for bladder cancer, 0.98 for breast
cancer, 0.88 for lung cancer, 0.99 for NEPC, and 0.98 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 1.00 for bladder cancer, 0.99 for breast cancer,
0.92 for lung cancer, 0.99 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.99 for bladder cancer, 0.97 for breast cancer,
0.86 for lung cancer, 0.99 for NEPC, and 0.98 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.94 for lung cancer, 1.00 for NEPC, and 0.99 for
prostate cancer.

[0235] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.86 for breast cancer, 0.73 for lung
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs
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normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.79 for breast cancer, 0.74 for lung cancer, 0.92
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.82 for
breast cancer, 0.72 for lung cancer, 0.89 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.85
for breast cancer, 0.75 for lung cancer, 0.96 for prostate
cancer, and 1.00 for cancer vs normal.

All Exons Small Fragment Proportions

[0236] For each exon in each gene in each respective
panel, fragments overlapping each exon were extracted and
then the proportion of fragments less than or equal to 150 bp
was calculated for each individual exon. A minimum of 1 bp
overlap was required to count as an overlap. The proportion
of small fragments for all coding exons of all genes in each
respective panel was used for model training and validation
as in the E1SE model (FIGS. 22A-22H).

[0237] Validation AUC in the UW cohort using genes in
the UW panel was 0.98 for bladder cancer, 0.99 for breast
cancer, 0.85 for lung cancer, 1.00 for NEPC, and 0.97 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.93 for bladder cancer, 0.96 for breast cancer,
0.78 for lung cancer, 1.00 for NEPC, and 0.93 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.87 for bladder cancer, 0.99 for breast cancer,
0.78 for lung cancer, 1.00 for NEPC, and 0.93 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.98 for bladder cancer, 0.99 for breast
cancer, 0.86 for lung cancer, 1.00 for NEPC, and 0.97 for
prostate cancer.

[0238] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.91 for breast cancer, 0.85 for lung
cancer, 0.97 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.89 for breast cancer, 0.83 for lung cancer, 0.96
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.89 for
breast cancer, 0.80 for lung cancer, 0.93 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.91
for breast cancer, 0.87 for lung cancer, 0.97 for prostate
cancer, and 1.00 for cancer vs normal.

Combination Strategies—FE1Se+E1depth

[0239] The features from EISE and Eldepth were com-
bined into one feature table which was then used for model
training and validation (FIGS. 23A-23H).

[0240] Validation AUC in the UW cohort using genes in
the UW panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.95 for lung cancer, 0.99 for NEPC, and 0.99 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
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panel was 1.00 for bladder cancer, 0.98 for breast cancer,
0.93 for lung cancer, 0.99 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.98 for bladder cancer, 0.97 for breast cancer,
0.91 for lung cancer, 0.99 for NEPC, and 0.99 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.95 for lung cancer, 0.98 for NEPC, and 0.99 for
prostate cancer.

[0241] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.88 for breast cancer, 0.82 for lung
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.87 for breast cancer, 0.80 for lung cancer, 0.94
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.83 for
breast cancer, 0.75 for lung cancer, 0.94 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.89
for breast cancer, 0.82 for lung cancer, 0.95 for prostate
cancer, and 1.00 for cancer vs normal.

Combination Strategies—All Exons Shannon
Entropy and Depth

[0242] The Shannon Entropy and Depth for each exon for
each gene in each respective gene panel were combined into
one feature table which was then used for model training and
validation. In instances where the number of features was
greater than 15000, the features were limited to the top
15000 feature with the highest variance across samples
(FIGS. 24A-24H).

[0243] Validation AUC in the UW cohort using genes in
the UW panel was 1.00 for bladder cancer, 0.99 for breast
cancer, 0.93 for lung cancer, 1.00 for NEPC, and 1.00 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 1.00 for bladder cancer, 0.99 for breast cancer,
0.96 for lung cancer, 1.00 for NEPC, and 1.00 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 1.00 for bladder cancer, 0.99 for breast cancer,
0.94 for lung cancer, 0.99 for NEPC, and 1.00 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
CDx panel was 0.99 for bladder cancer, 0.99 for breast
cancer, 0.93 for lung cancer, 1.00 for NEPC, and 1.00 for
prostate cancer.

[0244] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.92 for breast cancer, 0.86 for lung
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.92 for breast cancer, 0.87 for lung cancer, 0.98
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.90 for
breast cancer, 0.85 for lung cancer, 0.97 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
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panel and the Foundation One Liquid CDx panel was 0.92
for breast cancer, 0.88 for lung cancer, 0.99 for prostate
cancer, and 1.00 for cancer vs normal.

Predicting Ctdna Fraction Using Exon 1 Shannon
Entropy

[0245] Cancer samples in both the UW and GRAIL
cohorts were separated into two categories based on their
ctDNA fraction. Samples with a ctDNA fraction less than
0.05 were categorized as “low” and samples with a ctDNA
fraction greater than or equal to 0.05 were categorized as
“high”.

[0246] The E1SE metric from each gene in each respective
gene panel was then used to predict high or low ctDNA
fraction using a 10-fold cross validation approach in each
cohort separately (FIGS. 25A-25B). The AUC for predicting
high vs. low ctDNA fraction in the UW cohort was 0.87 and
the AUC for predicting high vs. low ctDNA fraction in the
GRAIL cohort was 0.91.

Shannon Entropy of Reads Overlapping
Trascription Factor Binding Sites

[0247] Consensus transcription factor binding sites
(TFBS) were obtained from the Gene Transcription Regu-
lation Database (GTRD). The transcription factors analyzed
were ADA2, ADCYAP1, ADNP, AEBP2, AFF1, AFF4,
AGO1, AGO2, AHR, AHRR, ALKBH3, ALX4, ALYREF,
AMH, APC, APOBEC3B, AR, ARHGAP3S5, ARIDIA,
ARIDIB, ARID2, ARID3A, ARID3B, ARID4B, ARIDSB,
ARNT, ARNT2, ARNTL, ARRBI1, ASCLI, ASCL2,
ASF1A, ASHIL, ASH2L, ASXL2, ATF1, ATF2, ATF3,
ATF4, ATFS, ATF6, ATF7, ATF7IP, ATM, ATOHI, ATRX,
AUTS2, BACHI, BACH2, BAHDI, BANP, BAPI,
BARHLI1, BARX1, BARX2, BATF, BATF2, BATF3, BBX,
BCHE, BCLI1A, BCLI11B, BCL3, BCL6, BCLG6B,
BCLAF1, BCOR, BDP1, BHLHE40, BHLHE41, BICRA,
BMII, BPTF, BRCA1, BRD1, BRD2, BRD3, BRD4, BRD7,
BRD9, BRF1, BRF2, BRPF3, CARMI, CASPSAP2,
CASZI1, CAT, CAVIN1, CBFA2T2, CBFA2T3, CBFB,
CBX1, CBX2, CBX3, CBX5, CBX6, CBX7, CBXS,
CC2DI1A, CCAR2, CCND2, CCNT2, CDCSL, CDC73,
CDK12, CDK2, CDK7, CDK8, CDK9, CDKNI1B, CDX1,
CDX2, CEBPA, CEBPB, CEBPD, CEBPE, CEBPG,
CEBPZ, CENPA, CENPT, CGAS, CHAF1A, CHAFIB,
CHAMPI, CHDI1, CHD2, CHD4, CHD7, CHDS, CHTOP,
CIC, CIITA, CLOCK, c-myc, CNOT3, COBLLI1, COIL,
COPS2, CPSF3, CREBI1, CREB3, CREB3L1, CREB3L2,
CREB3L4, CREBBP, CREBL2, CREM, CRY1, CSHLI,
CSNK2A1, CTBP1, CTBP2, CTCF, CTCFL, CTNNBI,
CTRY, CULA4A, CUX1, CXXC1, CXXC4, DACHI, DAXX,
DBP, DCP1A, DDIT3, DDX11, DDX20, DDX21, DDXS5,
DEAF1, DEK, DICERI1, DIDO1, DKK1, DLX1, DLX2,
DLX4, DLX6, DMAP1, DMCIl, DMRTI, DNMTI,
DNMT3A, DNMT3B, DOTI1L, DPF2, DPPA3, DRAPI,
DROSHA, DTL, DUX4, DYRKI1A, E2F1, E2F2, E2F3,
E2F4, E2F5, E2F6, E2F7, E2F8, E4F1, EBF1, EBF3,
EBNAIBP2, EBP, EED, EGFR, EGR1, EGR2, EGR3, EHF,
EHMT?2, ELF1, ELF2, ELF3, ELF4, ELF5, ELK1, ELK3,
ELK4, ELL2, EMSY, EMX1, EOMES, EP300, EP400,
EPASI, EPCI1, ERCC2, ERCC3, ERCC6, ERCCS, ERF,
ERG, ESCO2, ESR1, ESR2, ESRRA, ETS1, ETS2, ETV1,
ETV2,ETV4,ETVS5, ETV6, ETV7, EVX1, EWSR1, EZH2,
F10, F2RL1, FAM208A, FANCD2, FEV, FEZF1, FGFR1,
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FIPIL1, FLII, FOS, FOSB, FOSL1, FOSL2, FOXAI,
FOXA2, FOXA3, FOXC1, FOXD2, FOXD3, FOXEI,
FOXF1, FOXF2, FOXG1, FOXHI, FOXJ2, FOXKI,
FOXK2, FOXMI, FOXN3, FOXOI1, FOX03, FOXO4,
FOXP1, FOXP2, FOXP3, FOXQI, FOXR2, FUS, FXRI,
FXR2, GABPA, GABPBI, GATAl, GATA2, GATA3,
GATA4, GATAG, GATAD1, GATAD2A, GATAD2B, GFII,
GFIIB, GLI1, GLI2, GLI3, GLI4, GLIS1, GLIS2, GLIS3,
GMEBI, GMEB2, GREBI1, GRHL1, GRHL2, GRHL3,
GTF2A2, GTF2B, GTF2E2, GTF2F1, GTF3A, GTF3C2,
GTF3C5, GUCY1B3, GZF1, H2AFZ, HAND1, HAND2,
HBP1, HBZ, HCFC1, HDAC1, HDAC2, HDAC3, HDAC4,
HDAC6, HDACS, HDGF, HDGFL3, HES1, HES2, HES4,
HES5, HES7, HESX1, HEXIMI, HEY1, HEY?2, HEYL,
HHEX, HIC1, HIC2, HIF1A, HIF3A, HINFP, HIRA, HIS-
TIHIT, HIVEP1, HIVEP3, HJURP, HLF, HMBOXI,
HMCES, HMG20A, HMG20B, HMGAI, HMGA?2,
HMGB1, HMGB2, HMGN3, HMGXB4, HNF1A, HNFIB,
HNF4A, HNF4G, HNRNPHI, HNRNPK, HNRNPL,
HNRNPLL, HNRNPUL1, HOMEZ, HOXA1, HOXA10,
HOXA13, HOXA2, HOXA4, HOXAS5, HOXAG, HOXA7,
HOXA9, HOXB13, HOXB4, HOXB5, HOXB6, HOXB7,
HOXBS, HOXC11, HOXC13, HOXCS, HOXC6, HOXCS,
HOXCY9, HOXDI1, HOXDI1, HOXD4, HOXDO,
HSD17B8, HSF1, HSF2, HSF4, ID1, ID2, ID3, ID4,
IGFIR, IGLV5-37, IKZF1, IKZF2, IKZF3, IKZF5, ILF3,
ILK, ING2, INGS5, INO80, INSM2, INSR, INTSII,
INTS12, INTS13, INTS3, IRF1, IRF2, IRF3, IRF4, IRFS5,
IRFS, IRFY9, IRX2, IRX3, IRX5, ISL1, ISL2, IVNSIABP,
JARID2, JDP2, JMID6, JUN, JUNB, JUND, KAT2A,
KAT2B, KATS, KAT7, KATS, KDM1A, KDMIB, KDM2B,
KDM3A, KDM3B, KDM4A, KDM4B, KDM4C, KDM5A,
KDMS5B, KDM5C, KDMS5D, KDM6A, KDM6B, KDM7A,
KLF1, KLF10, KLF11, KLF12, KLF13, KLF14, KLF15,
KLF16, KLF17, KLF3, KLF4, KLF5, KLF6, KLF7, KLFS,
KLF9, KMT2A, KMT2B, KMT2C, KMT2D, L3 MBTL?2,
I3 MBTL4, LAMB3, LAMTORS5, LARP7, LCORL,
LDB1, LEF1, LEO1, LHX2, LHX3, LHX4, LHX5, LHXG6,
LHX9, LMNA, LMNBI, LMNB2, LMOIl, LMTK3,
LMXIB, LYL1, MAF, MAFB, MAFF, MAFG, MAFK,
MAML1, MAPILC3B, MAP2KI, MAPK14, MAPK3,
MAX, MAZ, MBD1, MBD2, MBD3, MBD3L2, MBD4,
MBL2, MBTDI, MBTPS2, MCM2, MCM3, MCMS,
MCM7, MCRS1, MDM2, MEI, ME3, MECOM, MECP2,
MEDI12, MED26, MEF2A, MEF2B, MEF2C, MEF2D,
MEIS1, MEIS2, MEN1, MEOX2, METTL 14, METTLS3,
MGA, MIER1, MIER2, MIER3, MITF, MIXL1, MLLT1,
MLLT3, MLX, MLXIP, MNT, MNXI, MORC2,
MPHOSPHS, MSC, MSX1, MSX2, MTA1, MTA2, MTA3,
MTHFD1, MTOR, MUC22, MXD1, MXD3, MXD4, MXII,
MYB, MYBL1, MYBL2, MYC, MYCN, MYF5, MYF6,
MYH11, MYNN, MYOCD, MYODI, MYOG, MYRE,
MZF1, NAB2, NANOG, NBN, NCAPH2, NCOAI,
NCOA2, NCOA3, NCOA4, NCOA6, NCOR1, NCOR2,
NELFA, NELFE, NEURODI1, NEUROD2, NEUROG2,
NEUROG3, NFATS5, NFATC1, NFATC3, NFATC4, NFE2,
NFE2L1, NFE2L2, NFE2L3, NF1A, NFIB, NFIC, NFIL3,
NFKB1, NFKB2, NFKB1A, NFKBIZ, NFRKB, NFXLI,
NFYA, NFYB, NFYC, NHLHI, NIPBL, NKX2-1, NKX2-2,
NKX2-3, NKX2-5, NKX2-8, NKX3-1, NKX6-1, NME2,
NONO, NOTCHI, NOTCH3, NPAT, NROBI, NRIDI,
NRIH2, NR1H3, NRIH4, NR112, NR2C1, NR2C2, NR2E3,
NR2F1, NR2F2, NR2F6, NR3Cl, NR3C2, NR4Al,
NR4A2, NR5A1, NR5A2, NRF1, NSD2, NUFIPI,
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NUP153, NUP98, NXF1, OGG1, ONECUT2, OR2M7,
ORC1, ORC2, OSR2, OTX1, OTX2, OVOL2, OVOL3,
p65, PADI2, PAF1, PALB2, PARP1, PATZ1, PAX2, PAX3,
PAXS5, PAX6, PAX7, PAXS8, PBRMI, PBX1, PBX2, PBX3,
PBX4, PBXIP1, PCBP1, PCBP2, PCF11, PCGF1, PCGF2,
PCGF5, PCGF6, PDX1, PER1, PEX2, PGBDS5, PGR,
PHB2, PHF2, PHF20, PHF21A, PHF5A, PHF6, PHFS,
PHOX2B, PIASI, PIAS4, PITXI, PITX3, PKNOXI,
PLAG1, PLRG1, PML, POU2F1, POU2F2, POU3F2,
POUSF1, PPARA, PPARD, PPARG, PPARGC1A, PRDMI,
PRDM10, PRDMI11, PRDMI2, PRDMI4, PRDM2,
PRDM4, PRDM5, PRDM6, PRDM9, PRKCQ, PRKDC,
PRMT1, PRMT5, PROX1, PRPF4, PSMB5, PTBP1, PTEN,
PTPRA, PTTG1, PYGO2, RAD21, RAD51, RAG1, RAG2,
RARA, RARB, RARG, RAX2, RBI, RBAK, RBBP5,
RBFOX2, RBLI, RBL2, RBMIl4, RBMI5, RBMI17,
RBM22, RBM25, RBM34, RBM39, RBPJ, RCORI,
RCOR2, REL, RELA, RELB, REPIN1, RERE, REST,
RFX1, RFX2, RFX3, RFX5, RFX7, REXANK, RINGI,
RLF, RNF2, RNGTT, RORA, RPAl, RPA2, RUNXI,
RUNXITI, RUNX2, RUNX3, RUVBL1, RUVBL2,
RXRA, RXRB, RYBP, SAFB, SAFB2, SALLI1, SALL2,
SALL3, SALL4, SAP130, SAP30, SATBI, SCMIL2,
SCRT1, SCRT2, SETBP1, SETDI1A, SETD7, SETDBI,
SETX, SFMBTI, SFPQ, SIGMARI, SIN3A, SIN3B,
SIPA1, SIRT1, SIRT3, SIRT6, SIX1, SIX2, SIX4, SIX5,
SK1, SKIL, SKP2, SLC30A9, SMAD1, SMAD2, SMAD3,
SMAD4, SMADS, SMARCA1, SMARCA?2, SMARCA4,
SMARCAS, SMARCBI, SMARCCI1, SMARCC2,
SMARCE1, SMC1A, SMC3, SMCHDI, SMN1, SNATII,
SNAI2, SNAPC2, SNAPC4, SNIP1, SNRNP70, SODI,
SON, SOX10, SOX11, SOX13, SOX15, SOX17, SOX2,
SOX3, SOX4, SOX5, SOX6, SOX9, SP1, SP140, SP2, SP3,
SP4, SP5, SP7, SPDEF, SPII, SPIB, SQSTMI, SRC,
SRCAP, SREBF1, SREBF2, SRF, SRPK 1, SRPK2, SRSF3,
SRSF4, SRSF7, SRSF9, SS18, SS18/SSX1, SSRP1, SSU72,
STAG1, STAG2, STAT1, STAT2, STAT3, STAT4, STATSA,
STATSB, STAT6, STN1, SUMO1, SUMO2, SUPTI16H,
SUPT20H, SUPT5H, SUZ12, SVIL, SYNCRIP, T, TAF1,
TAF12, TAF15, TAF3, TAF7, TAF9B, TAL1, TARDBP,
TAZ, TBLIXRI, TBP, TBPL1, TBXI, TBX2, TBX2l,
TBX3, TBXS, TCF12, TCF3, TCF4, TCF7, TCF7L1,
TCF7L2, TCFL5, TCOF1, TDRD3, TEADI, TEAD2,
TEAD3, TEAD4, TERF1, TERF2, TERT, TET1, TET2,
TET3, TFAM, TFAP2A, TFAP2C, TFAP4, TECP2, TFDPI,
TFDP2, TFE3, TFEB, TGIF1, TGIF2, THAP1, THAPII,
THRA, THRAP3, THRB, TLE3, TLX1, TOP1, TOP2B,
top2beta, TOX4, TP53, TP53BP1, TP63, TP73, TRIM22,
TRIM24, TRIM25, TRIM28, TRIP13, TRPS1, TSC22D4,
TSHZ1, TUBGI1, TWISTI, U2AF1, U2AF2, UBE2I,
UBN1, UBP1, UBTF, USF1, USF2, USP7, VDR, VEZF1,
WDHDI1, WDR5, WIZ, WRN, WRNIP1, WT1, XBPI,
XRCC3, XRCC4, XRCC5, XRN2, YAP1, YBX1, YBX3,
YYL, YY2, ZA, ZBEDI1, ZBED4, ZBEDS5, ZBTBI,
7ZBTB10, ZBTB11, ZBTB12, ZBTB14, ZBTB16, ZBTB17,
7ZBTBI8, ZBTB2, ZBTB20, ZBTB21, ZBTB24, ZBTB25,
ZBTB26, ZBTB33, ZBTB39, ZBTB40, ZBTB42, ZBTB44,
ZBTB48, ZBTB49, ZBTBS, ZBTB6, ZBTB7A, ZBTB7B,
ZBTBSA, ZC3H11A, ZC3HS, ZEBI, ZEB2, ZFAT, ZFHX2,
ZFHX3, ZFP1, ZFP28, ZFP3, ZFP36, ZFP36L1, ZFP37,
7FP42, 7ZFP64, ZFPGOB, ZFP82, ZFP91, ZFX, ZGPAT,
ZHX1, ZHX2, ZIC2, ZIK1, ZIM3, ZKSCAN1, ZKSCANS,
ZMIZI, ZMYM2, ZMYM3, ZMYNDIl, ZMYNDS,
ZNF10, ZNF101, ZNF112, ZNF114, ZNF121, ZNF132,
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ZNF133, ZNF134, ZNF136, ZNF138, ZNF140, ZNF143,
ZNF146, ZNF148, ZNF155, ZNF157, ZNF16, ZNF165,
ZNF169, ZNF174, ZNF175, ZNF18, ZNF184, ZNF189,
ZNF19, ZNF195, ZNF197, ZNF2, ZNF202, 7ZNF205,
ZNF207, ZNF211, ZNF213, ZNF214, ZNF217, ZNF22,
ZNF221, ZNF223, ZNF224, 7ZNF23, ZNF236, ZNF239,
ZNF24, 7ZNF248, ZNF250, ZNF257, ZNF26, ZNF260,
ZNF263, 7ZNF264, 7ZNF266, ZNF274, ZNF280A,
ZNF280C, ZNF280D, ZNF281, ZNF282, ZNF292, ZNF3,
ZNF30, ZNF300, ZNF302, ZNF311, ZNF316, ZNF317,
ZNF318, ZNF320, ZNF322, ZNF324, ZNF329, ZNF331,
ZNF335, ZNF33A, ZNF34, 7ZNF341, ZNF35, 7ZNF350,
ZNF354A, ZNF354B, ZNF354C, ZNF362, ZNF366,
ZNF37A, ZNF382, ZNF384, ZNF391, ZNF394, ZNF395,
7ZNF398, ZNF404, ZNF407, ZNF41, ZNF410, ZNF416,
7ZNF418, ZNF419, ZNF423, ZNF426, ZNF433, ZNF436,
7ZNF444, ZNF445, 7NF449, ZNF454, ZNF467, ZNF473,
ZNF48, ZNF486, ZNF488, ZNF490, ZNF491, 7ZNF493,
ZNF501, ZNF502, ZNF507, ZNF510, ZNF511, ZNF512,
ZNF512B, ZNF513, ZNF514, ZNF518A, ZNF521,
ZNF524, ZNF528, ZNF529, ZNF530, ZNF532, ZNF544,
ZNF547, ZNF548, ZNF549, ZNF554, ZNF555, ZNF558,
ZNF560, ZNF561, ZNF563, ZNF571, ZNF574, ZNF577,
ZNF579, ZNF580, ZNF581, ZNF582, ZNF584, ZNF585B,
ZNF586, ZNF589, ZNF592, ZNF595, ZNF596, ZNF597,
ZNF600, ZNF610, ZNF614, ZNF618, ZNF621, ZNF622,
ZNF623, ZNF624, ZNF626, ZNF629, ZNF639, ZNF644,
ZNF645, ZNF652, ZNF654, ZNF658, ZNF660, ZNF662,
ZNF664, ZNF667, ZNF669, ZNF670, ZNF677, ZNF680,
ZNF687, ZNF692, ZNF697, ZNF7, ZNF701, ZNF704,
ZNF707, ZNF708, ZNF711, ZNF740, ZNF747, ZNF75A,
ZNF76, ZNF766, ZNF768, ZNF770, ZNF774, ZNF776,
ZNF777, ZNF778, ZNF781, ZNF784, ZNF785, ZNF791,
ZNF792, ZNF8, ZNF816, ZNF83, ZNF830, ZNF837,
ZNF84, ZNF843, ZNF85, ZNF92, ZSCAN16, ZSCANI1S,
ZSCAN2, 7ZSCAN21, ZSCAN22, ZSCAN23, ZSCAN26,
ZSCAN29, ZSCAN30, ZSCAN31, ZSCAN4, ZSCANSA,
ZSCANSB, ZSCANSC, ZSCANSDP, ZSCAN9, ZXDB,
ZXDC, and Z773. Within each transcription factor, the top
5,000 sites with the greatest experimental support were
chosen. In this section “experimental support” is defined as
the number of experiments which detected the site. cfDNA
fragments were then overlapped with each set of TFBS to
yield a set of reads which overlapped with each set of TFBS.
Shannon entropy was calculated using the counts of the read
lengths for the reads overlapping each set of TFBS for each
sample to yield one feature per transcription factor. This
feature table was used for model training and validation as
in the ESE model (FIGS. 26A-26H).

[0248] Validation AUC in the UW cohort using genes in
the UW panel was 0.97 for bladder cancer, 0.99 for breast
cancer, 0.93 for lung cancer, 0.99 for NEPC, and 0.97 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.89 for bladder cancer, 0.80 for breast cancer,
0.80 for lung cancer, 0.92 for NEPC, and 0.88 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.86 for bladder cancer, 0.89 for breast cancer,
0.86 for lung cancer, 0.89 for NEPC, and 0.94 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
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CDx panel was 0.90 for bladder cancer, 0.89 for breast
cancer, 0.87 for lung cancer, 0.96 for NEPC, and 0.93 for
prostate cancer.

[0249] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.91 for breast cancer, 0.82 for lung
cancer, 0.94 for prostate cancer, and 1.00 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.76 for breast cancer, 0.89 for lung cancer, 0.95
for prostate cancer, and 1.00 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.79 for
breast cancer, 0.84 for lung cancer, 0.92 for prostate cancer,
and 1.00 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.83
for breast cancer, 0.83 for lung cancer, 0.92 for prostate
cancer, and 1.00 for cancer vs normal.

Shannon Entropy of Reads Overlapping Areas of
Open Chromatin Defined by Atac-Seq

[0250] Consensus genomic regions of open chromatin as
defined by the Assay for Transposase-Accessible Chromatin
with sequencing (ATAC-Seq) was downloaded from The
Cancer Genome Atlas (TCGA) for 23 different cancer types.
The cancer types analyzed were Adrenocortical carcinoma
(ACC), Bladder Urothelial Carcinoma (BLCA), Breast inva-
sive carcinoma (BRCA), squamous cell carcinoma and
endocervical adenocarcinoma (CESC), Cervical Cholangio-
carcinoma (CHOL), Colon adenocarcinoma (COAD),
Esophageal carcinoma (ESCA), Glioblastoma multiforme
(GBM), Head and Neck squamous cell carcinoma (HNSC),
Kidney renal clear cell carcinoma (KIRC), Kidney renal
papillary cell carcinoma (KIRP), Low Grade Glioma (LGG),
Liver hepatocellular carcinoma (LIHC), Lung adenocarci-
noma (LUAD), Lung squamous cell carcinoma (LUSC),
Mesothelioma (MESO), Pheochromocytoma and Paragan-
glioma (PCPG), Prostate adenocarcinoma (PRAD), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid
carcinoma (THCA), and Uterine Corpus Endometrial Car-
cinoma (UCEC). cfDNA fragments were then overlapped
with each set of open chromatin regions to yield a set of
reads which overlapped with each set of open chromatin
regions for each cancer type. Shannon entropy was calcu-
lated using the counts of the read lengths for reads overlap-
ping each set of open chromatin regions for each sample to
yield one feature per cancer type listed above. This feature
table was used for model training and validation as in the
E1SE model (FIGS. 27A-27H).

[0251] Validation AUC in the UW cohort using genes in
the UW panel was 0.86 for bladder cancer, 0.85 for breast
cancer, 0.81 for lung cancer, 0.85 for NEPC, and 0.84 for
prostate cancer. Validation AUC in the UW cohort using
common genes between the UW panel and the Tempus xF
panel was 0.89 for bladder cancer, 0.82 for breast cancer,
0.79 for lung cancer, 0.90 for NEPC, and 0.81 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Guardant 360 CDx
panel was 0.82 for bladder cancer, 0.72 for breast cancer,
0.72 for lung cancer, 0.74 for NEPC, and 0.74 for prostate
cancer. Validation AUC in the UW cohort using common
genes between the UW panel and the Foundation One Liquid
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CDx panel was 0.81 for bladder cancer, 0.81 for breast
cancer, 0.83 for lung cancer, 0.94 for NEPC, and 0.84 for
prostate cancer.

[0252] Validation AUC in the GRAIL cohort using genes
in the GRAIL panel was 0.72 for breast cancer, 0.73 for lung
cancer, 0.61 for prostate cancer, and 0.99 for cancer vs
normal. Validation AUC in the GRAIL cohort using com-
mon genes between the GRAIL panel and the Tempus xF
panel was 0.62 for breast cancer, 0.70 for lung cancer, 0.69
for prostate cancer, and 0.97 for cancer vs normal. Validation
AUC in the GRAIL cohort using common genes between the
GRAIL panel and the Guardant 360 CDx panel was 0.63 for
breast cancer, 0.66 for lung cancer, 0.81 for prostate cancer,
and 0.96 for cancer vs normal. Validation AUC in the
GRAIL cohort using common genes between the GRAIL
panel and the Foundation One Liquid CDx panel was 0.64
for breast cancer, 0.70 for lung cancer, 0.72 for prostate
cancer, and 0.97 for cancer vs normal.

Testing Model Performance Across Features

[0253] Using all metrics calculated (E1SE, exon 1 depth,
E1SE and exon 1 depth, all exons Shannon entropy (SE), all
exons depth, combining all exons depth and Shannon
entropy, full gene depth, exon 1 MDS, all exon MDS; exon
1 small fragment proportions, all exons small fragment
proportions, fragment size bins, TFBS entropy, and ATAC
region entropy) samples in the UW cohort (FIGS. 28A-28L)
and the GRAIL cohort (FIGS. 29A-29H) were analyzed for
model performance to predict cancer type. The UW cohort
comprises bladder cancer, breast cancer, lung cancer, renal
cell cancer (RCC), prostate adenocarcinoma (Prostate), and
neuroendocrine prostate cancer (NEPC). UW breast cancer
samples were further split into ER positive (ERpos) and ER
negative (ERneg) samples. UW lung cancer samples were
further split into small cell lung cancer (SCLC) and non-
small cell lung cancer (NSCLC). Ten replicates of the
10-fold cross-validation model were performed and
AUROC was calculated to assess performance. The best
performing metric in the UW cohort with the UW panel was
“all exons Shannon entropy and depth” with mean AUROCs
ranging from 0.872-0.985. Across all feature types, the mean
AUROC ranged from 0.692-0.989 (FIG. 28A). The best
performing metric in the UW cohort with the Tempus xF
panel was “all exons depth” with mean AUROCs ranging
from 0.852-0.975. Across all feature types, the mean
AUROC ranged from 0.584-0.991 (FIG. 28B). The best
performing metric in the UW cohort with the Guardant 360
CDx panel was “all exons depth” with mean AUROCs
ranging from 0.856-0.978. Across all feature types, the mean
AUROC ranged from 0.546-0.978 (FIG. 28C). The best
performing metric in the UW cohort with the Foundation
One Liquid CDx panel was “all exons depth” with mean
AUROCs ranging from 0.844-0.980. Across all feature
types, the mean AUROC ranged from 0.657-0.989 (FIG.
28D). The best performing metric in the GRAIL cohort with
the GRAIL panel was “all exons depth” with mean AUROCs
ranging from 0.922-1.000. Across all feature types, the mean
AUROC ranged from 0.807-1.000 (FIG. 29A). The best
performing metric in the GRAIL cohort with the Tempus XF
panel was “all exons depth” with mean AUROCs ranging
from 0.904-1.000. Across all feature types, the mean
AUROC ranged from 0.745-1.000 (FIG. 29B). The best
performing metric in the GRAIL cohort with the Guardant
360 CDx panel was “all exons SE and depth” with mean
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AUROCs ranging from 0.894-1.000. Across all feature
types, the mean AUROC ranged from 0.728-1.000 (FIG.
29C). The best performing metric in the GRAIL cohort with
the Foundation One Liquid CDx panel was “all exons SE
and depth” with mean AUROCS ranging from 0.895-1.000.
Across all feature types, the mean AUROC ranged from
0.743-1.000 (FIG. 29D).

Testing Model Performance Across Features by
Ctdna Fraction

[0254] Using all metrics calculated (E1SE, exon 1 depth,
E1SE and exon 1 depth, all exons Shannon entropy (SE), all
exons depth, combining all exons depth and Shannon
entropy, full gene depth, exon 1 MDS, all exon MDS, exon
1 small fragment proportions, all exons small fragment
proportions, fragment size bins, TFBS entropy, and ATAC
region entropy) samples in the UW cohort (FIGS. 30A-30L)
and the GRAIL cohort (FIGS. 31A-31L) were analyzed for
model performance to predict cancer type by ctDNA fraction
bin. Samples were separated into “low” ctDNA fraction
(0-0.05) and “high” ctDNA fraction (0.05-1). The best
performing metric in the UW cohort with the UW panel was
“all exons depth and SE” with mean AUROCS in the low
ctDNA fraction ranging from 0.910-0.976 and mean
AUROC:s in the high ctDNA fraction ranging from 0.939-
0.999. Across all feature types, the mean AUROC ranged
from 0.494-1.000 (FIG. 30A). The best performing metric in
the UW cohort with the Tempus XF panel was “all exons
depth” with mean AUROCs in the low ctDNA fraction
ranging from 0.853-0.974 and mean AUROC:S in the high
ctDNA fraction ranging from 0.978-0.999. Across all feature
types, the mean AUROC ranged from 0.544-1.000 (FIG.
30B). The best performing metric in the UW cohort with the
Guardant 360 CDx panel was “all exons depth” with mean
AUROC:s in the low ctDNA fraction ranging from 0.899-0.
974 and mean AUROCS in the high ctDNA fraction ranging
from 0.968-0.999. Across all feature types, the mean
AUROC ranged from 0.507-0.999 (FIG. 30C). The best
performing metric in the UW cohort with the Foundation
One Liquid CDx panel was “all exons depth” with mean
AUROC:s in the low ctDNA fraction ranging from 0.873-0.
978 and mean AUROC: in the high ctDNA fraction ranging
from 0.959-1.000. Across all feature types, the mean
AUROC ranged from 0.535-1.000 (FIG. 30D). The best
performing metric in the GRAIL cohort with the GRAIL
panel was “all exons depth” with mean AUROC:: in the low
ctDNA fraction ranging from 0.917-0.978 and mean
AUROC:s in the high ctDNA fraction ranging from 0.924-
0.994. Across all feature types, the mean AUROC ranged
from 0.751-0.998 (FIG. 31A). The best performing metric in
the GRAIL cohort with the Tempus XF panel was “all exons
SE and depth” with mean AUROCs in the low ctDNA
fraction ranging from 0.892-0.977 and mean AUROC: in the
high ctDNA fraction ranging from 0.945-0.999. Across all
feature types, the mean AUROC ranged from 0.632-0.999
(FIG. 31B). The best performing metric in the GRAIL
cohort with the Guardant 360 CDx panel was “all exons SE
and depth” with mean AUROC: in the low ctDNA fraction
ranging from 0.916-0.980 and mean AUROC:S in the high
ctDNA fraction ranging from 0.926-0.998. Across all feature
types, the mean AUROC ranged from 0.640-0.998 (FIG.
310C). The best performing metric in the GRAIL cohort with
the Foundation One Liquid CDx panel was “all exons SE
and depth” with mean AUROC: in the low ctDNA fraction
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ranging from 0.890-0.980 and mean AUROC: in the high
ctDNA fraction ranging from 0.954-0.997. Across all feature
types, the mean AUROC ranged from 0.626-0.997 (FIG.
31D).

Testing Model Performance to Predict Ctdna
Fraciton Across Features

[0255] Using all metrics calculated (E1SE, exon 1 depth,
E1SE and exon 1 depth, all exons Shannon entropy (SE), all
exons depth, combining all exons depth and Shannon
entropy, full gene depth, exon 1 MDS,; all exon MDS; exon
1 small fragment proportions, all exons small fragment
proportions, fragment size bins, TFBS entropy, and ATAC
region entropy) samples in the UW cohort (FIGS. 32A-32H)
and the GRAIL cohort (FIGS. 33A-33H) were analyzed for
model performance to predict ctDNA fraction. Samples
were binned into four groups of ctDNA fraction levels which
were low (0-0.01 ctDNA fraction), mid (0.01-0.1 ctDNA
fraction), high (0.1-1.0 ctDNA fraction) and healthy
samples. The best performing metric in the UW cohort with
the UW panel was “MDS all exons” with mean AUROC:s for
predicting ctDNA fraction ranging from 0.737-0.987. Across
all feature types, the mean AUROC ranged from 0.580-0.
993 (FIG. 32A). The best performing metric in the UW
cohort with the Tempus XF panel was “all exons SE and
depth” with mean AUROC:s for predicting ctDNA fraction
ranging from 0.673-0.989. Across all feature types, the mean
AUROC ranged from 0.566-0.989 (FIG. 32B). The best
performing metric in the UW cohort with the Guardant 360
CDx panel was “all exons depth” with mean AUROCs for
predicting ctDNA fraction ranging from 0.680-0.979. Across
all feature types, the mean AUROC ranged from 0.556-0.
984 (FIG. 32C). The best performing metric in the UW
cohort with the Foundation One Liquid CDx panel was “all
exons depth” with mean AUROCs for predicting ctDNA
fraction ranging from 0.702-0.987. Across all feature types,
the mean AUROC ranged from 0.557-0.991 (FIG. 32D). The
best performing metric in the GRAIL cohort with the
GRAIL panel was “small fragment” with mean AUROCs for
predicting ctDNA fraction ranging from 0.867-0.999. Across
all feature types, the mean AUROC ranged from 0.705-1.
000 (FIG. 33A). The best performing metric in the GRAIL
cohort with the Tempus XF panel was “all exons SE and
depth” with mean AUROC:s for predicting ctDNA fraction
ranging from 0.823-1.000. Across all feature types, the mean
AUROC ranged from 0.624-1.000 (FIG. 33B). The best
performing metric in the GRAIL cohort with the Guardant
360 CDx panel was “all exons SE and depth” with mean
AUROCs for predicting ctDNA fraction ranging from
0.815-1.000. Across all feature types, the mean AUROC
ranged from 0.604-1.000 (FIG. 33C). The best performing
metric in the GRAIL cohort with the Foundation One Liquid
CDx panel was “full gene depth” with mean AUROCs for
predicting ctDNA fraction ranging from 0.820-0.999. Across
all feature types, the mean AUROC ranged from 0.656-1.
000 (FIG. 33D).

Genes

Tempus Gene List

[0256] Genes from the Tempus X{f sequencing panel were:
AKTI, AKT2, ALK, APC, AR, ARAF, ARIDIA, ATM,
ATR, B2M, BAP1, BRAF, BRCAIl, BRCA2, BTK,
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CCNDI1, CCND2, CCND3, CCNEl, CD274 (PD-L1),
CDH1, CDK4, CDK6, CDKN2A, CTNNBI1, DDR2,
DPYD, EGFR, ERBB2 (HER2), ERRFI1, ESR1, EZH2,
FBXW7, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, FOXL2,
GATA3, GNA11, GNAQ, GNAS, HNF1A, HRAS, IDH]I,
IDH2, JAK1, JAK2, JAK3, KDR, KEAPI, KIT, KMT2A,
KRAS, MAP2K1, MAP2K2, MAPK1, MET, MLH1, MPL,
MSH2, MSH3, MSH6, MTOR, MYC, MYCN, NF1, NF2,
NFE2L2, NOTCH1, NPM1, NRAS, NTRKI1, PALB2,
PBRMI1, PDCDILG2, PDGFRA, PDGFRB, PIK3CA,
PIK3R1, PMS2, PTCHI, PTEN, PTPN11, RAD51C, RAF1,
RBI1, RET, RHEB, RHOA, RIT1, RNF43, ROS1, SDHA,
SMAD4, SMO, SPOP, STK11, TERT, TP53, TSC1, TSC2,
UGT1A1, and VHL. Of the 105 genes in the Tempus Xf
gene panel, 99 genes overlapped with the UW panel, and 98
genes overlapped with the GRAIL panel.

Foundation Gene List

[0257] Genes from the Foundation One CDx sequencing
panel were: ABL1, ACVRIB, AKT1, AKT2, AKT3, ALK,
ALOX12B, AMERI (FAMI123B), APC, AR, ARAF,
ARFRP1, ARID1A, ASXL1, ATM, ATR, ATRX, AURKA,
AURKB, AXIN1, AXL, BAP1, BARDI, BCL2, BCL2L1,
BCL2L2, BCL6, BCOR, BCORLI1, BRAF, BRCAI,
BRCA2, BRD4, BRIP1, BTGI1, BTG2, BTK, Cllorf30
(EMSY), Cl70rf39 (GID4), CALR, CARDI1, CASPS,
CBFB, CBL, CCND1, CCND2, CCND3, CCNEI, CD22,
CD274 (PD-L1), CD70, CD79A, CD79B, CDC73, CDHI,
CDK12, CDK4, CDK6, CDKS8, CDKNI1A, CDKNIB,
CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEKI,
CHEK2, CIC, CREBBP, CRKL, CSFIR, CSF3R, CTCF,
CTNNAI, CTNNBI, CUL3, CUL4A, CXCR4, CYP17A1,
DAXX, DDRI, DDR2, DIS3, DNMT3A, DOTIL, EED,
EGFR, EP300, EPHA3, EPHB1, EPHB4, ERBB2, ERBB3,
ERBB4, ERCC4, ERG, ERRFI1, ESR1, EZH2, FAM46C,
FANCA, FANCC, FANCG, FANCL, FAS, FBXW?7,
FGF10, FGF12, FGF14, FGF19, FGF23, FGF3, FGF4,
FGF6, FGFR1, FGFR2, FGFR3, FGFR4, FH, FLCN, FLT1,
FLT3, FOXL2, FUBPl, GABRAG6, GATA3, GATA4,
GATAG6, GNA11, GNA13, GNAQ, GNAS, GRM3, GSK3B,
H3F3A, HDAC1, HGF, HNF1A, HRAS, HSD3B1, ID3,
IDHI, IDH2, IGFIR, IKBKE, IKZF1, INPP4B, IRF2, IRF4,
IRS2, JAKI1, JAK2, JAK3, JUN, KDMSA, KDMS5C,
KDM6A, KDR, KEAP1, KEL, KIT, KLHL6, KMT2A
(MLL), KMT2D (MLL2), KRAS, LTK, LYN, MAF,
MAP2K1 (MEKI1), MAP2K2 (MEK2), MAP2K4,
MAP3K1, MAP3K13, MAPK1, MCL1, MDM2, MDM4,
MEDI12, MEF2B, MEN1, MERTK, MET, MITF, MKNK1,
MLH1, MPL, MRE11A, MSH2, MSH3, MSH6, MSTI1R,
MTAP, MTOR, MUTYH, MYC, MYCL (MYCLI),
MYCN, MYD88, NBN, NF1, NF2, NFE2L2, NFKBIA,
NKX2-1, NOTCHI1, NOTCH2, NOTCH3, NPM1, NRAS,
NSD3 (WHSCILI), NT5C2, NTRK1, NTRK2, NTRK3,
P2RYS8, PALB2, PARK2, PARP1, PARP2, PARP3, PAXS,
PBRMI1, PDCDI (PD-1), PDCDILG2 (PD-L2), PDGFRA,
PDGFRB, PDK1, PIK3C2B, PIK3C2G, PIK3CA, PIK3CB,
PIK3R1, PIM1, PMS2, POLDI, POLE, PPARG, PPP2R1A,
PPP2R2A, PRDM1, PRKAR1A, PRKCI1, PTCH1, PTEN,
PTPNI11, PTPRO, QK1,RAC1,RAD21, RAD51, RAD51B,
RADS51C, RADS1D, RADS52, RAD54L, RAF1, RARA,
RB1, RBMI10, REL, RET, RICTOR, RNF43, ROSI,
RPTOR, SDHA, SDHB, SDHC, SDHD, SETD2, SF3B1,
SGK1, SMAD2, SMAD4, SMARCA4, SMARCBI1, SMO,
SNCAIP, SOCS1, SOX2, SOX9, SPEN, SPOP, SRC,
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STAG2, STAT3, STK11, SUFU, SYK, TBX3, TEK, TET2,
TGFBR2, TIPARP, TNFAIP3, TNFRSF14, TP53, TSCI,
TSC2, TYRO3, U2AF1, VEGFA, VHL, WHSCI, WT1,
XPO1, XRCC2, ZNF217, and ZNF703. Of the 309 genes in
the Foundation One CDx gene panel, 228 genes overlapped
with the UW panel, and 267 genes overlapped with the
GRAIL panel.

Guardant Gene List

[0258] Genes from the Foundation One CDx sequencing
panel were: AKT1, ALK, APC, AR, ARAF, ATM, BRAF,
BRCA1, BRCA2, CCND1, CDH1, CDK12, CDK4, CDKS6,
CDKN2A, CTINNBI, EGFR, ERBB2, ESRI, FGFRI,
FGFR2, FGFR3, GATA3, GNA11, GNAQ, HNF1A, HRAS,
IDH1, IDH2, KIT, KRAS, MAP2K1, MAP2K2, MET,
MLH1, MTOR, MYC, NF1, NFE2L2, NRAS, NTRKI,
NTRK3, PDGFRA, PIK3CA, PTEN, RAF1, RET, RHEB,
ROS1, SMAD4, SMO, STK11, TERT, TSC1, and VHL. Of
the 55 genes in the Guardant 360 CDx gene panel, 53 genes
overlapped with the UW panel, and 54 genes overlapped
with the GRAIL panel.

1. A method of detecting cancer or a particular type or
subtype thereof in a subject and, optionally, treating the
cancer or particular type or subtype thereof, the method
comprising:

determining fragmentation patterns of classifier cell-free

deoxyribonucleic acid (cfDNA) from the subject,
wherein the classifier cfDNA comprises ¢fDNA from
the subject corresponding to at least a portion of at least
one exon of at least one classifier gene in a panel of one
or more classifier genes; and

classifying the fragmentation patterns to identify the

subject as being negative or positive for the cancer or
the particular type or subtype thereof.

2. The method of claim 1, wherein the at least the portion
of the at least one exon of the at least one classifier gene
comprises a coding sequence of a first exon of the at least
one classifier gene.

3. The method of claim 1, wherein the at least the portion
of the at least one exon of the at least one classifier gene
comprises one or more predefined exon regions selected
from the group consisting of transcription factor binding
sites, regions of open chromatin, and specific motifs.

4. The method of claim 1, wherein the classifier cfDNA
excludes cfDNA from the subject corresponding to one or
more exons of the at least one classifier gene other than the
at least one exon.

5. The method of claim 1, wherein the classifier cfDNA
corresponds to less than 2,500 Mb of a genome of the
subject.

6. The method of claim 1, further comprising isolating
from the subject a biological sample comprising the classi-
fier cfDNA.

7. The method of claim 1, further comprising isolating the
classifier cfDNA from at least some non-classifier cfDNA,
wherein the non-classifier ¢cfDNA is cfDNA that is not
classifier cfDNA.

8. The method of claim 1, further comprising sequencing
the classifier cfDNA.

9. The method of claim 8, wherein the sequencing com-
prises sequencing the classifier cfDNA at a deduplicated
sequencing depth of at least 100x.
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10. The method of claim 1, wherein the method excludes
sequencing at least some non-classifier cfDNA from the
subject.

11. The method of any one of claims 8-10, wherein the
method sequences cfDNA corresponding to no more than
2,500 Mb of a genome of the subject.

12. The method of claim 1, wherein the determining the
fragmentation patterns comprises determining a fragment
size distribution of the classifier cfDNA.

13. The method of claim 1, wherein the determining the
fragmentation patterns comprises determining a separate
fragment size distribution of the classifier cfDNA corre-
sponding to each classifier gene.

14. The method of claim 1, wherein each classifier gene
comprises a coding region of an exon and the determining
the fragmentation patterns comprises determining a separate
fragment size distribution of the classifier cfDNA corre-
sponding to the coding region of each exon.

15. The method of claim 1, wherein each classifier gene
comprises a coding region of a first exon and the determin-
ing the fragmentation patterns comprises determining a
separate fragment size distribution of the classifier cfDNA
corresponding to the coding region of each first exon.

16. The method of claim 1, wherein each classifier gene
comprises a coding region of multiple exons and the deter-
mining the fragmentation patterns comprises determining a
separate fragment size distribution of the classifier cfDNA
corresponding to the coding region of each of the multiple
exons.

17. The method of claim 12, wherein the determining the
fragmentation patterns comprises quantitating each frag-
ment size distribution.

18. The method of claim 17, wherein the determining the
fragmentation patterns comprises quantitating each frag-
ment size distribution using size bins.

19. The method of claim 17, wherein the quantitating
comprises quantitating an entropy value for each fragment
size distribution.

20. The method of claim 17, wherein the quantitating
comprises quantitating a number of reads (depth) for each
fragment size distribution.

21. The method of claim 1, wherein the determining the
fragmentation patterns comprises determining a motif diver-
sity score.

22. The method of claim 1, wherein the determining the
fragmentation patterns comprises determining the fragmen-
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tation patterns of one or more predefined exon regions
selected from the group consisting of transcription factor
binding sites, regions of open chromatin, and specific
motifs.

23. The method of claim 1, wherein the classifier genes
comprise cancer genes.

24. The method of claim 1, wherein the one or more
classifier genes comprise at least 50 genes from Gene Set 1.

25. The method of claim 1, wherein the one or more
classifier genes comprise at least 1 gene from Gene Set 2.

26. The method of claim 1, wherein the classifying
identifies the subject as being negative or positive for at least
one type of cancer.

27. The method of claim 26, wherein the at least one type
of cancer comprises one or more tumor sites of origin.

28. The method of claim 27, wherein the one or more
tumor sites of origin comprise one or more of breast,
bladder, lung, kidney, and prostate.

29. The method of claim 1, wherein the method is capable
of identifying the subject as being positive for cancer at an
accuracy of at least 90% in a biological sample from the
subject having a ct-fraction from 0.0001 to 0.001.

30. The method of claim 1, wherein the method is capable
of identifying the subject as being positive for a cancer
selected from the group consisting of breast cancer, bladder
cancer, lung cancer, prostate cancer, and metastatic neuroen-
docrine prostate cancer at an accuracy of at least 70% in a
biological sample from the subject having a ct-fraction from
0.001 to 0.01

31. The method of claim 1, further comprising identifying
the subject as having a cancer of a particular tissue of origin
and subjecting the subject to imaging or biopsy of the
particular tissue of origin.

32. The method of claim 31, wherein the particular tissue
of origin is a solid tissue and wherein the imaging or biopsy
is of the solid tissue.

33. The method of claim 1, further comprising identifying
the subject as having cancer and treating the cancer.

34. The method of claim 1, further comprising identifying
the subject as having a cancer of a particular tissue of origin
and subjecting the subject to surgery on the particular tissue
of origin.

35. The method of claim 34, wherein the particular tissue
of origin is a solid tissue and wherein the surgery is on the
solid tissue.
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