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(57) ABSTRACT 

Methods of detecting cancer or a particular type or subtype 
thereof in a subject and treating the cancer or particular type 
or subtype thereof. The detection can comprise determining 
fragmentation patterns of classifier cell-free deoxyribo
nucleic acid (cfDNA) from the subject and classifying the 
fragmentation patterns to identify the subject as being nega
tive or positive for the cancer or the particular type or 
subtype thereof. The classifier cfDNA can comprise cfDNA 
corresponding to at least a portion of at least one exon of one 
or more classifier genes. The exon can comprise the first 
exons of the classifier genes. The treating can comprise the 
specific type of subtype of cancer that is detected. 
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CFDNA FRAGMENTOMIC DETECTION OF 
CANCER 

FIELD OF THE INVENTION 

[0001] The invention is directed to the detection of cancer, 
including specific types and/or subtypes of cancer, in a 
subject using cell-free deoxyribonucleic acid (cfDNA) frag
mentomic methods and, optionally, additional testing and 
treatments of the detected cancer. 

BACKGROUND 

[0002] Profiling of genomic driver alterations in cancer 
has become increasingly important, not only for studying the 
biological underpinnings of cancer, but also in identifying 
clinically actionable alterations for targeted therapies in 
clinical trials and practice. Historically, tumor samples have 
been required, but obtaining tissue specimens for molecular 
profiling is not always feasible, and can be especially 
challenging in the metastatic setting. Cell-free DNA 
( cfDNA) from cancer patients provides a non-invasive 
approach for assessing circulating tumor DNA (ctDNA) for 
alterations (Diaz LA Jr, Bardelli A. Liquid biopsies: geno
typing circulating tumor DNA. J Clin Oneal. 2014 Feb. 
20;32(6):579-86). This is a mature technology, with multiple 
commercially available next-generation sequencing (NGS) 
ctDNA panels. These mainly profile the coding regions of 
selected oncogenes and tumor suppressors for DNA altera
tions in order to assist with clinical decision making. 

[0003] In order to remain stable in circulation, cfDNA 
usually must be bound to a protein. Most often, this is the 
nucleosome complex, which is reflected in size distribution 
of cfDNA fragments showing the largest peak at 167 bp (Lo 
Y M, Chan K C, Sun H, Chen E Z, Jiang P, Lun F M, Zheng 
Y W, Leung TY, Lau T K, Cantor C R, Chiu R W. Maternal 
plasma DNA sequencing reveals the genome-wide genetic 
and mutational profile of the fetus. Sci Transl Med. 2010 
Dec. 8;2(61):61ra91) (Snyder M W, Kircher M, Hill A J, 
Daza RM, Shendure J. Cell-free DNA Comprises an In Vivo 
Nucleosome Footprint that Informs Its Tissues-Of-Origin. 
Cell. 2016 Jan. 14;164(1-2):57-68) corresponding to one 
nucleosome, a smaller peak at 334 bp corresponding to two 
nucleosomes, and so on. Other studies have also described 
smaller peaks representing transcription factor binding (Ulz 
P, Perakis S, Zhou Q, Moser T, Belie J, Lazzeri I, Wiilfler A, 
ZebischA, Gerger A, Pristauz G, Petru E, White B, Roberts 
C E S, John JS, Schimek MG, Geigl J B, Bauernhofer T, Sill 
H, Bock C, Heitzer E, Speicher MR. Inference of transcrip
tion factor binding from cell-free DNA enables tumor sub
type prediction and early detection. Nat Commun. 2019 Oct. 
11;10(1):4666). Distinct fragmentation patterns around the 
transcription start site have been shown to reflect binding of 
the transcriptional machinery, and correlate with gene 
expression (Esfahani M S, Hamilton E G, Mehrmohamadi 
M, Nabet BY, Alig S K, King DA, Steen C B, Macaulay C 
W, Schultz A, Nesselbush MC, Soo J, Schroers-Martin JG, 
Chen B, Binkley MS, Stehr H, Chaban J J, Sworder BJ, Hui 
AB, Frank M J, Moding E J, Liu CL, Newman AM, Isbell 
J M, Rudin C M, Li B T, Kurtz D M, Diehn M, Alizadeh A 
A. Inferring gene expression from cell-free DNA fragmen
tation profiles. Nat Biotechnol. 2022 April;40(4):585-597). 
The study of cfDNA fragmentation patterns has been 
referred to as "fragmentomics" and cancer patients show 

1 
May 2, 2024 

distinct fragmentomic patterns that have been used to non
invasively inform the biology of the tumor. 
[0004] Because cfDNA fragmentation patterns are a 
genome-wide phenomenon, almost all clinical fragmen
tomic studies to date have used whole-genome sequencing 
(WGS) for fragmentomic analysis. The breadth advantage of 
cfDNA WGS is traded off against low depth of sequencing 
compared to cfDNA targeted panels. WGS is generally 
unsuitable for cfDNA somatic alteration detection as it has 
poor sensitivity, especially at low ctDNA fractions. How
ever, the field has focused on WGS as traditional coding 
targeted cfDNA panels would not capture the majority of 
known fragmentomic regions of interest which predomi
nantly occur in non-coding regions of the genome. 
[0005] Targeted cfDNA fragmentomic methods that do not 
require WGS and thereby permit high sequencing depth 
and/or higher sensitivity and specificity for the detection of 
diseases such as cancer are needed. 

SUMMARY OF THE INVENTION 

[0006] Some aspects of the invention are directed to 
methods of detecting cancer or a particular type or subtype 
thereof in a subject and, optionally, treating the cancer or 
particular type or subtype thereof. 
[0007] In some versions, the methods comprise: determin
ing fragmentation patterns of classifier cell-free deoxyribo
nucleic acid ( cfDNA) from the subject, wherein the classifier 
cfDNA comprises cfDNA from the subject corresponding to 
at least a portion of at least one exon of at least one classifier 
gene in a panel of one or more classifier genes; and classi
fying the fragmentation patterns to identify the subject as 
being negative or positive for the cancer or the particular 
type or subtype thereof. 
[0008] In some versions, the classifier cfDNA comprises 
cfDNA from the subject corresponding to at least a portion 
of at least one exon of at least one classifier gene. 
[0009] In some versions, the classifier cfDNA comprises 
cfDNA from the subject corresponding to at least a portion 
of a coding sequence of at least one exon of at least one 
classifier gene. 
[0010] In some versions, the at least the portion of the at 
least one exon of the at least one classifier gene comprises 
a coding sequence of a first exon of the at least one classifier 
gene. 
[0011] In some versions, at least the portion of the at least 
one exon of the at least one classifier gene comprises one or 
more predefined exon regions. In some versions, the pre
defined exon regions are selected from the group consisting 
of transcription factor binding sites, regions of open chro
matin, and specific motifs. 
[0012] In some versions, the classifier cfDNA excludes 
cfDNA from the subject corresponding to one or more exons 
of the at least one classifier gene other than the at least one 
exon. 
[0013] In some versions, the classifier cfDNA corresponds 
to less than 2,500 Mb of a genome of the subject. 
[0014] In some versions, the method further comprises 
isolating from the subject a biological sample comprising 
the classifier cfDNA. In some versions, the method further 
comprises isolating the classifier cfDNA from at least some 
non-classifier cfDNA, wherein the non-classifier cfDNA is 
cfDNA that is not classifier cfDNA. 
[0015] In some versions, the method further comprises 
sequencing the classifier cfDNA. In some versions, the 
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sequencing comprises sequencing the classifier cfDNA at a 
deduplicated sequencing depth of at least l00x. In some 
versions, the method excludes sequencing at least some 
non-classifier cfDNA from the subject. In some versions, the 
method sequences cfDNA corresponding to no more than 
2,500 Mb of a genome of the subject. 
[0016] In some versions, the determining the fragmenta
tion patterns comprises determining a fragment size distri
bution of the classifier cfDNA. In some versions, determin
ing the fragmentation patterns comprises determining a 
separate fragment size distribution of the classifier cfDNA 
corresponding to each classifier gene. In some versions, each 
classifier gene comprises a coding region of an exon and the 
determining the fragmentation patterns comprises determin
ing a separate fragment size distribution of the classifier 
cfDNA corresponding to the coding region of each exon. In 
some versions, each classifier gene comprises a coding 
region of a first exon and the determining the fragmentation 
patterns comprises determining a separate fragment size 
distribution of the classifier cfDNA corresponding to the 
coding region of each first exon. In some versions, each 
classifier gene comprises a coding region of multiple exons 
and the determining the fragmentation patterns comprises 
determining a separate fragment size distribution of the 
classifier cfDNA corresponding to the coding region of each 
of the multiple exons. 
[0017] In some versions, the determining the fragmenta
tion patterns comprises quantitating each fragment size 
distribution. In some versions, the determining the fragmen
tation patterns comprises quantitating each fragment size 
distribution using size bins. In some versions, the quanti
tating comprises quantitating an entropy value for each 
fragment size distribution. In some versions, the quantitating 
comprises quantitating the number of reads ( depth) for each 
fragment size distribution. In some versions, the determining 
the fragmentation patterns comprises examining the 
sequence motifs found on each fragment. In some versions, 
the determining the fragmentation patterns comprises deter
mining a motif diversity score. In some versions, the deter
mining the fragmentation patterns comprises determining 
the fragmentation patterns of one or more predefined exon 
regions. In some versions, the predefined exon regions are 
selected from the group consisting of transcription factor 
binding sites, regions of open chromatin, and specific 
motifs. In some versions, the determining the fragmentation 
patterns comprises determining a separate fragment size 
distribution of the classifier cfDNA corresponding to each 
predefined exon region. 
[0018] In some versions, the classifier genes comprise 
cancer genes. In some versions, the one or more classifier 
genes comprise at least 50 genes from Gene Set 1. In some 
versions, the one or more classifier genes comprise at least 
1 gene from Gene Set 2. 
[0019] In some versions, the classifying identifies the 
subject as being negative or positive for at least one type of 
cancer. In some versions, at least one type of cancer com
prises one or more tumor sites of origin. In some versions, 
the one or more tumor sites of origin comprise one or more 
of breast, bladder, lung, kidney, and prostate. 
[0020] In some versions, the method is capable of identi
fying the subject as being positive for cancer at an accuracy 
of at least 90% in a biological sample from the subject 
having a ct-fraction from 0.0001 to 0.001. In some versions, 
the method is capable of identifying the subject as being 

2 
May 2, 2024 

positive for a cancer selected from the group consisting of 
breast cancer, bladder cancer, lung cancer, prostate cancer, 
and metastatic neuroendocrine prostate cancer at an accu
racy of at least 70% in a biological sample from the subject 
having a ct-fraction from 0.001 to 0.01 
[0021] In some versions, the method further comprises 
identifying the subject as having a cancer of a particular 
tissue of origin and subjecting the subject to imaging or 
biopsy of the particular tissue of origin. In some versions, 
the particular tissue of origin is a solid tissue and wherein the 
imaging or biopsy is of the solid tissue. 
[0022] In some versions, the method further comprises 
identifying the subject as having cancer and treating the 
cancer. In some versions, the method further comprises 
identifying the subject as having a cancer of a particular 
tissue of origin and subjecting the subject to surgery on the 
particular tissue of origin. In some versions, the particular 
tissue of origin is a solid tissue and wherein the surgery is 
on the solid tissue. 
[0023] The objects and advantages of the invention will 
appear more fully from the following detailed description of 
the preferred embodiment of the invention made in conjunc
tion with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0024] The patent or application file contains at least one 
drawing executed in color. Copies of this patent or patent 
application publication with color drawing(s) will be pro
vided by the Office upon request and payment of the 
necessary fee. 
[0025] FIG. 1. Schematic of fragmentomics experimental 
setup. Liquid biopsies from patients from two independent 
cohorts with various cancer types are collected and cfDNA 
is isolated using targeted exon panels. Unique histone dis
tributions across cancer types lead to variable fragmentation 
patterns at targeted exons. Exon 1 shows particular variabil
ity due to its proximity to promoter regions and is correlated 
with gene expression. The diversity of fragmentation distri
butions at each coding exon 1 are measured via Shannon 
entropy for each sample. Machine learning models are built 
to predict tumor type for each cohort, with training per
formed on 70% of the data and 30% withheld for validation. 
Ten-fold cross validation performed on the training data. In 
the UW cohort, samples are randomly selected for training 
and validation, while the GRAIL cohort is trained on high 
ctDNA samples and validated on low ctDNA samples. 
[0026] FIGS. 2A-2H. cfDNA fragmentation patterns from 
targeted panels. Average total fragment distribution across 
tumor types in the (FIG. 2A) GRAIL and (FIG. 2B) UW 
datasets respectively. Heatmap of the fragment size distri
butions at exon 1 across all genes from the GRAIL targeted 
panel (FIG. 2C) and UW targeted panel (FIG. 2D) in a single 
representative sample from each cohort. Genes are ordered 
by exon 1 Shannon entropy (ElSE) with high El SE genes 
at the top and low El SE genes at the bottom. Fragment size 
proportions are normalized within each fragment size across 
all genes analyzed. Plot demonstrates that genes with high 
El SE are depleted for fragments near the mono-nucleosome 
peak (167bp) and enriched for fragments at lower ( <120 bp) 
and higher (>200 bp) sizes, while genes with low ElSE 
display the opposite pattern. (FIG. 2E) Copy number calls 
from the UW cohort compared to Shannon entropy. Copy 
number was calculated for each gene for each patient. Each 
point represents a single gene-patient pair. Copy number 
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data was binned as shown, and Shannon entropy distribu
tions are shown for each bin. El SE was normalized by 
centering and scaling on a per-gene basis before plotting. 
This transforms the ElSE distribution for each gene such 
that the mean is zero and the standard deviation is one, 
eliminating inter-gene variability. Data from all genes and 
patients are plotted. Only the UW cohort was used because 
the exact panel design was required to accurately determine 
CN, but this was not available for the GRAIL cohort (FIG. 
2F) Shannon entropy as a function of fragments per exon in 
the UW cohort at copy number neutral regions (Log2 ratio 
between -0.5 and 0.5). Correlation between GC content and 
mean Shannon entropy at each exon analyzed in the (FIG. 
2G) GRAIL cohort and (FIG. 2H) UW cohort. 

[0027] FIGS. 3A-3D. Predicting tumor type in the UW 
panel and cohort. The UW data was split into 70% training 
and 30% independent validation, the latter of which is 
shown. Performance was assessed by (FIG. 3A) confusion 
matrix of classifier accuracy in CV data comparing predicted 
vs. actual phenotypes and (FIG. 3B) ROC curves of classi
fier AUCs in CV data. (FIG. 3C) Accuracy as a function of 
ctDNA fraction in CV data. ctDNA fractions ranged from 
0.003-0.771. NEPC samples are not shown due to the lack 
of germline sequencing for this cohort which are required 
for ctDNA fraction estimation. Only samples with available 
germline sequencing, and thus ctDNA fraction estimation, 
are shown. The number of samples in each ctDNA fraction 
bin are: <0.01: n=l0; 0.01-0.1: n=21; 0.1-1.0: n=26. (FIG. 
3D) Radar plots depicting the prediction score, where each 
plot represents one pathologic diagnosis (noted in bold 
above the plot), and each line in the plot represents model 
prediction for a single patient. The vertices of each graph 
represent the continuous prediction scores from the EISE 
models for each of the predicted phenotypes, with the outer 
ring denoting a prediction score of 1 and the inner ring a 
prediction score of 0. For each patient, the final model 
prediction is the highest-scoring predicted phenotype which 
is correct in the majority of cases. The number of predictions 
for each tumor type are noted next to the label of each vertex 
(matching panel A). Correctly predicted patients are repre
sented by colored lines, whereas incorrectly predicted 
patients are represented by light gray lines. 

[0028] FIGS. 4A-4D. Predicting tumor type in the GRAIL 
panel and cohort. The GRAIL data was split into 70% 
training and 30% independent validation, the latter of which 
is shown. The validation data contained the lowest ctDNA 
fraction samples, all <0.05. Performance was assessed by 
(FIG. 4A) confusion matrix of classifier accuracy in valida
tion data and (FIG. 4B) ROC curves of classifier AUCs in 
validation data. (FIG. 4C) Accuracy as a function of ctDNA 
fraction in validation data. ctDNA fractions ranged from 
0.0003-0.925 for cancer samples. Light grey bars represent 
normal samples with a ctDNA fraction of 0. The number of 
samples in each ctDNA fraction bin are: 0 (Normal): n=33; 
<0.25: n=28; 0.25-1.0: n=32. (FIG. 4D) Radar plots depict
ing the prediction score, where each plot represents one 
specific pathologic diagnosis (noted in bold above the plot), 
and each line in the plot represents the model prediction for 
a single patient. The vertices of each graph represent the 
continuous prediction scores from the EISE models for each 
of the predicted phenotypes, with the outer ring denoting a 
prediction score of 1 and the inner ring a prediction score of 
0. For each patient, the final model prediction is the highest
scoring predicted phenotype which is correct in the majority 
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of cases. The number of predictions for each tumor type are 
noted next to the label of each vertex (matching FIG. 3A). 
Correctly predicted patients are represented by colored lines, 
whereas incorrectly predicted patients are represented by 
light gray lines. 

[0029] FIGS. SA and SB. Effect of downsampling on 
model performance in the GRAIL cohort. Downsampling of 
the GRAIL cohort was performed to levels ranging from 100 
M to 1 M reads 10 times for each downsampling level. For 
each replicate and downsampling level, Shannon entropies 
were calculated for the fragment distributions at the first 
exon of each gene in the panel as described previously. 
Training and validation using the new downsampled feature 
tables was performed and results for (FIG. SA) ROC AUC 
and (FIG. SB) accuracy are shown for each phenotype in the 
cohort. Small points represent individual values, large solid 
points represent mean values, and error bars represent +/-1 
standard deviation. 

[0030] FIGS. 6A and 6B. Fragment distribution of GRAIL 
cohort samples stratified by ctDNA fraction. (FIG. 6A) 
Distribution of cfDNA fragments from individual samples 
colored by low ctDNA (<10% ctDNA fraction) or high 
ctDNA (ctDNA fraction >=10%). Red line represents the 
median of all normal healthy samples. (FIG. 6B) Proportion 
of fragments below 150 bp in healthy, low ctDNA, and high 
ctDNA samples. A Kruskal-Wallis test was performed to 
compare all three categories, and a Wilcoxon rank sum test 
was performed for individual comparisons (*p<0.05; **** 
p<0.0001) 

[0031] FIG. 7. Relative fragment coverage in first coding 
exon by gene expression decile. Average plasma cell-free 
DNA fragment coverage near the exon 1 coding sequence 
(CDS) of 11748 genes annotated in MANE version 0.93, 
calculated across 41 whole genome sequenced ctDNA
positive samples from the NCT02125357 trial (Herberts et 
al. Nature 2022). Genes were separated into ten quantile 
groups based on their average expression in prostate cancer 
tissue samples. Fragment coverage is normalized relative to 
1 kb distant flanks. Only multi-exon genes with a CDS 
containing exon 1 were included in the analysis. Gene 
orientation and exon 1 CDS length were normalized 
between the genes for visualization. One kilobase of 
upstream and downstream flanking region is also shown 
(without normalization). 

[0032] FIGS. SA and 8B. Exon 1 Shannon entropy of the 
AR by cancer type. Normalized Shannon entropy was cal
culated for the first coding exon of the androgen receptor 
gene (AR) for all samples in the GRAIL cohort (FIG. SA) 
and UW cohort (FIG. 8B). AR El SE displays significantly 
higher normalized Shannon entropy in prostate cancer 
samples compared to other cancer types and healthy normal 
samples. Two-sided Student's t-test was used for signifi
cance testing(**** p<0.0001). 

[0033] FIG. 9. Normalized AR Shannon entropy stratified 
by ctDNA fraction. Within each cancer type, samples were 
stratified into low and high ctDNA fraction using the median 
ctDNA fraction as the cutoff. Normalized Shannon entropy 
at the first coding exon of AR was calculated and plotted by 
cancer type and ctDNA level. High ctDNA fraction prostate 
cancer samples were found to have significantly higher AR 
ElSE compared to low ctDNA fraction prostate cancer 
samples only. Two-sided Student's t-test was used for sig
nificance testing (*p<0.05; n.s. -non significant) 
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[0034] FIG. 10. Model performance using alternative 
exons. Model performance was assessed using Shannon 
entropies calculated from reads overlapping either the first, 
middle (mid), or last exons of the genes in each panel ( see 
bottom schematic). For genes with an even number of exons, 
the exon closest to the TSS of the two middle exons was 
used. Accuracy was calculated for the UW cohort (left) and 
the GRAIL cohort (right). In both cohorts, Shannon entro
pies calculated from the first exon had the highest accuracy. 
[0035] FIGS. llA-llD. ROC curves for El SE models to 
identify RCC in the UW cohort using all genes (FIG. llA), 
genes overlapping with the Tempus xF panel (FIG. 11B), 
genes overlapping with the Guardant 360 CDx panel (FIG. 
llC), genes overlapping with the Foundation One Liquid 
CDx panel (FIG. llD). 
[0036] FIGS. 12A-12D. ROC curves for El SE models to 
identify hormone receptor positive vs. negative breast can
cer in the UW cohort using all genes (FIG. 12A), genes 
overlapping with the Tempus xF panel (FIG. 12B), genes 
overlapping with the Guardant 360 CDx panel (FIG. 12C), 
genes overlapping with the Foundation One Liquid CDx 
panel (FIG. 12D). 
[0037] FIGS. 13A-13H. ROC curves for El SE models to 
identify tumor types and subtypes in the UW cohort using all 
genes (FIG. 13A), genes overlapping with the Tempus xF 
panel (FIG. 13B), genes overlapping with the Guardant 360 
CDx panel (FIG. 13C), genes overlapping with the Foun
dation One Liquid CDx panel (FIG. 13D). ROC curves for 
ElSE models to identify tumor types and subtypes in the 
GRAIL cohort using all genes (FIG. 13E), genes overlap
ping with the Tempus xF panel (FIG. 13F), genes overlap
ping with the Guardant 360 CDx panel (FIG. 13G), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIG. 13H). 
[0038] FIGS. 14A-14H. ROC curves for exon 1 depth 
models to identify tumor types and subtypes in the UW 
cohort using all genes (FIG. 14A), genes overlapping with 
the Tempus XF panel (FIG. 14B), genes overlapping with 
the Guardant 360 CDx panel (FIG. 14C), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 14D). 
ROC curves for exon 1 depth models to identify tumor types 
and subtypes in the GRAIL cohort using all genes (FIG. 
14E), genes overlapping with the Tempus xF panel (FIG. 
14F), genes overlapping with the Guardant 360 CDx panel 
(FIG. 14G), genes overlapping with the Foundation One 
Liquid CDx panel (FIG. 14H). 
[0039] FIGS. 15A-15H. ROC curves for full gene depth 
models to identify tumor types and subtypes in the UW 
cohort using all genes (FIG. 15A), genes overlapping with 
the Tempus xF panel (B), genes overlapping with the 
Guardant 360 CDx panel (FIG. 15C), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 15D). 
ROC curves for full gene depth models to identify tumor 
types and subtypes in the GRAIL cohort using all genes 
(FIG. 15E), genes overlapping with the Tempus xF panel 
(FIG. 15F), genes overlapping with the Guardant 360 CDx 
panel (FIG. 15G), genes overlapping with the Foundation 
One Liquid CDx panel (FIG. 15H). 
[0040] FIGS. 16A-16H. ROC curves for exon 1 motif 
diversity score models to identify tumor types and subtypes 
in the UW cohort using all genes (FIG. 16A), genes over
lapping with the Tempus xF panel (FIG. 16B), genes over
lapping with the Guardant 360 CDx panel (FIG.16C), genes 
overlapping with the Foundation One Liquid CDx panel 
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(FIG. 16D). ROC curves for exon 1 motif diversity score 
models to identify tumor types and subtypes in the GRAIL 
cohort using all genes (FIG. 16E), genes overlapping with 
the Tempus xF panel (FIG. 16F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 16G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 16H). 
[0041] FIGS. 17A-17H. ROC curves for exon 1 fragment 
size bin models to identify tumor types and subtypes in the 
UW cohort using all genes (FIG. 17A), genes overlapping 
with the Tempus xF panel (FIG. 17B), genes overlapping 
with the Guardant 360 CDx panel (FIG. 17C), genes over
lapping with the Foundation One Liquid CDx panel (FIG. 
17D). ROC curves for exon 1 fragment size bin models to 
identify tumor types and subtypes in the GRAIL cohort 
using all genes (FIG. 17E), genes overlapping with the 
Tempus xF panel (FIG. 17F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 17G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 17H). 
[0042] FIGS. 18A-18H. ROC curves for exon 1 small 
fragment proportion models to identify tumor types and 
subtypes in the UW cohort using all genes (FIG. 18A), genes 
overlapping with the Tempus xF panel (FIG. 18B), genes 
overlapping with the Guardant 360 CDx panel (FIG. 18C), 
genes overlapping with the Foundation One Liquid CDx 
panel (FIG. 18D). ROC curves for exon 1 small fragment 
proportion models to identify tumor types and subtypes in 
the GRAIL cohort using all genes (FIG. 18E), genes over
lapping with the Tempus xF panel (FIG. 18F), genes over
lapping with the Guardant 360 CDx panel (FIG. 18G), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIG. 18H). 
[0043] FIGS. 19A-19H. ROC curves for all exon Shannon 
Entropy models to identify tumor types and subtypes in the 
UW cohort using all genes (FIG. 19A), genes overlapping 
with the Tempus xF panel (FIG. 19B), genes overlapping 
with the Guardant 360 CDx panel (FIG. 19C), genes over
lapping with the Foundation One Liquid CDx panel (FIG. 
19D). ROC curves for all exon Shannon Entropy models to 
identify tumor types and subtypes in the GRAIL cohort 
using all genes (FIG. 19E), genes overlapping with the 
Tempus xF panel (FIG. 19F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 19G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 19H). 
[0044] FIGS. 20A-20H. ROC curves for all exon depth 
models to identify tumor types and subtypes in the UW 
cohort using all genes (FIG. 20A), genes overlapping with 
the Tempus xF panel (FIG. 20B), genes overlapping with the 
Guardant 360 CDx panel (FIG. 20C), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 20D). 
ROC curves for all exon depth models to identify tumor 
types and subtypes in the GRAIL cohort using all genes 
(FIG. ZOE), genes overlapping with the Tempus XF panel 
(FIG. 20F), genes overlapping with the Guardant 360 CDx 
panel (FIG. 20G), genes overlapping with the Foundation 
One Liquid CDx panel (FIG. 20H). 
[0045] FIGS. 21A-21H. ROC curves for all exon motif 
diversity score models to identify tumor types and subtypes 
in the UW cohort using all genes (FIG. 21A), genes over
lapping with the Tempus xF panel (FIG. 21B), genes over
lapping with the Guardant 360 CDx panel (FIG. 21C), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIG. 21D). ROC curves for all exon motif diversity score 
models to identify tumor types and subtypes in the GRAIL 
cohort using all genes (FIG. 21E), genes overlapping with 
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the Tempus xF panel (FIG. 21F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 21G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 21H). 
[0046] FIGS. 22A-22H. ROC curves for all exons small 
fragment proportion models to identify tumor types and 
subtypes in the UW cohort using all genes (FIG. 22A), genes 
overlapping with the Tempus xF panel (FIG. 22B), genes 
overlapping with the Guardant 360 CDx panel (FIG. 22C), 
genes overlapping with the Foundation One Liquid CDx 
panel (FIG. 22D). ROC curves for all exons small fragment 
proportion models to identify tumor types and subtypes in 
the GRAIL cohort using all genes (FIG. 22E), genes over
lapping with the Tempus xF panel (FIG. 22F), genes over
lapping with the Guardant 360 CDx panel (FIG. 22G), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIG. 22H). 
[0047] FIGS. 23A-23H. ROC curves for ElSE +depth 
models to identify tumor types and subtypes in the UW 
cohort using all genes (FIG. 23A), genes overlapping with 
the Tempus xF panel (FIG. 23B), genes overlapping with the 
Guardant 360 CDx panel (FIG. 23C), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 23D). 
ROC curves for El SE +depth models to identify tumor types 
and subtypes in the GRAIL cohort using all genes (FIG. 
23E), genes overlapping with the Tempus xF panel (FIG. 
23F), genes overlapping with the Guardant 360 CDx panel 
(FIG. 23G), genes overlapping with the Foundation One 
Liquid CDx panel (FIG. 23H). 
[0048] FIGS. 24A-24H. ROC curves for all exons Shan
non Entropy +depth models to identify tumor types and 
subtypes in the UW cohort using all genes (FIG. 24A), genes 
overlapping with the Tempus xF panel (FIG. 24B), genes 
overlapping with the Guardant 360 CDx panel (FIG. 24C), 
genes overlapping with the Foundation One Liquid CDx 
panel (FIG. 24D). ROC curves for all exons Shannon 
Entropy +depth models to identify tumor types and subtypes 
in the GRAIL cohort using all genes (FIG. 24E), genes 
overlapping with the Tempus xF panel (FIG. 24F), genes 
overlapping with the Guardant 360 CDx panel (FIG. 24G), 
genes overlapping with the Foundation 
[0049] One Liquid CDx panel (FIG. 24H). 
[0050] FIGS. 25A-25B. ROC curves depicting the predic
tion of high or low ctDNA fraction (CTF) in cancer samples 
using exon 1 Shannon entropy (ElSE) in the UW cohort 
(FIG. 25A) and the GRAIL cohort (FIG. 25B) using a 
10-fold cross validation approach. The cutoff for "low" and 
"high" ctDNA fraction was 0.05. 
[0051] FIGS. 26A-26H. ROC curves for the Transcription 
Factor Binding Site Shannon Entropy models to identify 
tumor types and subtypes in the UW cohort using all genes 
(FIG. 26A), genes overlapping with the Tempus xF panel 
(FIG. 26B), genes overlapping with the Guardant 360 CDx 
panel (FIG. 26C), genes overlapping with the Foundation 
One Liquid CDx panel (FIG. 26D). ROC curves for the 
Transcription Factor Binding Site Shannon Entropy models 
to identify tumor types and subtypes in the GRAIL cohort 
using all genes (FIG. 26E), genes overlapping with the 
Tempus xF panel (FIG. 26F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 26G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 26H). 
[0052] FIGS. 27A-27H. ROC curves for the open chro
matin region (ATAC-seq) Shannon entropy models to iden
tify tumor types and subtypes in the UW cohort using all 
genes (FIG. 27A), genes overlapping with the Tempus XF 
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panel (FIG. 27B), genes overlapping with the Guardant 360 
CDx panel (FIG. 27C), genes overlapping with the Foun
dation One Liquid CDx panel (FIG. 27D). ROC curves for 
the open chromatin region (ATAC-seq) Shannon entropy 
models to identify tumor types and subtypes in the GRAIL 
cohort using all genes (FIG. 27E), genes overlapping with 
the Tempus xF panel (FIG. 27F), genes overlapping with the 
Guardant 360 CDx panel (FIG. 27G), genes overlapping 
with the Foundation One Liquid CDx panel (FIG. 27H). 
[0053] FIGS. 28A-28L. AUROC values of model perfor
mance in the UW cohort across El SE, exon 1 depth, El SE 
and exon 1 depth, all exons Shannon entropy (SE), all exons 
depth, combining all exons depth and Shannon entropy, full 
gene depth, exon 1 MDS, all exon MDS, exon 1 small 
fragment proportions, all exons small fragment proportions, 
fragment size bins, TFBS entropy, and ATAC region 
entropy. The UW cohort comprises bladder cancer, breast 
cancer, lung cancer, renal cell cancer (RCC), prostate adeno
carcinoma (Prostate), and neuroendocrine prostate cancer 
(NEPC). UW breast cancer samples were further split into 
ER positive (ERpos) and ER negative (ERneg) samples. 
UW lung cancer samples were further split into small cell 
lung cancer (SCLC) and non-small cell lung cancer 
(NSCLC). Ten replicates of the 10-fold cross-validation 
model were performed and boxplots using all ten replicates 
are shown. Model performance to identify tumor types and 
subtypes was determined using all genes in the UW panel 
(FIGS. 28A-28C), genes overlapping with the Tempus XF 
panel (FIGS. 28D-28F), genes overlapping with the Guar
dant 360 CDx panel (FIGS. 28G-28I), genes overlapping 
with the Foundation One Liquid CDx panel (FIGS. 28J-
28L). 
[0054] FIGS. 29A-29H. AUROC values of model perfor
mance in the GRAIL cohort across ElSE, exon 1 depth, 
El SE and exon 1 depth, all exons Shannon entropy (SE), all 
exons depth, combining all exons depth and Shannon 
entropy, full gene depth, exon 1 MDS, all exon MDS, exon 
1 small fragment proportions, all exons small fragment 
proportions, fragment size bins, TFBS entropy, and ATAC 
region entropy. Ten replicates of the 10-fold cross-validation 
model were performed and boxplots using all ten replicates 
are shown. Model performance to identify tumor types and 
subtypes was determined using all genes in the GRAIL panel 
(FIGS. 29A and 29B), genes overlapping with the Tempus 
XF panel (FIGS. 29C and 29D), genes overlapping with the 
Guardant 360 CDx panel (FIGS. 29E and 29F), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIGS. 29G and 29H). 
[0055] FIGS. 30A-30L. AUROC values of model perfor
mance in the UW cohort split by ctDNA fraction bin across 
ElSE, exon 1 depth, ElSE and exon 1 depth, all exons 
Shannon entropy (SE), all exons depth, combining all exons 
depth and Shannon entropy, full gene depth, exon 1 MDS, 
all exon MDS, exon 1 small fragment proportions, all exons 
small fragment proportions, fragment size bins, TFBS 
entropy, and ATAC region entropy. Samples were split into 
low ctDNA fraction samples (0-0.05) and high ctDNA 
fraction samples (0.05-1). Cancer types with an insufficient 
number of samples (less than 3) within each ctDNA fraction 
bin were excluded from analysis. The cancer types which fit 
these criteria were bladder cancer, ER positive breast cancer, 
NSCLC, prostate adenocarcinoma, and RCC. Ten replicates 
of the 10-fold cross-validation model were performed and 
boxplots using all ten replicates are shown. Model perfor-
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mance to identify tumor types and subtypes was determined 
using all genes in the UW panel (FIGS. 30-30C), genes 
overlapping with the Tempus XF panel (FIGS. 30D-30F), 
genes overlapping with the Guardant 360 CDx panel (FIGS. 
30G-30I), genes overlapping with the Foundation One Liq
uid CDx panel (FIGS. 30J-30L). 

[0056] FIGS. 31A-31L. AUROC values of model perfor
mance in the GRAIL cohort split by ctDNA fraction bin 
across ElSE, exon 1 depth, ElSE and exon 1 depth, all 
exons Shannon entropy (SE), all exons depth, combining all 
exons depth and Shannon entropy, full gene depth, exon 1 
MDS, all exon MDS, exon 1 small fragment proportions, all 
exons small fragment proportions, fragment size bins, TFBS 
entropy, and ATAC region entropy. Samples were split into 
low ctDNA fraction samples (0-0.05) and high ctDNA 
fraction samples (0.05-1). Only cancer types with a suffi
cient number of samples (greater than or equal to 3) within 
each ctDNA fraction bin were excluded from analysis. The 
cancer types which fit these criteria were prostate cancer, 
breast cancer, and lung cancer. Ten replicates of the 10-fold 
cross-validation model were performed and boxplots using 
all ten replicates are shown. Model performance to identify 
tumor types and subtypes was determined using all genes in 
the GRAIL panel (FIGS. 31A-31C), genes overlapping with 
the Tempus XF panel (FIGS. 31D-31F), genes overlapping 
with the Guardant 360 CDx panel (FIGS. 31G-31I), genes 
overlapping with the Foundation One Liquid CDx panel 
(FIGS. 31J-31L). 

[0057] FIGS. 32A-32H. AUROC values from models 
trained on the UW cohort to predict ctDNA fraction across 
ElSE, exon 1 depth, ElSE and exon 1 depth, all exons 
Shannon entropy (SE), all exons depth, combining all exons 
depth and Shannon entropy, full gene depth, exon 1 MDS, 
all exon MDS, exon 1 small fragment proportions, all exons 
small fragment proportions, fragment size bins, TFBS 
entropy, and ATAC region entropy. Samples were split into 
low ctDNA fraction (0-0.01), mid ctDNA fraction (0.01-0. 
1), high ctDNA fraction (0.1-1), and healthy samples. Ten 
replicates of the 10-fold cross-validation model were per
formed and boxplots using all ten replicates are shown. 
Model performance to identify ctDNA fraction bin was 
determined using all genes in the UW panel (FIGS. 32A and 
32B), genes overlapping with the Tempus xF panel (FIGS. 
32C and 32D), genes overlapping with the Guardant 360 
CDx panel (FIGS. 32E and 32F), genes overlapping with the 
Foundation One Liquid CDx panel (FIGS. 32G and 32H). 

[0058] FIGS. 33A-33H. AUROC values from models 
trained on the GRAIL cohort to predict ctDNA fraction 
across ElSE, exon 1 depth, ElSE and exon 1 depth, all 
exons Shannon entropy (SE), all exons depth, combining all 
exons depth and Shannon entropy, full gene depth, exon 1 
MDS, all exon MDS, exon 1 small fragment proportions, all 
exons small fragment proportions, fragment size bins, TFBS 
entropy, and ATAC region entropy. Samples were split into 
low ctDNA fraction (0-0.01), mid ctDNA fraction (0.01-0. 
1), high ctDNA fraction (0.1-1), and healthy samples. Ten 
replicates of the 10-fold cross-validation model were per
formed and boxplots using all ten replicates are shown. 
Model performance to identify ctDNA fraction bin was 
determined using all genes in the GRAIL panel (FIGS. 32A 
and 32B), genes overlapping with the Tempus xF panel 
(FIGS. 32C and 32D), genes overlapping with the Guardant 
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360 CDx panel (FIGS. 32E and 32F), genes overlapping 
with the Foundation One Liquid CDx panel (FIGS. 32G and 
32H). 

DETAILED DESCRIPTION OF THE 
INVENTION 

[0059] One aspect of the invention is directed to methods 
of detecting cancer in a subject. "Detecting cancer" as used 
herein refers to detecting cancer or any particular type 
thereof. The term "subject," as used herein, generally refers 
to any animal, mammal, or human. In some embodiments, 
the subject has, potentially has, or is suspected of having 
cancer or a symptom(s) associated with cancer. In some 
embodiments, the subject asymptomatic with respect to 
cancer. In some embodiments, the subject is undiagnosed 
(e.g., not diagnosed for cancer). 
[0060] The methods of detecting cancer can comprise 
various isolation, sequencing, and/or analysis steps with 
classifier cell-free deoxyribonucleic acid (cell-free DNA or 
cfDNA) from the subject. 
[0061] cfDNA comprises nucleic acid fragments not con
tained within a cell that circulate in an subject's body (e.g., 
bloodstream). cfDNA can originate from one or more 
healthy cells and/or from one or more cancerous cells of the 
subject's body. cfDNA may come from other sources such 
as viruses, fetuses, etc. cfDNA can include circulating tumor 
DNA ( ctDNA). ctDNA is cfDNA that originates from tumor 
cells. ctDNA may be released into a subject's bloodstream 
as result of biological processes such as apoptosis or necro
sis of dying tumor cells or by active release by viable tumor 
cells. 
[0062] Classifier cfDNA is cfDNA that is analyzed for 
classification according to the methods described herein. 
Classifier cfDNA is distinguished from non-classifier 
cfDNA, the latter of which is cfDNA that is not classifier 
cfDNA. The classifier cfDNA can comprise cfDNA that 
corresponds to one or more regions of a genome. The term 
"corresponds" ( or grammatical variants thereof) refers to a 
relationship between a first nucleic acid (e.g., a cfDNA, a 
probe) and at least a region of a second nucleic acid ( e.g., a 
defined region in a chromosome of a genome) such that the 
first nucleic acid comprises at least one base that aligns 
(overlaps) with at least one base in the region when the 
sequence of the first nucleic acid is aligned to that of the 
second nucleic acid. The regions of the genome to which the 
classifier cfDNA corresponds are referred to herein as "clas
sifier regions." Classifier regions are distinguished from 
non-classifier regions, the latter of which are region that are 
not classifier regions. The classifier regions can comprise 
genie regions of the genome, intergenic regions of the 
genome, or a combination thereof. In some embodiments, 
the classifier regions comprise genes or specific parts thereof 
( e.g, exons, intrans, promoters, coding regions, regulatory 
regions, enhancers, untranslated regions ( 5' untranslated 
region, 3' untranslated region, etc.). A gene to which clas
sifier cfDNA corresponds (i.e., a gene that comprises at least 
one base that aligns to at least one base of classifier cfDNA) 
is referred to herein as a "classifier gene." Classifier genes 
are distinguished from non-classifier genes, the latter of 
which are genes that are not classifier genes. In some 
embodiments, the classifier regions comprise exons. As is 
known in the art, exons are contiguous portions of genes that 
form the final mature RNA produced by genes after intrans 
have been removed by RNA splicing. Exons of classifier 
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genes that correspond to classifier cfDNA are referred to 
herein as "classifier exons." Classifier exons are distin
guished from non-classifier exons, the latter of which are 
exons that are not classifier exons. In some embodiments, 
the classifier exons comprise particular exons, such as first 
exons. In some embodiments, the classifier exons comprise 
coding regions of particular exons, such as coding regions of 
first exons. "First exon" as used herein refers to a contiguous 
portion of a given gene that forms the furthest 5' part of a 
final mature RNA produced by that gene after intrans have 
been removed by RNA splicing. In some cases, a given gene 
can have multiple first exons depending on the various 
isoforms it is capable of generating due to alternative 
splicing or alternative transcription start sites. 

[0063] In some embodiments, the classifier regions com
prise at least a portion of at least one exon of at least one 
classifier gene. In some embodiments, the classifier regions 
comprise at least a portion of the coding sequence of at least 
one exon of at least one classifier gene. In some embodi
ments, the classifier regions comprise at least a portion of the 
first exon of at least one classifier gene. In some embodi
ments, the classifier regions comprise at least a portion of the 
coding sequence of the first exon of at least one classifier 
gene. In some embodiments, the classifier regions comprise 
the entirety of at least one exon of at least one classifier gene. 
In some embodiments, the classifier regions comprise the 
entirety of the coding sequence of at least one exon of at 
least one classifier gene. In some embodiments, the classifier 
regions comprise the entirety of the first exon of at least one 
classifier gene. In some embodiments, the classifier regions 
comprise the entirety of the coding sequence of the first exon 
of at least one classifier gene. In some embodiments, the 
classifier regions comprise the entirety of at least one exon 
of each classifier gene. In some embodiments, the classifier 
regions comprise the entirety of the coding sequence of at 
least one exon of each classifier gene. In some embodiments, 
the classifier regions comprise, consist, or consist essentially 
of the entirety of the first exon of each classifier gene. In 
some embodiments, the classifier regions comprise, consist, 
or consist essentially of the entirety of the coding sequence 
of the first exon of each classifier gene. Accordingly, the 
classifier cfDNA of the invention can correspond to any of 
the above-described classifier regions 

[0064] In some embodiments, the non-classifier regions 
comprise intergenic regions of the genome. In some embodi
ments, the non-classifier regions comprise at least one intron 
of at least one classifier gene. In some embodiments, the 
non-classifier regions comprise at least one intron of each 
classifier gene. In some embodiments, the non-classifier 
regions comprise each intron of each classifier gene. In some 
embodiments, the non-classifier regions comprise at least 
one exon in at least one classifier gene. In some embodi
ments, the non-classifier regions comprise at least one exon 
in each classifier gene. In some embodiments, the non
classifier regions comprise at least one exon other than the 
first exon in at least one classifier gene. In some embodi
ments, the non-classifier regions comprise at least one exon 
other than the first exon in each classifier gene. In some 
embodiments, the non-classifier regions comprise each exon 
other than the first exon in at least one classifier gene. In 
some embodiments, the non-classifier regions comprise each 
exon other than the first exon in each classifier gene. 
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Accordingly, the classifier cfDNA of the invention can 
exclude cfDNA corresponding to any of the above-described 
non-classifier regions. 
[0065] In various embodiments, the classifier regions con
stitute less than 2,999 Mb, less than 2,750 Mb, less than 
2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than 
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than 
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb, 
less than 200 Mb, less than 150 Mb, less than 100 Mb, less 
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than 
5 Mb of a reference genome or a genome of the subject. 
Accordingly, the classifier cfDNA of the invention can 
correspond to any of the above-referenced portions of the 
genome. 
[0066] In various embodiments, the classifier gene(s) in 
total constitute less than 2,999 Mb, less than 2,750 Mb, less 
than 2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than 
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than 
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb, 
less than 200 Mb, less than 150 Mb, less than 100 Mb, less 
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than 
5 Mb of a reference genome or a genome of the subject. 
Accordingly, the classifier cfDNA of the invention can 
correspond to classifier gene(s) constituting any of the 
above-referenced portions of the genome. 
[0067] In various embodiments, the number of classifier 
gene(s) is at least 1, at least 5, at least 25, at least 50, at least 
7 5, at least 100, at least 125, at least 150, at least 17 5, at least 
200, at least 250, at least 250, at least 275, at least 300, at 
least 325, at least 350, at least 375, at least 400, at least 450, 
at least 475, or at least 500. In various embodiments, the 
number of classifier gene(s) is no more than 25,000, no more 
than 20,000, no more than 15,000, no more than 10,000, no 
more than 5,000, no more than 2,500, no more than 2,000, 
no more than 1,750, no more than 1,500, no more than 
1,250, or no more than 1,000. 
[0068] In preferred embodiments, the classifier gene(s) 
comprise, consist, or consist essentially of cancer genes. 
Cancer genes are genes involved in the etiology, mainte
nance, or progression of cancer. In some embodiments, the 
cancer genes comprise or consist of genes in which one or 
more mutations in those genes are associated with cancer, 
such as in a statistically significant manner. Exemplary types 
of cancer genes include oncogenes, tumor suppressor genes, 
and DNA repair genes. A number of databases are available 
that catalog cancer genes. The COSMIC (the Catalogue of 
Somatic Mutations in Cancer) database (cancer.sanger.ac. 
uk/cosmic), for example, is a database of somatically 
acquired mutations found in human cancer (Tate J G, et al. 
COSMIC: the catalogue of somatic mutations in cancer. 
Nucleic Acids Res. 2019;47:D941-D947). The DisGeNET 
( disgenet.org) database is a platform containing one of the 
largest publicly available collections of genes and variants 
associated with human diseases (Pinero J, Sauch J, Sanz F, 
Furlong L I. The DisGeNET cytoscape app: Exploring and 
visualizing disease genomics data. Comput Struct Biotech
nol J. 2021 May 11;19:2960-2967) (Pinero J, Ramirez
Anguita J M, Sauch-Pitarch J, Ronzano F, Centeno E, Sanz 
F, Furlong L I. The DisGeNET knowledge platform for 
disease genomics: 2019 update. Nucleic Acids Res. 2020 Jan 
8;48(Dl):D845-D855) (Pinero J, Bravo A, Queralt-Rosin
ach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E, 
Garcia-Garcia J, Sanz F, Furlong LI. DisGeNET: a com
prehensive platform integrating information on human dis-
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ease-associated genes and variants. Nucleic Acids Res. 2017 
Jan 4;45(Dl):D833-D839) (Pifiero J, Queralt-Rosinach N, 
Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, 
Furlong L I. DisGeNET: a discovery platform for the 
dynamical exploration of human diseases and their genes. 
Database (Oxford). 2015 Apr. 15;2015:bav028). A large 
number of other databases are available (Babbi G, Martelli 
PL, Profiti G, Bova S, Savojardo C, Casadio R. eDGAR: a 
database of Disease-Gene Associations with annotated Rela
tionships among genes. BMC Genomics. 2017 Aug. 11;18 
(Suppl 5):554) (Grissa D, Junge A, Oprea T I, Jensen L J. 
Diseases 2.0: a weekly updated database of disease-gene 
associations from text mining and data integration. Database 
(Oxford). 2022 Mar. 28;2022:baac019). 

[0069] In some embodiments, the classifier gene(s) com
prise, consist, or consist essentially of one, some, or all of 
the genes in Gene Set 1. In some embodiments, the classifier 
gene(s) comprise, consist, or consist essentially of one, 
some, or all of the genes in Gene Set 2. In some embodi
ments, the classifier gene(s) comprise, consist, or consist 
essentially of one, some, or all of the genes in Gene Set 3. 
In some embodiments, the classifier gene(s) comprise, con
sist, or consist essentially of one, some, or all of the genes 
in Gene Set 4. In various embodiments, the classifier gene(s) 
comprise, consist, or consist essentially of at least 1, at least 
5, at least 25, at least 50, at least 75, at least 100, at least 125, 
at least 150, at least 175, at least 200, at least 250, at least 
250, at least 275, at least 300, at least 325, at least 350, at 
least 375, at least 400, at least 450, at least 475, or at least 
500 of the genes in any of Gene Set 1, Gene Set 2, Gene Set 
3, or Gene Set 4. 

[0070] Gene Set 1 is ABLl, ABL2, ABRAXASl, ACKR3, 
ACSL3, ACSL6, ACVRl, ACVRlB, ACVR2A, 
ADAMTS20, ADGRA2, ADGRB3, ADGRL3, AFDN, 
AFFl, AFF3, AFF4, AKAP9, AKTl, AKT2, AKT3, 
ALDH2, ALK, ALOX12B, AMERl, ANKl, ANKRDll, 
ANKRD26, APC, APOBEC3B, AR, ARAF, ARFRPl, 
ARHGAP26, ARHGAP5, ARHGEFl0, ARHGEFl0L, 
ARHGEF12, ARID IA, ARIDlB, ARID2, ARID5B, ARNT, 
ASPSCRl, ASXLl, ASXL2, ATFl, ATIC, ATM, ATPlAl, 
ATP2B3, ATR, ATRX, AURKA, AURKB, AURKC, 
AXINl, AXIN2, AXL, B2M, BAPl, BARDl, BAX, 
BAZlA, BBC3, BCLl0, BCLllA, BCLllB, BCL2, 
BCL2Ll, BCL2Lll, BCL2L12, BCL2L2, BCL3, BCL6, 
BCL7A, BCL9, BCL9L, BCLAFl, BCOR, BCORLl, BCR, 
BIRC2, BIRC3, BIRC5, BIRC6, BLM, BLNK, BMP5, 
BMPRlA, BRAF, BRCAl, BRCA2, BRD3, BRD4, BRIPl, 
BTGl, BTG2, BTK, BUBlB, C15orf65, CACNAlD, 
CALR, CAMTAl, CANTl, CARDll, CARSl, CASP3, 
CASPS, CASP9, CBFA2T3, CBFB, CBL, CBLB, CBLC, 
CCDC6, CCN6, CCNBlIPl, CCNC, CCNDl, CCND2, 
CCND3, CCNEl, CCR4, CCR7, CD209, CD22, CD274, 
CD276, CD28, CD70, CD74, CD79A, CD79B, CDC73, 
CDHl, CDHl0, CDHll, CDH17, CDH2, CDH20, CDH5, 
CDK12, CDK4, CDK6, CDKS, CDKNlA, CDKNlB, 
CDKN2A, CDKN2B, CDKN2C, CDX2, CEBPA, CENPA, 
CEP43, CEP89, CHCHD7, CHD2, CHD4, CHEKl, 
CHEK2, CHIC2, CHSTll, CIC, CIITA, CILKl, CKSlB, 
CLIPl, CLPl, CLTC, CLTCLl, CMPKl, CNBDl, CNBP, 
CNOT3, CNTNAP2, CNTRL, COLIAl, COL2Al, 
COL3Al, COPl, COX6C, CPEB3, CRBN, CREBl, 
CREB3Ll, CREB3L2, CREBBP, CRKL, CRLF2, 
CRNKLl, CRTCl, CRTC3, CSFIR, CSF3R, CSMD3, 
CSNKlAl, CTCF, CTLA4, CTNNAl, CTNNA2, 
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CTNNBl, CTNNDl, CTNND2, CUL3, CUL4A, CUXl, 
CXCR4, CYLD, CYPl 7Al, CYP2C19, CYP2C8, CYP2D6, 
CYSLTR2, DAXX, DCAF12L2, DCC, DCTNl, 
DCUNlDl, DDB2, DDIT3, DDRl, DDR2, DDXl0, 
DDX3x, DDX41, DDX5, DDX6, DEK, DGCRS, DHX15, 
DICERl, DIS3, DNAJBl, DNM2, DNMTl, DNMT3A, 
DNMT3B, DOTlL, DPYD, DROSHA, DST, E2F3, EBFl, 
ECT2L, EED, EGFL7, EGFR, EIFlAX, EIF3E, EIF4A2, 
EIF4E, ELF3, ELF4, ELK4, ELL, ELN, ELOC, EML4, 
EMSY, EP300, EP400, EPASl, EPCAM, EPHA3, EPHA5, 
EPHA7, EPHBl, EPHB4, EPHB6, EPS15, ERBB2, 
ERBB3, ERBB4, ERCl, ERCCl, ERCC2, ERCC3, 
ERCC4, ERCC5, ERG, ERRFil, ESRl, ETNKl, ETSI, 
ETVl, ETV4, ETV5, ETV6, EWSRl, EXTl, EXT2, EZH2, 
EZR, FAM131B, FAM135B, FAM47C, FANCA, FANCC, 
FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, 
FAS, FATl, FAT3, FAT4, FBLN2, FBXOll, FBXW7, 
FCGR2B, FCRL4, FENl, FES, FEY, FGFl, FGFl0, 
FGF12, FGF14, FGF19, FGF2, FGF23, FGF3, FGF4, 
FGF5, FGF6, FGF7, FGFS, FGF9, FGFRl, FGFR2, 
FGFR3, FGFR4, FGR, FH, FHIT, FIPlLl, FKBP9, FLCN, 
FLil, FLNA, FLTl, FLT3, FLT4, FNl, FNBPl, FOXAl, 
FOXL2, FOXOl, FOX03, FOXO4, FOXPl, FOXP4, 
FOXRl, FRS2, FSTL3, FUBPl, FUS, FYN, FZRl, G6PD, 
GABRA6, GAS7, GATAl, GATA2, GATA3, GATA4, 
GATA6, GDNF, GENl, GFRAl, GID4, GLil, GMPS, 
GNAll, GNA13, GNAQ, GNAS, GOLGA5, GOPC, GPC3, 
GPC5, GPHN, GPS2, GREMl, GRIN2A, GRM3, GRMS, 
GSK3B, GUCY1A2, Hl-2, H2BC5, H3-3A, H3-3B, H3-4, 
H3-5, H3Cl, H3C10, H3Cll, H3C12, H3C13, H3C14, 
H3C15, H3C2, H3C3, H3C4, H3C6, H3C7, H3C8, H4C9, 
HCARl, HDACl, HERPUDl, HEYl, HGF, HIFlA, HIPl, 
HLA-A, HLA-B, HLA-C, HLF, HMGAl, HMGA2, 
HNFlA, HNRNPA2Bl, HNRNPK, HOOK3, HOXAll, 
HOXA13, HOXA9, HOXB13, HOXCll, HOXC13, 
HOXDll, HOXD13, HRAS, HSD3Bl, HSP90AA1, 
HSP90AB1, ICOSLG, ID3, IDHl, IDH2, IFNGRl, IGFl, 
IGFlR, IGF2, IKBKE, IKZFl, ILl0, IL2, IL21R, IL6ST, 
IL 7R, ING4, INHA, INHBA, INPP4A, INPP4B, INSR, 
IRF2, IRF4, IRSl, IRS2, IRS4, ISX, ITGAl0, ITGA9, 
ITGAV, ITGB2, ITGB3, ITK, JAKl, JAK2, JAK3, JAZFl, 
JUN, KAT6A, KAT6B, KAT7, KCNJ5, KDM5A, KDM5C, 
KDM6A, KDR, KDSR, KEAPl, KEL, KIAA1549, KIFSB, 
KIT, KLF4, KLF6, KLHL6, KLK2, KMT2A, KMT2B, 
KMT2C, KMT2D, KNLl, KNSTRN, KRAS, KTNl, 
LAMPI, LARP4B, LASPl, LATSl, LATS2, LCK, LCPl, 
LEFl, LEPROTLl, LHFPL6, LIFR, LMNA, LMOl, 
LMO2, LPP, LRIG3, LRPlB, LSM14A, LTF, LTK, LYLl, 
LYN, LZTRl, MACCl, MAF, MAFB, MAGEAl, MAGil, 
MAGI2, MALTl, MAML2, MAP2Kl, MAP2K2, 
MAP2K4, MAP2K7, MAP3KI1, MAP3K13, MAP3K14, 
MAP3K4, MAP3K7, MAPKl, MAPK3, MAPKS, MARKI, 
MARK4, MAX, MB21D2, MBDl, MCLI, MDCI, MDM2, 
MDM4, MECOM, MED12, MEF2B, MENI, MERTK, 
MET, MGA, MGMT, MITF, MKNKl, MLFl, MLHl, 
MLLTl, MLLTl0, MLLTll, MLLT3, MLLT6, MMP2, 
MNl, MNXl, MPL, MREll, MRTFA, MSH2, MSH3, 
MSH6, MSI2, MSN, MSTl, MSTlR, MTAP, MTCPl, 
MTOR, MTR, MTRR, MUCl, MUC16, MUC4, MUTYH, 
MYB, MYBLl, MYC, MYCL, MYCN, MYD88, MYHll, 
MYH9, MYO5A, MYODl, N4BP2, NAB2, NACA, NBEA, 
NBN, NCKIPSD, NCOAI, NCOA2, NCOA3, NCOA4, 
NCORl, NCOR2, NDRGl, NEGRI, NFl, NF2, NFATC2, 
NFE2L2, NFIB, NFKBl, NFKB2, NFKBIA, NFKBIE, 
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NIN, NKX2- I, NKX3- I, NLRPI, NONO, NOTCHl, 
NOTCH2, NOTCH3, NOTCH4, NPMI, NR4A3, NRAS, 
NRGI, NSDl, NSD2, NSD3, NT5C2, NTHLI, NTRKI, 
NTRK2, NTRK3, NUMAI, NUP2I4, NUP93, NUP9S, 
NUTMI, NUTM2A, NUTM2B, NUTM2D, OLIG2, OMD, 
P2RYS, PABPCI, PAFAHIB2, PAKI, PAK3, PAK5, 
PALB2, PARPI, PARP2, PARP3, PATZI, PAX3, PAX5, 
PAX7, PAXS, PBRMI, PBXI, PCBPI, PCMI, PDCDl, 
PDCD1LG2, PDE4DIP, PDGFB, PDGFRA, PDGFRB, 
PDKI, PDPKI, PERI, PGAP3, PGR, PHF6, PHOX2B, 
PICALM, PIK3C2B, PIK3C2G, PIK3C3, PIK3CA, 
PIK3CB, PIK3CD, PIK3CG, PIK3RI, PIK3R2, PIK3R3, 
PIMI, PKHDl, PLAGI, PLCGI, PLCG2, PLEKHG5, 
PLK2, PMAIPI, PML, PMSI, PMS2, PNRCI, POLDl, 
POLE, POLG, POLQ, POTl, POU2AFI, POUSFI, 
PPARG, PPFIBPI, PPMlD, PPP2RIA, PPP2R2A, PPP6C, 
PRCC, PRDMI, PRDMI6, PRDM2, PREX2, PRFI, 
PRKACA, PRKACB, PRKARIA, PRKCB, PRKCI, 
PRKDC, PRKN, PRPF40B, PRRXI, PRSSS, PSIPI, 
PTCHl, PTEN, PTGS2, PTK6, PTPNll, PTPNI3, PTPN6, 
PTPRB, PTPRC, PTPRD, PTPRK, PTPRO, PTPRS, 
PTPRT, PWWP2A, QKI, RAB35, RABEPI, RACI, 
RAD17, RAD2I, RAD50, RAD5I, RAD51B, RAD5IC, 
RAD51D, RAD52, RAD54L, RAFI, RALGDS, RANBP2, 
RAPIGDSI, RARA, RASAI, RBI, RBMI0, RBMI5, 
RECQL4, REL, RELA, RET, RFWD3, RGPD3, RGS7, 
RHEB, RHOA, RHOH, RICTOR, RITl, RMI2, RNASEL, 
RNF2, RNF2I3, RNF43, ROBO2, ROSI, RPLI0, RPL22, 
RPL5, RPNI, RPS6KA2, RPS6KA4, RPS6KBI, 
RPS6KB2, RPTOR, RRMI, RSPO2, RSP03, RUNXI, 
RUNXITl, RYBP, SI00A7, SALL4, SAMD9, SBDS, 
SDC4, SDHA, SDHAF2, SDHB, SDHC, SDHD, SEPTIN5, 
SEPTIN6, SEPTIN9, SET, SETBPI, SETDIB, SETD2, 
SETDBI, SF3BI, SFPQ, SFRP4, SGKI, SH2B3, SH2DIA, 
SH3GLI, SHQI, SHTNI, SIRPA, SIXI, SIX2, SKI, 
SLC34A2, SLC45A3, SLIT2, SLX4, SMAD2, SMAD3, 
SMAD4, SMARCA4, SMARCBI, SMARCDl, 
SMARCEI, SMCIA, SMC3, SMO, SMUGI, SNCAIP, 
SNDl, SNX29, SOCSI, SOXI0, SOXll, SOXI7, SOX2, 
SOX2I, SOX9, SPECCI, SPEN, SPOP, SPTAI, SRC, 
SRGAP3, SRSF2, SRSF3, SSIS, SSISLI, SSXI, SSX2, 
SSX4, STAGI, STAG2, STAT3, STAT4, STATSA, 
STAT5B, STAT6, STIL, STKll, STK36, STK40, STRN, 
SUFU, SUZI2, SYK, SYNEI, TAFI, TAFI5, TAFIL, TALI, 
TAL2, TBLIXRI, TBX22, TBX3, TCEAI, TCFI2, TCF3, 
TCF7LI, TCF7L2, TCLIA, TEC, TEK, TENTSC, TERC, 
TERT, TETI, TET2, TFE3, TFEB, TFG, TFPT, TFRC, 
TGFBRI, TGFBR2, TGM7, THBSI, THRAP3, TIMP3, 
TIPARP, TLR4, TLXI, TLX3, TMEMI27, TMPRSS2, 
TNC, TNFAIP3, TNFRSFI4, TNFRSFI7, TNK2, TOPI, 
TOP2A, TP53, TP63, TPM3, TPM4, TPR, TRAF2, TRAF7, 
TRIM24, TRIM27TRIM33, TRIPll, TRRAP, TSCI, TSC2, 
TSHR, TYR03, U2AFI, UBR5, UGTlAI, USP44, USP6, 
USPS, USP9x, VAVI, VEGFA, VHL, VTCNI, VTilA, 
WAS, WDCP, WIFI, WNK2, WRN, WTl, WWTRI, XIAP, 
XPA, XPC, XPOl, XRCC2, YAPI, YESI, YWHAE, 
ZBTBI6, ZBTB2, ZBTB7A, ZCCHCS, ZEBI, ZFHX3, 
ZMYM2, ZMYM3, ZNF2I7, ZNF33I, ZNF3S4, ZNF429, 
ZNF479, ZNF52I, ZNF703, ZNRF3, and ZRSR2. 

[0071] Gene Set 2 is: ACKR3, ACSL3, ACSL6, 
ACVR2A, ADAMTS20, ADGRB3, ADGRL3, AFDN, 
AFFI,AFF3,AFF4,AKAP9,ALDH2,ANKI,APOBEC3B, 
ARHGAP26, ARHGAP5, ARHGEFI0, ARHGEFI0L, 
ARHGEFI2, ARNT, ASPSCRI, ATFI, ATIC, ATPIAI, 
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ATP2B3, AURKC, BAX, BAZIA, BCLIIA, BCLilB, 
BCL2LI2, BCL3, BCL7A, BCL9, BCL9L, BCLAFI, 
BIRC2, BIRC5, BIRC6, BLNK, BMP5, BRD3, BUBlB, 
CI5orf65, CACNAlD, CAMTAI, CANTl, CARSI, 
CASP3, CASP9, CBFA2T3, CBLB, CBLC, CCDC6, 
CCNBlIPI, CCNC, CCR4, CCR7, CD209, CD2S, CDHl0, 
CDHlI, CDH17, CDH2, CDH20, CDH5, CDX2, CEP43, 
CEPS9, CHCHD7, CHIC2, CHSTlI, CIITA, CILKI, 
CKSlB, CLIPI, CLPI, CLTC, CLTCLI, CMPKI, CNBDl, 
CNBP, CNOT3, CNTNAP2, CNTRL, COLIAI, COL2AI, 
COL3AI, COX6C, CPEB3, CRBN, CREBI, CREB3LI, 
CREB3L2, CRNKLI, CRTCI, CRTC3, CSMD3, CTNNA2, 
CTNNDl, CTNND2, CYP2CI9, CYP2CS, CYP2D6, CYS
LTR2, DCAFI2L2, DCC, DCTNI, DDB2, DDIT3, DDXI0, 
DDX3x, DDX5, DDX6, DEK, DGCRS, DNM2, DROSHA, 
DST, EBFI, ECT2L, EIF3E, ELF3, ELF4, ELK4, ELL, 
ELN, EP400, EPASI, EPHB6, EPSI5, ERCI, ETNKI, 
EXTl, EXT2, EZR, FAMI31B, FAM135B, FAM47C, 
FAT3, FAT4, FBLN2, FBXOlI, FCGR2B, FCRL4, FENI, 
FES, FEY, FGR, FHIT, FIPILI, FKBP9, FLNA, FNI, 
FNBPI, FOX03, FOXO4, FOXP4, FOXRI, FSTL3, FUS, 
FZRI, G6PD, GAS7, GDNF, GFRAI, GMPS, GOLGA5, 
GOPC, GPC3, GPC5, GPHN, GRMS, GUCYIA2, H4C9, 
HCARI, HERPUDl, HEYI, HIFIA, HIPI, HLF, HMGAI, 
HMGA2, HNRNPA2BI, HOOK3, HOXAll, HOXAI3, 
HOXA9, HOXCll, HOXCI3, HOXDlI, HOXD13, 
HSP90ABI, IL2, IL2IR, IL6ST, ING4, IRS4, ISX, ITGAI0, 
ITGA9, ITGAV, ITGB2, ITGB3, ITK, JAZFI, KAT6B, 
KAT7, KCNJ5, KDSR, KIAAI549, KLF6, KLK2, KNLI, 
KNSTRN, KTNI, LARP4B, LASPI, LCK, LCPI, LEFI, 
LEPROTLI, LHFPL6, LIFR, LMNA, LMO2, LPP, LRIG3, 
LSMI4A, LTF, LYLI, MACCI, MAFB, MAGEAI, 
MAGil, MAML2, MAP2K7, MAP3K7, MAPKS, MARKI, 
MARK4, MB21D2, MBDl, MECOM, MGMT, MLFI, 
MLLTl, MLLTl0, MLLTlI, MLLT6, MMP2, MNI, 
MNXI, MRTFA, MSI2, MSN, MTCPI, MTR, MTRR, 
MUCI, MUCI6, MUC4, MYBLI, MYHlI, MYH9, 
MYOSA, N4BP2, NACA, NBEA, NCKIPSD, NCOAI, 
NCOA2, NCOA4, NCOR2, NDRGI, NFATC2, NFIB, 
NFKBI, NFKB2, NFKBIE, NIN, NLRPI, NONO, NR4A3, 
NTHLI, NUMAI, NUP2I4, NUP9S, NUTM2A, NUTM2B, 
NUTM2D, OLIG2, OMD, PABPCI, PAFAHIB2, PATZI, 
PBXI, PCBPI, PCMI, PDE4DIP, PDGFB, PERI, PGAP3, 
PICALM, PKHDl, PLAGI, PLCGI, PLEKHG5, PML, 
POLG, POLQ, POTl, POU2AFI, POU5FI, PPFIBPI, 
PRCC, PRDMI6, PRDM2, PRFI, PRKACA, PRKACB, 
PRKCB, PRPF40B, PRRXI, PSIPI, PTGS2, PTK6, 
PTPNI3, PTPN6, PTPRB, PTPRC, PTPRK, PWWP2A, 
RABEPI, RAD17, RALGDS, RAPIGDSI, RBMI5, 
RELA, RFWD3, RGPD3, RGS7, RHOH, RMI2, RNASEL, 
RNF2, RNF213, ROBO2, RPLI0, RPL22, RPL5, RPNI, 
RPS6KA2, RRMI, RSPO2, RSP03, SI00A7, SALL4, 
SAMD9, SBDS, SDC4, SEPTIN5, SEPTIN6, SEPTIN9, 
SET, SETDlB, SETDBI, SFPQ, SFRP4, SH3GLI, SHTNI, 
SIRPA, SIXI, SIX2, SKI, SLC34A2, SLC45A3, 
SMARCEI, SMUGI, SNDl, SNX29, SOXll, SOX2I, 
SPECCI, SRGAP3, SRSF3, SSIS, SSISLI, SSXI, SSX2, 
SSX4, STAT6, STIL, STK36, STRN, SYNEI, TAFI5, 
TAFIL, TALI, TAL2, TBLIXRI, TBX22, TCEAI, TCFI2, 
TCF7LI, TCLIA, TEC, TFEB, TFG, TFPT, TGM7, 
THBSI, THRAP3, TIMP3, TLR4, TLXI, TLX3, TNC, 
TNFRSFI 7, TNK2, TPM3, TPM4, TPR, TRIM24, 
TRIM27, TRIM33, TRIPll, TRRAP, UBR5, USP44, USP6, 
USPS, USP9x, VAVI, VTilA, WAS, WDCP, WIFI, WNK2, 
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WRN, WWTRI, XPA, XPC, YWHAE, ZBTBI6, ZCCHCS, 
ZEBI, ZMYM2, ZMYM3, ZNF33I, ZNF384, ZNF429, 
ZNF479, ZNF52I, and ZNRF3. 

[0072] Gene Set 3 is: ABLl, ABL2, ACKR3, ACSL3, 
ACSL6, A CVR I, ACVR2A, ADAMTS20, ADGRA2, 
ADGRB3, ADGRL3, AFDN, AFFI, AFF3, AFF4, AKAP9, 
AKTl, AKT2, AKT3, ALDH2, ALK, AMERI, ANKI, 
APC, APOBEC3B, AR, ARAF, ARHGAP26, ARHGAP5, 
ARHGEFI0, ARHGEFI0L, ARHGEFI2, ARIDIA, 
ARIDlB, ARID2, ARNT, ASPSCRI, ASXLl, ASXL2, 
ATFI, ATIC, ATM, ATPIAI, ATP2B3, ATR, ATRX, 
AURKA, AURKB, AURKC, AXINI, AXIN2, AXL, B2M, 
BAPI, BARDl, BAX, BAZIA, BCLl0, BCLlIA, BCLllB, 
BCL2, BCL2Ll, BCL2L12, BCL2L2, BCL3, BCL6, 
BCL7A, BCL9, BCL9L, BCLAFI, BCOR, BCORLl, BCR, 
BIRC2, BIRC3, BIRC5, BIRC6, BLM, BLNK, BMP5, 
BMPRIA, BRAF, BRCAI, BRCA2, BRD3, BRD4, BRIPI, 
BTGI, BTK, BUBlB, CI5orf65, CACNAlD, CALR, 
CAMTAI, CANTl, CARDI!, CARSI, CASP3, CASPS, 
CASP9, CBFA2T3, CBFB, CBL, CBLB, CBLC, CCDC6, 
CCNBlIPI, CCNC, CCNDl, CCND2, CCND3, CCNEI, 
CCR4, CCR7, CD209, CD274, CD28, CD74, CD79A, 
CD79B, CDC73, CDHl, CDHl0, CDHlI, CDH17, CDH2, 
CDH20, CDH5, CDKI2, CDK4, CDK6, CDKS, CDKNIA, 
CDKNlB, CDKN2A, CDKN2B, CDKN2C, CDX2, 
CEBPA, CEP43, CEP89, CHCHD7, CHD2, CHD4, 
CHEKI, CHEK2, CHIC2, CHSTlI, CIC, CIITA, CILKI, 
CKSlB, CLIPI, CLPI, CLTC, CLTCLl, CMPKI, CNBDl, 
CNBP, CNOT3, CNTNAP2, CNTRL, COLlAI, COL2AI, 
COL3AI, COX6C, CPEB3, CRBN, CREBI, CREB3Ll, 
CREB3L2, CREBBP, CRKL, CRLF2, CRNKLl, CRTCI, 
CRTC3, CSFIR, CSF3R, CSMD3, CTCF, CTNNAI, 
CTNNA2, CTNNBI, CTNNDl, CTNND2, CUL3, CUXI, 
CXCR4, CYLD, CYP2CI9, CYP2C8, CYP2D6, CYS
LTR2, DAXX, DCAFI2L2, DCC, DCTNI, DDB2, DDIT3, 
DDR2, DDXI0, DDX3x, DDX5, DDX6, DEK, DGCRS, 
DICERI, DNAJBI, DNM2, DNMT3A, DPYD, DROSHA, 
DST, EBFI, ECT2L, EED, EGFR, EIFIAX, EIF3E, 
EIF4A2, ELF3, ELF4, ELK4, ELL, ELN, EML4, EP300, 
EP400, EPASI, EPHA3, EPHA7, EPHBI, EPHB4, EPHB6, 
EPSI5, ERBB2, ERBB3, ERBB4, ERCl, ERCCI, ERCC2, 
ERCC3, ERCC4, ERCC5, ERG, ESRI, ETNKI, ETSI, 
ETVI, ETV4, ETV5, ETV6, EWSRI, EXTl, EXT2, EZH2, 
EZR, FAM131B, FAMI35B, FAM47C, FANCA, FANCC, 
FANCD2, FANCE, FANCF, FANCG, FAS, FATl, FAT3, 
FAT4, FBLN2, FBXOlI, FBXW7, FCGR2B, FCRL4, 
FENI, FES, FEY, FGFRI, FGFR2, FGFR3, FGFR4, FGR, 
FH, FHIT, FIPILl, FKBP9, FLCN, FLII, FLNA, FLTl, 
FLT3, FLT4, FNI, FNBPI, FOXAI, FOXL2, FOXOl, 
FOX03, FOXO4, FOXPI, FOXP4, FOXRI, FSTL3, 
FUBPI, FUS, FZRI, G6PD, GAS7, GATAI, GATA2, 
GATA3, GDNF, GFRAI, GLII, GMPS, GNAll, GNAQ, 
GNAS, GOLGA5, GOPC, GPC3, GPC5, GPHN, GRIN2A, 
GRM3, GRMS, GUCYIA2, H3-3A, H3-3B, H3C2, H4C9, 
HCARI, HERPUDl, HEYI, HIFIA, HIPI, HLA-A, HLF, 
HMGAI, HMGA2, HNFIA, HNRNPA2BI, HOOK3, 
HOXAll, HOXA13, HOXA9, HOXCII, HOXCI3, 
HOXDlI, HOXD13, HRAS, HSP90AAI, HSP90ABI, ID3, 
IDHl, IDH2, IGFIR, IKZFI, IL2, IL2IR, IL6ST, IL7R, 
ING4, IRF4, IRS2, IRS4, ISX, ITGAI0, ITGA9, ITGAV, 
ITGB2, ITGB3, ITK, JAKI, JAK2, JAK3, JAZFI, JUN, 
KAT6A, KAT6B, KAT7, KCNJ5, KDM5A, KDM5C, 
KDM6A, KDR, KDSR, KEAPI, KIAAI549, KIF5B, KIT, 
KLF4, KLF6, KLK2, KMT2A, KMT2C, KMT2D, KNLl, 
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KNSTRN, KRAS, KTNI, LAMPI, LARP4B, LASPI, 
LATSI, LATS2, LCK, LCPI, LEFI, LEPROTLl, LHFPL6, 
LIFR, LMNA, LMOl, LMO2, LPP, LRIG3, LRPlB, 
LSMI4A, LTF, LTK, LYLl, LZTRI, MACCI, MAF, 
MAFB, MAGEAI, MAGil, MALTl, MAML2, MAP2KI, 
MAP2K2, MAP2K4, MAP2K7, MAP3KI, MAP3KI3, 
MAP3K7, MAPKI, MAPKS, MARKI, MARK4, MAX, 
MB21D2, MBDl, MCLI, MDM2, MDM4, MECOM, 
MED12, MENI, MET, MGMT, MITF, MLFI, MLHl, 
MLLTl, MLLTl0, MLLTlI, MLLT3, MLLT6, MMP2, 
MNI, MNXI, MPL, MREll, MRTFA, MSH2, MSH6, 
MSI2, MSN, MTCPI, MTOR, MTR, MTRR, MUCI, 
MUCI6, MUC4, MUTYH, MYB, MYBLl, MYC, MYCL, 
MYCN, MYD88, MYHlI, MYH9, MYOSA, MYODl, 
N4BP2, NAB2, NACA, NBEA, NBN, NCKIPSD, NCOAI, 
NCOA2, NCOA4, NCORI, NCOR2, NDRGI, NFI, NF2, 
NFATC2, NFE2L2, NFIB, NFKBI, NFKB2, NFKBIE, 
NIN, NKX2-I, NLRPI, NONO, NOTCHl, NOTCH2, 
NOTCH4, NPMI, NR4A3, NRAS, NRGI, NSDl, NSD2, 
NSD3, NT5C2, NTHLl, NTRKI, NTRK2, NTRK3, 
NUMAI, NUP2I4, NUP98, NUTMI, NUTM2A, 
NUTM2B, NUTM2D, OLIG2, OMD, P2RY8, PABPCI, 
PAFAHIB2, PAK3, PALB2, PARPI, PATZI, PAX3, PAX5, 
PAX7, PAXS, PBRMI, PBXI, PCBPI, PCMI, 
PDCD1LG2, PDE4DIP, PDGFB, PDGFRA, PDGFRB, 
PERI, PGAP3, PHF6, PHOX2B, PICALM, PIK3C2B, 
PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3RI, PIK3R2, 
PIMI, PKHDl, PLAGI, PLCGl, PLEKHG5, PML, PMSI, 
PMS2, POLDl, POLE, POLG, POLQ, POTl, POU2AFI, 
POU5FI, PPARG, PPFIBPI, PPMlD, PPP2RIA, PPP6C, 
PRCC, PRDMI, PRDMI6, PRDM2, PREX2, PRFI, 
PRKACA, PRKACB, PRKARIA, PRKCB, PRKDC, 
PRPF40B, PRRXI, PSIPI, PTCHl, PTEN, PTGS2, PTK6, 
PTPNll, PTPNI3, PTPN6, PTPRB, PTPRC, PTPRD, 
PTPRK, PTPRT, PWWP2A, QKI, RABEPI, RACI, 
RAD17, RAD2I, RAD50, RAD51B, RAFI, RALGDS, 
RANBP2, RAPIGDSI, RARA, RBI, RBMI0, RBMI5, 
RECQL4, REL, RELA, RET, RFWD3, RGPD3, RGS7, 
RHOA, RHOH, RITl, RMI2, RNASEL, RNF2, RNF2I3, 
RNF43, ROBO2, ROSI, RPLl0, RPL22, RPL5, RPNI, 
RPS6KA2, RRMI, RSPO2, RSP03, RUNXI, RUNXITl, 
SI00A7, SALL4, SAMD9, SBDS, SDC4, SDHA, 
SDHAF2, SDHB, SDHC, SDHD, SEPTIN5, SEPTIN6, 
SEPTIN9, SET, SETBPI, SETDlB, SETD2, SETDBI, 
SF3BI, SFPQ, SFRP4, SGKI, SH2B3, SH2D1A, SH3GL1, 
SHTNI, SIRPA, SIXI, SIX2, SKI, SLC34A2, SLC45A3, 
SMAD2, SMAD3, SMAD4, SMARCA4, SMARCBI, 
SMARCDl, SMARCEI, SMCIA, SMO, SMUGI, SNDl, 
SNX29, SOCSI, SOXll, SOX2, SOX2I, SPECCI, SPEN, 
SPOP, SRC, SRGAP3, SRSF2, SRSF3, SSIS, SSI8Ll, 
SSXI, SSX2, SSX4, STAGI, STAG2, STAT3, STAT5B, 
STAT6, STIL, STKll, STK36, STRN, SUFU, SUZI2, 
SYK, SYNEI, TAFI, TAFI5, TAFIL, TALI, TAL2, 
TBLIXRI, TBX22, TBX3, TCEAI, TCFI2, TCF3, 
TCF7Ll, TCF7L2, TCLlA, TEC, TENTSC, TERT, TETI, 
TET2, TFE3, TFEB, TFG, TFPT, TFRC, TGFBR2, TGM7, 
THBSI, THRAP3, TIMP3, TLR4, TLXI, TLX3, 
TMEMI27, TMPRSS2, TNC, TNFAIP3, TNFRSFI4, 
TNFRSFI7, TNK2, TOPI, TP53, TP63, TPM3, TPM4, 
TPR, TRAF7, TRIM24, TRIM27, TRIM33, TRIPll, 
TRRAP, TSCI, TSC2, TSHR, U2AFI, UBR5, UGTlAI, 
USP44, USP6, USPS, USP9x, VAVI, VHL, VTilA, WAS, 
WDCP, WIFI, WNK2, WRN, WTl, WWTRI, XPA, XPC, 
XPOl, XRCC2, YWHAE, ZBTBI6, ZCCHCS, ZEBI, 
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ZFHX3, ZMYM2, ZMYM3, ZNF331, ZNF384, ZNF429, 
ZNF479, ZNF521, ZNRF3, and ZRSR2. 

[0073] Gene Set 4 is: ABLl, ABL2, ABRAXASl, 
ACVRl, ACVRlB, ADGRA2, AKTl, AKT2, AKT3, ALK, 
ALOX12B, AMERl, ANKRDll, APC, AR, ARAF, 
ARFRPl, ARIDlA, ARlDlB, ARID2, ARID5B, ASXLl, 
ASXL2, ATM, ATR, ATRX, AURKA, AURKB, AXINl, 
AXIN2, AXL, B2M, BAPl, BARDl, BBC3, BCLl0, 
BCL2, BCL2Ll, BCL2Lll, BCL2L2, BCL6, BCOR, 
BCORLl, BCR, BIRC3, BLM, BMPRlA, BRAF, BRCAl, 
BRCA2, BRD4, BRIPl, BTGl, BTK, CALR, CARDll, 
CASPS, CBFB, CBL, CCN6, CCNDl, CCND2, CCND3, 
CCNEI, CD274, CD276, CD74, CD79A, CD79B, CDC73, 
CDHl, CDK12, CDK4, CDK6, CDKS, CDKNlA, 
CDKNlB, CDKN2A, CDKN2B, CDKN2C, CEBPA, 
CENPA, CHD2, CHD4, CHEKl, CHEK2, CIC, COPl, 
CREBBP, CRKL, CRLF2, CSFIR, CSF3R, CTCF, CTLA4, 
CTNNAl, CTNNBl, CUL3, CXCR4, CYLD, DAXX, 
DCUNlDl, DDR2, DICERl, DIS3, DNAJBl, DNMTl, 
DNMT3A, DNMT3B, DOTlL, E2F3, EED, EGFL7, 
EGFR, EIFlAX, EIF4A2, EIF4E, ELOC, EML4, EMSY, 
EP300, EPCAM, EPHA3, EPHA5, EPHA7, EPHBI, 
ERBB2, ERBB3, ERBB4, ERCCl, ERCC2, ERCC3, 
ERCC4, ERCC5, ERG, ERRFil, ESRl, ETSI, ETVl, 
ETV4, ETV5, ETV6, EWSRl, EZH2, FANCA, FANCC, 
FANCD2, FANCE, FANCF, FANCG, FANCl, FANCL, 
FAS, FATl, FBXW7, FGFl, FGFl0, FGF14, FGF19, FGF2, 
FGF23, FGF3, FGF4, FGF5, FGF6, FGF7, FGFS, FGF9, 
FGFRl, FGFR2, FGFR3, FGFR4, FH, FLCN, FLil, FLTl, 
FLT3, FLT4, FOXAl, FOXL2, FOXOl, FOXPl, FRS2, 
FUBPl, FYN, GABRA6, GATAl, GATA2, GATA3, 
GATA4, GATA6, GENl, GID4, GLil, GNAll, GNA13, 
GNAQ, GNAS, GPS2, GREMl, GRIN2A, GRM3, GSK3B, 
Hl-2, H2BC5, H3-3A, H3-3B, H3-4, H3-5, H3Cl, H3C10, 
H3Cll, H3C12, H3C13, H3C14, H3C2, H3C3, H3C4, 
H3C6, H3C7, H3C8, HGF, HLA-A, HNFlA, HOXB13, 
HRAS, HSD3Bl, HSP90AA1, ICOSLG, ID3, IDHl, IDH2, 
IFNGRl, IGFl, IGFlR, IGF2, IKBKE, IKZFl, ILl0, IL7R, 
INHA, INHBA, INPP4A, INPP4B, INSR, IRF2, IRF4, 
IRSl, IRS2, JAKl, JAK2, JAK3, JUN, KAT6A, KDM5A, 
KDM5C, KDM6A, KDR, KEAPl, KEL, KIF5B, KIT, 
KLF4, KLHL6, KMT2A, KMT2B, KMT2C, KMT2D, 
KRAS, LAMPI, LATSl, LATS2, LMOI, LRPlB, LYN, 
LZTRl, MAGI2, MALTl, MAP2Kl, MAP2K2, MAP2K4, 
MAP3Kl, MAP3K13, MAP3K14, MAP3K4, MAPKl, 
MAPK3, MAX, MCLI, MDCI, MDM2, MDM4, MED12, 
MEF2B, MENl, MET, MGA, MITF, MLHl, MLLT3, MPL, 
MREll, MSH2, MSH3, MSH6, MSTl, MSTlR, MTOR, 
MUTYH, MYB, MYC, MYCL, MYCN, MYD88, MYODl, 
NAB2, NBN, NCOA3, NCORl, NEGRI, NFl, NF2, 
NFE2L2, NFKBlA, NKX2-1, NKX3-l, NOTCHl, 
NOTCH2, NOTCH3, NOTCH4, NPMI, NRAS, NRGl, 
NSDl, NTRKl, NTRK2, NTRK3, NUP93, NUTMl, PAKl, 
PAK3, PAK5, PALB2, PARPl, PAX3, PAX5, PAX7, PAXS, 
PBRMl, PDCDl, PDCD1LG2, PDGFRA, PDGFRB, 
PDKl, PDPKl, PGR, PHOX2B, PIK3C2B, PIK3C2G, 
PIK3C3, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3Rl, 
PIK3R2, PIK3R3, PIMl, PLCG2, PLK2, PMAIPl, PMSl, 
PMS2, PNRCl, POLDl, POLE, PPARG, PPMlD, 
PPP2R1A, PPP2R2A, PPP6C, PRDMl, PREX2, 
PRKARlA, PRKCl, PRKDC, PRKN, PRSSS, PTCHl, 
PTEN, PTPNll, PTPRD, PTPRS, PTPRT, QKl, RAB35, 
RACl, RAD21, RAD50, RAD51, RAD51B, RAD51C, 
RAD51D, RAD52, RAD54L, RAFI, RANBP2, RARA, 
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RASAl, RBI, RBMl0, RECQL4, REL, RET, RHEB, 
RHOA, RICTOR, RITl, RNF43, ROSI, RPS6KA4, 
RPS6KB1, RPS6KB2, RPTOR, RUNXl, RUNXlTl, 
RYBP, SDHA, SDHAF2, SDHB, SDHC, SDHD, SETD2, 
SF3Bl, SH2B3, SH2D1A, SHQl, SLIT2, SLX4, SMAD2, 
SMAD3, SMAD4, SMARCA4, SMARCBl, SMARCDl, 
SMO, SNCAIP, SOCSl, SOXl0, SOX17, SOX2, SOX9, 
SPEN, SPOP, SPTAl, SRC, SRSF2, STAG2, STAT3, 
STAT4, STAT5A, STAT5B, STKll, STK40, SUFU, SUZ12, 
SYK, TAFl, TBX3, TCF3, TCF7L2, TENT5C, TERC, 
TERT, TETI, TET2, TFE3, TFRC, TGFBRl, TGFBR2, 
TMEM127, TMPRSS2, TNFAIP3, TNFRSF14, TOPI, 
TOP2A, TP53, TP63, TRAF2, TRAF7, TSCl, TSC2, 
TSHR, U2AF1, VEGFA, VHL, VTCNl, WTl, XIAP, 
XPOl, XRCC2, YAPl, YESl, ZBTB2, ZFHX3, ZNF217, 
ZNF703, and ZRSR2. 
[0074] The classifier gene(s) in some embodiments com
prise one or more genes tested in commercially available 
gene panel assays, such as, for example, the GUAR
DANT360® CDx assay from Guardant Health (Palo Alto, 
CA), the Spotlight 59 oncology panel from Fluxion Biosci
ences (Alameda, CA), the UltraSEEK lung cancer panel 
from Agena Bioscience (San Diego, CA), the Foundation
ACT liquid biopsy assay from Foundation Medicine (Bev
erly, MA), the PlasmaSELECT assay from Personal 
Genome Diagnostics (Baltimore, MD), the TruSight Oncol
ogy 500 ctDNA assay from Illumina (San Diego, CA), the 
FOUNDATION ONE® Liquid CDx assay from Foundation 
Medicine, the Galleri assay from GRAIL (Menlo Park, CA), 
and the Tempus xT and xF tests from Tempus (Chicago IL). 
These panels can be used for other steps described herein, 
including select steps in isolation and sequencing. 
[0075] Some embodiments of the invention comprise 
steps of isolating and/or sequencing the classifier cfDNA. 
The steps of isolating and/or sequencing the cfDNA can 
comprise isolating and/or sequencing at least the classifier 
cfDNA but may also comprise isolating and/or sequencing at 
least some non-classifier cfDNA. 
[0076] The methods of isolating the classifier cfDNA can 
comprise isolating cfDNA corresponding to one or more 
target regions of the genome. The target regions preferably 
comprise at least the classifier regions but may also com
prise non-classifier regions. Target regions are distinguished 
from non-target regions, the latter of which are regions that 
are not target regions. The isolating can comprise using 
capture nucleic acid probes having hybridization sequences 
corresponding to the target regions to hybridize to cfDNA 
from a subject. The hybridized constructs can then be 
isolated from non-hybridized cfDNA and other elements to 
thereby "fish out" or "pull down" the desired cfDNA. 
Methods of isolating targeted cfDNA is known in the art. 
See, e.g., US 2019/0287645 Al, US 2022/0259647 Al, and 
US 2022/0090207 Al, which are incorporated herein by 
reference in their entireties. 
[0077] The isolated cfDNA can then be sequenced. The 
sequencing can be performed using a first-generation 
sequencing method, such as Maxam-Gilbert or Sanger 
sequencing, or a high-throughput sequencing (e.g., next
generation sequencing or NGS) method. A high-throughput 
sequencing method may sequence simultaneously ( or sub
stantially simultaneously) at least 10,000, 100,000, 1 mil
lion, 10 million, 100 million, 1 billion, or more polynucle
otide molecules. Sequencing methods may include, but are 
not limited to: pyrosequencing, sequencing-by-synthesis, 
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single-molecule sequencing, nanopore sequencing, semi
conductor sequencing, sequencing-by-ligation, sequencing
by-hybridization, Digital Gene Expression (Helicos), mas
sively parallel sequencing, e.g., Helicos, Clonal Single 
Molecule Array (Solexa/Illumina), sequencing using 
PacBio, SOLID, Ion Torrent, or Nanopore platforms. 
[0078] The target regions can comprise genie regions of 
the genome, intergenic regions of the genome, or a combi
nation thereof. In some embodiments, the target regions 
comprise genes or specific parts thereof ( e.g, exons, intrans, 
promoters, coding regions, untranslated regions (5' untrans
lated region, 3' untranslated region, etc.)). A gene compris
ing at least one base of a target region is referred to herein 
as a "target gene." The target genes preferably comprise at 
least the classifier gene(s) but may also comprise one or 
more non-classifier gene(s). Target genes are distinguished 
from non-target genes, the latter of which are genes that are 
not target genes. In some embodiments, the target regions 
comprise exons. Exons comprising at least one base of a 
target region are referred to herein as "target exons." Target 
exons are distinguished from non-target exons, the latter of 
which are exons that are not target exons. In some embodi
ments, the target exons comprise particular exons, such as 
first exons. 
[0079] In some embodiments, the target regions comprise 
at least a portion of at least one exon of at least one target 
gene. In some embodiments, the target regions comprise at 
least a portion of the coding sequence of at least one exon 
of at least one target gene. In some embodiments, the target 
regions comprise at least a portion of the first exon of at least 
one target gene. In some embodiments, the target regions 
comprise at least a portion of the coding sequence of the first 
exon of at least one target gene. In some embodiments, the 
target regions comprise the entirety of at least one exon of 
at least one target gene. In some embodiments, the target 
regions comprise the entirety of the coding sequence of at 
least one exon of at least one target gene. In some embodi
ments, the target regions comprise the entirety of the first 
exon of at least one target gene. In some embodiments, the 
target regions comprise the entirety of the coding sequence 
of the first exon of at least one target gene. In some 
embodiments, the target regions comprise the entirety of at 
least one exon of each target gene. In some embodiments, 
the target regions comprise the entirety of the coding 
sequence of at least one exon of each target gene. In some 
embodiments, the target regions comprise, consist, or con
sist essentially of the entirety of the first exon of each target 
gene. In some embodiments, the target regions comprise, 
consist, or consist essentially of the entirety of the coding 
sequence of the first exon of each target gene. Accordingly, 
the target cfDNA of the invention can correspond to any of 
the above-described target regions. 
[0080] In some embodiments, the non-target regions com
prise intergenic regions of the genome. In some embodi
ments, the non-target regions comprise at least one intron in 
a genome. In some embodiments, the non-target regions 
comprise all intrans in a genome. In some embodiments, the 
non-target regions comprise at least one intron of at least one 
target gene. In some embodiments, the non-target regions 
comprise at least one intron of each target gene. In some 
embodiments, the non-target regions comprise each intron 
of each target gene. In some embodiments, the non-target 
regions comprise at least one exon in at least one target gene. 
In some embodiments, the non-target regions comprise at 
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least one exon in each target gene. In some embodiments, 
the non-target regions comprise at least one exon other than 
the first exon in at least one target gene. In some embodi
ments, the non-target regions comprise at least one exon 
other than the first exon in each target gene. In some 
embodiments, the non-target regions comprise each exon 
other than the first exon in at least one target gene. In some 
embodiments, the non-target regions comprise each exon 
other than the first exon in each target gene. Accordingly, the 
isolated and/or sequenced cfDNA of the invention can 
exclude cfDNA corresponding to any of the above-described 
non-target regions. 

[0081] In various embodiments, the target regions consti
tute less than 2,999 Mb, less than 2,750 Mb, less than 2,500 
Mb, less than 2,250 Mb, less than 2,000 Mb, than 1,750 Mb, 
less than 1,500 Mb, less than 1,250 Mb, less than 1,000 Mb, 
than 750 Mb, less than 500 Mb, less than 250 Mb, less than 
200 Mb, less than 150 Mb, less than 100 Mb, less than 50 
Mb, less than 25 Mb, less than 10 Mb, or less than 5 Mb of 
a reference genome or a genome of the subject. Accordingly, 
the isolated and/or sequenced cfDNA of the invention can 
correspond to any of the above-referenced portions of the 
genome. 

[0082] In various embodiments, the target genes in total 
constitute less than 2,999 Mb, less than 2,750 Mb, less than 
2,500 Mb, less than 2,250 Mb, less than 2,000 Mb, than 
1,750 Mb, less than 1,500 Mb, less than 1,250 Mb, less than 
1,000 Mb, than 750 Mb, less than 500 Mb, less than 250 Mb, 
less than 200 Mb, less than 150 Mb, less than 100 Mb, less 
than 50 Mb, less than 25 Mb, less than 10 Mb, or less than 
5 Mb of a reference genome or a genome of the subject. 
Accordingly, the isolated and/or sequenced cfDNA of the 
invention can correspond to target genes constituting any of 
the above-referenced portions of the genome. 

[0083] In various embodiments, the number of target 
genes is at least 1, at least 5, at least 25, at least 50, at least 
7 5, at least 100, at least 125, at least 150, at least 17 5, at least 
200, at least 250, at least 250, at least 275, at least 300, at 
least 325, at least 350, at least 375, at least 400, at least 450, 
at least 475, or at least 500. In various embodiments, the 
number of target genes is no more than 25,000, no more than 
20,000, no more than 15,000, no more than 10,000, no more 
than 5,000, no more than 2,500, no more than 2,000, no 
more than 1,750, no more than 1,500, no more than 1,250, 
or no more than 1,000. 

[0084] In preferred embodiments, the target genes com
prise, consist, or consist essentially of cancer genes. In some 
embodiments, the target genes comprise, consist, or consist 
essentially of one, some, or all of the genes in Gene Set 1. 
In some embodiments, the target genes comprise, consist, or 
consist essentially of one, some, or all of the genes in Gene 
Set 2. In some embodiments, the target genes comprise, 
consist, or consist essentially of one, some, or all of the 
genes in Gene Set 3. In some embodiments, the target genes 
comprise, consist, or consist essentially of one, some, or all 
of the genes in Gene Set 4. In various embodiments, the 
target genes comprise, consist, or consist essentially of at 
least 1, at least 5, at least 25, at least 50, at least 75, at least 
100, at least 125, at least 150, at least 175, at least 200, at 
least 250, at least 250, at least 275, at least 300, at least 325, 
at least 350, at least 375, at least 400, at least 450, at least 
475, or at least 500 of the genes in any of Gene Set 1, Gene 
Set 2, Gene Set 3, or Gene Set 4. 
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[0085] In some embodiments, the classifier cfDNA is 
sequenced at a deduplicated sequencing depth of at least 1 x, 
at least 5x, at least 1 Ox, at least 15x, at least 20x, at least 
25x, at least 30x, at least 35x, at least 40x, at least 45x, at 
least 50x, at least 75x, at least l00x, at least 125x, at least 
150x, at least 175x, at least 200x, at least 225x, at least 
250x, at least 275x, at least 300x, at least 325x, at least 
350x, at least 375x, at least 400x, at least 425x, at least 
450x, at least 475x, at least 500x, at least 525x, at least 
550x, at least 575x, at least 600x, at least 1,000x, at least 
2,000x, at least 3,000x, at least 4,000x, at least 5,000x, at 
least 10,000x, at least 25,000x, or at least 50,000x. In some 
embodiments, the classifier cfDNA is sequenced at a dedu
plicated sequencing depth of no more than 25x, no more 
than 50x, no more than 1 00x, no more than 200x, no more 
than 300x, no more than 400x, no more than 500x, no more 
than 600x, no more than 700x, no more than 800x, no more 
than 900x, no more than 1,000x, no more than 2,000x, no 
more than 3,000x, no more than 4,000x, no more than 
5,000x, no more than 10,000x, no more than 25,000x, no 
more than 50,000x, no more than 75,000x, or no more than 
100,000x. In some embodiments, cfDNA corresponding to 
the target regions is sequenced at a deduplicated sequencing 
depth of at least 1 x, at least 5x, at least 1 Ox, at least 15x, at 
least 20x, at least 25x, at least 30x, at least 35x, at least 40x, 
at least 45x, at least 50x, at least 7 5x, at least 1 00x, at least 
125x, at least 150x, at least 175x, at least 200x, at least 
225x, at least 250x, at least 275x, at least 300x, at least 
325x, at least 350x, at least 375x, at least 400x, at least 
425x, at least 450x, at least 475x, at least 500x, at least 
525x, at least 550x, at least 575x, at least 600x, at least 
1,000x, at least 2,000x, at least 3,000x, at least 4,000x, at 
least 5,000x, at least 10,000x, at least 25,000x, or at least 
50,000x. In some embodiments, the cfDNA corresponding 
to the target regions is sequenced at a deduplicated sequenc
ing depth of no more than 25x, no more than 50x, no more 
than 1 00x, no more than 200x, no more than 300x, no more 
than 400x, no more than 500x, no more than 600x, no more 
than 700x, no more than 800x, no more than 900x, no more 
than 1,000x, no more than 2,000x, no more than 3,000x, no 
more than 4,000x, no more than 5,000x, no more than 
10,000x, no more than 25,000x, no more than 50,000x, no 
more than 75,000x, or no more than 100,000x. 

[0086] The term "deduplicated sequencing depth" as used 
herein refers to the total number of sequenced bases among 
all the sequenced classifier cfDNA molecules divided by the 
total number of bases in the defined classifier regions ( e.g., 
the coding regions of the first exons of the classifier genes). 
The total number of sequenced bases among all the 
sequenced classifier cfDNA molecules in some versions can 
be determined by deduplicating raw sequence reads (the 
output of a DNA sequencer), e.g., by generating a "consen
sus" read for each sequenced cfDNA using start-stop posi
tion and/or unique molecular identifiers and/or any other 
methods to generate consensus reads, and multiplying the 
number of deduplicated sequence reads by the average read 
length. Other methods can be used. The total number of 
bases in the defined classifier regions can be determined by 
counting the number of bases in the defined classifier 
regions. If the entire genome is defined as the classifier 
region, the total number of bases in the defined classifier 
region will be the length of the genome (-3.2 billion for 
exemplary reference genomes). If subregions of the genome 
are defined as the classifier regions ( e.g., coding sequences 
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of first exons of select cancer genes, as outlined in the 
following examples), the total number of bases in the 
defined classifier region will be much smaller (for example, 
2.4 Mbp as covered in the custom panel of the following 
examples). 
[0087] Consensus sequences are sequences derived from 
redundant sequences of a parent molecule intended to rep
resent the sequence of the original parent molecule. Con
sensus sequences can be produced by voting (wherein each 
majority nucleotide, e.g., the most commonly observed 
nucleotide at a given base position, among the sequences is 
the consensus nucleotide) or other approaches such as 
comparing to a reference genome. Consensus sequences can 
be produced by tagging original parent molecules with 
unique or non-unique molecular tags, which allow tracking 
of the progeny sequences (e.g., after amplification) by 
tracking of the tag and/or use of sequence read internal 
information. Examples of tagging or barcoding, and uses of 
tags or barcodes, are provided in, for example, U.S. Patent 
Pub. Nos. 2015/0368708, 2015/0299812, 2016/0040229, 
and 2016/0046986, which are entirely incorporated herein 
by reference. 
[0088] cfDNA from a subject may be obtained by isolating 
a biological sample comprising the cfDNA from the subject. 
The term "biological sample," as used herein, generally 
refers to a tissue or fluid sample derived from a subject. A 
biological sample may be directly obtained from the subject. 
A biological sample may optionally be processed before 
being used in downstream steps described herein. The 
biological sample can be derived from any organ, tissue or 
biological fluid. A biological sample can comprise, for 
example, a bodily fluid or a solid tissue sample. An example 
of a solid tissue sample is a tumor sample, e.g., from a solid 
tumor biopsy. Bodily fluids include, for example, blood, 
serum, plasma, tumor cells, saliva, urine, lymphatic fluid, 
prostatic fluid, seminal fluid, milk, sputum, stool, tears, and 
derivatives of these. Preferred samples are samples derived 
from bodily fluids. 
[0089] The methods of the invention can comprise a step 
of determining fragmentation patterns of the classifier 
cfDNA. Fragmentations patterns of cfDNA can include any 
quantifiable fragmentation characteristic of the cfDNA. 
Nonlimiting examples of such characteristics include the 
length of cfDNA fragments that align with one or more 
regions of a genome, a number of cfDNA fragments that 
align with one or more regions of a genome, a number of 
cfDNA fragments that start or end at each of one or more 
regions of a genome, a number of cfDNA fragments outside 
a nucleosome region, a number of cfDNA fragments within 
a nucleosome region, a size peak distribution of cfDNA 
fragments relative to a mappable genomic location, a par
ticular location of a size peak of cfDNA fragments, a 
particular range of cfDNA fragment sizes associated with a 
size peak, or any combination thereof. Exemplary methods 
of determining such characteristics are described in further 
detail below or are otherwise known in the art. 
[0090] An exemplary fragmentation pattern that can be 
used for analysis and classification is a fragment size dis
tribution. "Fragment size distribution" as used herein with 
respect to cfDNA refers to a quantitation of the number of 
cfDNAs within each of one or more different size intervals. 
The quantitation can be an absolute or relative quantitation. 
The size of the cfDNA is the length of the cfDNA, and each 
size interval can be a single value (a single length) or range 
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of values (a range of lengths). In some embodiments, a 
single fragment size distribution is determined for all the 
classifier cfDNAs. In some embodiments separate fragment 
size distributions are determined for different subsets of the 
cfDNAs. Separate size distributions, for example, can be 
determined for cfDNAs corresponding to any of the various 
classifier regions described herein. In some embodiments, 
separate fragment size distributions are determined for the 
classifier cfDNA corresponding to at least some of the 
classifier genes. In some embodiments, a separate fragment 
size distribution is determined for the classifier cfDNA 
corresponding to each classifier gene. In some embodiments, 
separate fragment size distributions are determined for the 
classifier cfDNA corresponding to at least some of the 
classifier exons. In some embodiments, a separate fragment 
size distribution is determined for the classifier cfDNA 
corresponding to each classifier exon. In some embodi
ments, separate fragment size distributions are determined 
for the classifier cfDNA corresponding to at least some of 
the first exons of at least some of the classifier genes. In 
some embodiments, a separate fragment size distribution is 
determined for the classifier cfDNA corresponding to the 
first exon of each classifier gene. In some versions, at least 
the portion of the at least one exon of the at least one 
classifier gene comprises one or more predefined exon 
regions. Exemplary predefined exon regions comprise tran
scription factor binding sites, regions of open chromatin, and 
specific motifs. Other predefined exon regions can be used. 

[0091] For downstream classification, the fragmentation 
size distributions can be quantitated. "Quantitate" (and 
grammatical variants thereof) in this context refers to char
acterizing the fragmentation size distributions with a quan
titative value. The quantitative value can be an absolute or 
relative value and can be, without limitation, a number, a 
statistical value (e.g., frequency, mean, median, standard 
deviation, or quantile), or a degree or a relative quantity 
(e.g., high, medium, and low). A quantitative value can be a 
ratio of two quantitative values. A quantitative value can be 
a linear combination of quantitative values. A quantitative 
value may be a normalized value. Any of a number of 
distribution quantitations can be used. These include but are 
not limited to quantitation of entropy, sum, minimum, maxi
mum, interquartile range, mean, median, mode, variance, 
standard deviation, kurtosis, diversity, depth of sequencing, 
bins, and/or Kolmogorov-Smirnov statistic. The DNA 
sequence motifs present in fragments can also inform the 
fragmentation patterns. In some versions, the determining 
the fragmentation patterns comprises determining a motif 
diversity score. In some versions, the determining the frag
mentation patterns comprises determining the fragmentation 
patterns of one or more predefined exon regions. In some 
versions, the predefined exon regions are selected from the 
group consisting of transcription factor binding sites, 
regions of open chromatin, and specific motifs. In some 
versions, the determining the fragmentation patterns com
prises determining a separate fragment size distribution of 
the classifier cfDNA corresponding to each predefined exon 
region. 

[0092] Exemplary versions of the invention employ an 
entropy quantitation (Roach TNF. Use andAbuse of Entropy 
in Biology: A Case for Caliber. Entropy (Basel). 2020 Nov 
25;22(12):1335). An exemplary entropy quantitation is 
Shannon entropy quantitation (Shannon, Claude E. (July 
1948). "A Mathematical Theory of Communication". Bell 
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System Technical Journal. 27 (3): 379-423) (Shannon, 
Claude E. (October 1948). "A Mathematical Theory of 
Communication". Bell System Technical Journal. 27 (4): 
623-656). Other suitable entropy quantitations include 
Renyi entropy (Renyi, Alfred (1961). "On measures of 
information and entropy" (PDF). Proceedings of the fourth 
Berkeley Symposium on Mathematics, Statistics and Prob
ability 1960. pp. 547-561) and Tsallis entropy (Tsallis, C. 
(1988). "Possible generalization of Boltzmann-Gibbs statis
tics". Journal of Statistical Physics. 52 (1-2): 47-487), 
among others. 

[0093] Exemplary versions of the invention employ depth 
of sequencing, as well as quantitation of the fragment size 
distribution by measuring the number of fragments that fall 
into various fragment size bins. Exemplary versions of the 
invention employ motif diversity scores (Jiang P, Sun K, 
Peng Wet al. Plasma DNA End-Motif Profiling as a Frag
mentomic Marker in Cancer, Pregnancy, and Transplanta
tion. Cancer Discov 2020; 10 (5): 664-673). Once the 
fragmentation patterns of the classifier cfDNAs are deter
mined, the fragmentation patterns can be used to determine 
a particular disease state of the subject from which the 
cfDNAs are derived. The fragmentation patterns, for 
example, can be classified to identify the subject as being 
negative or positive for cancer or being negative or positive 
for a particular type of cancer. "Type of cancer" ( or "cancer 
type") as used herein generally refers to a cancer having a 
particular characteristic that is distinct from other cancers, 
such as a particular tissue of origin, etiological characteris
tic, phenotypic characteristic, genotypic characteristic, ana
tomical characteristic, physiological characteristic, clinical 
characteristic, and/or treatment-response characteristic. The 
term "tissue of origin" as used herein refers to the organ, 
organ group, body region, or cell type that a cancer arises or 
originates from. The identification of a tissue of origin 
typically allows for identification of the most appropriate 
next steps in the care continuum of cancer to further diag
nose, stage, and decide on treatment. The term "subtype of 
cancer" ( or "cancer subtype") generally refers to a cancer of 
a particular cancer type having a particular characteristic 
that distinguishes it from another cancer of the particular 
cancer type. An example of a cancer subtype is a cancer from 
a particular tissue of origin that has an etiological, pheno
typic, genotypic, anatomical, physiological characteristic, 
clinical characteristic, and/or treatment-response character
istic that differs from another cancer of the particular tissue 
of origin. The identification of a cancer type or subtype 
typically allows for identification of the most appropriate 
next steps in the care continuum of cancer to further diag
nose, stage, and decide on treatment. The identification of a 
subject as being negative or positive for cancer or a par
ticular type or subtype thereof will typically occur by 
determining a probability or numerical score from the frag
mentation patterns and classifying the subject based on 
certain thresholds thereof. 

[0094] Various exemplary types of cancer include acute 
lymphoblastic leukemia (ALL), acute myeloid leukemia 
(AML), adrenocortical carcinoma, AIDS-related cancers 
(Kaposi sarcoma (soft tissue sarcoma), AIDS-related lym
phoma, primary CNS lymphoma), anal cancer, appendix 
cancer, astrocytomas (a type of brain cancer), atypical 
teratoid/rhabdoid tumor (a type of brain cancer), basal cell 
carcinoma of the skin (see skin cancer), bile duct cancer, 
bladder cancer, bone cancer (includes Ewing sarcoma, 
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osteosarcoma, and malignant fibrous histiocytoma), brain 
cancer, breast cancer, bronchial tumors (lung cancer), Bur
kitt lymphoma (non-Hodgkin lymphoma), carcinoid tumor 
(type of gastrointestinal caner), central nervous system can
cer (atypical teratoid/rhabdoid tumor (brain cancer), 
medulloblastoma and other CNS embryonal tumors (brain 
cancer), germ cell tumor (brain cancer)), primary CNS 
lymphoma, cervical cancer, cholangiocarcinoma (bile duct 
cancer), chordoma (bone cancer), chronic lymphocytic leu
kemia (CLL), chronic myelogenous leukemia (CML), 
chronic myeloproliferative neoplasms, colorectal cancer, 
craniopharyngioma (brain cancer), cutaneous T-cell lym
phoma (mycosis fungoides and Sezary syndrome), ductal 
carcinoma In Situ (DCIS) (type of breast cancer), endome
trial cancer (uterine cancer), ependymoma (brain cancer), 
esophageal cancer, esthesioneuroblastoma (head and neck 
cancer), Ewing sarcoma (bone cancer), extracranial germ 
cell tumor, extragonadal germ cell tumor, eye cancer (in
traocular melanoma, retinoblastoma, fallopian tube cancer, 
gallbladder cancer, gastric cancer (stomach cancer), gastro
intestinal carcinoid tumor, gastrointestinal stromal tumors 
(GIST) (soft tissue sarcoma), germ cell tumors (childhood 
central nervous system germ cell tumors (brain cancer), 
childhood extracranial germ cell tumors, extragonadal germ 
cell tumors, ovarian germ cell tumors, testicular cancer), 
gestational trophoblastic disease, hairy cell leukemia, head 
and neck cancer, heart tumors, hepatocellular cancer (liver 
cancer), histiocytosis, (langerhans cell), Hodgkin lym
phoma, hypopharyngeal cancer (head and neck cancer), 
intraocular melanoma, islet cell tumors (pancreatic neuroen
docrine tumors, Kaposi sarcoma (soft tissue sarcoma), kid
ney (renal cell) cancer, Langerhans cell histiocytosis, laryn
geal cancer (head and neck cancer), leukemia, lip and oral 
cavity cancer (head and neck cancer), liver cancer, lung 
cancer (non-small cell, small cell, pleuropulmonary blas
toma, pulmonary inflammatory myofibroblastic tumor, and 
tracheobronchial tumor), lymphoma, male breast cancer, 
melanoma, intraocular melanoma (eye cancer), Merkel cell 
carcinoma (skin cancer), mesothelioma, metastatic cancer, 
metastatic squamous neck cancer with occult primary (head 
and neck cancer), midline tract carcinoma with NUT gene 
changes, mouth cancer (head and neck cancer), multiple 
endocrine neoplasia syndromes, multiple myeloma/plasma 
cell neoplasms, mycosis fungoides (lymphoma), myelodys
plastic syndromes, myelodysplastic/myeloproliferative neo
plasms, myelogenous leukemia, chronic (CML), acute 
myeloid leukemia (AML), myeloproliferative neoplasms, 
nasal cavity and paranasal sinus cancer (head and neck 
cancer), nasopharyngeal cancer (head and neck cancer), 
neuroblastoma, non-Hodgkin lymphoma, non-small cell 
lung cancer, oral cancer, lip and oral cavity cancer (head and 
neck cancer), oropharyngeal cancer (head and neck cancer), 
osteosarcoma, undifferentiated pleomorphic sarcoma of 
bone treatment, ovarian cancer, pancreatic cancer, pancre
atic neuroendocrine tumors (islet cell tumors), papillomato
sis ( childhood laryngeal), paraganglioma, paranasal sinus 
cancer (head and neck cancer), nasal cavity cancer (head and 
neck cancer), parathyroid cancer, penile cancer, pharyngeal 
cancer, (head and neck cancer), pheochromocytoma, pitu
itary tumor, plasma cell neoplasm/multiple myeloma, pleu
ropulmonary blastoma (lung cancer), pregnancy and breast 
cancer, primary central nervous system (CNS) lymphoma, 
primary peritoneal cancer, prostate cancer (such as meta
static neuroendocrine prostate cancer), pulmonary inflam-
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matory myofibroblastic tumor (lung cancer), rectal cancer, 
recurrent cancer, renal cell (kidney) cancer, retinoblastoma, 
rhabdomyosarcoma, salivary gland cancer (head and neck 
cancer), sarcoma ( childhood rhabdomyosarcoma (soft tissue 
sarcoma), childhood vascular tumors (soft tissue sarcoma), 
Ewing sarcoma (bone cancer), Kaposi sarcoma (soft tissue 
sarcoma), osteosarcoma (bone cancer), soft tissue sarcoma, 
uterine sarcoma), Sezary syndrome (lymphoma), skin can
cer, small cell lung cancer, small intestine cancer, soft tissue 
sarcoma, squamous cell carcinoma of the skin (skin cancer), 
squamous neck cancer with occult primary (head and neck 
cancer), stomach (gastric) cancer, T-cell lymphoma (myco
sis fungoides and Sezary syndrome), testicular cancer, throat 
cancer (head and neck cancer), nasopharyngeal cancer, 
oropharyngeal cancer, hypopharyngeal cancer, thymoma 
and thymic carcinoma, thyroid cancer, tracheobronchial 
tumors (lung cancer), transitional cell cancer of the renal 
pelvis and ureter (kidney (renal cell) cancer), ureter cancer, 
renal pelvis cancer, transitional cell cancer (kidney (renal 
cell) cancer), urethral cancer, uterine cancer, uterine sar
coma, vaginal cancer, vascular tumors (soft tissue sarcoma), 
and vulvar cancer. In some embodiments, classifying the 
fragmentation patterns identifies the subject as being posi
tive or negative for one or more of any one or more of the 
above-referenced cancer types. 

[0095] In some embodiments, classifying the fragmenta
tion patterns identifies the subject as being positive or 
negative for one or more of breast cancer (including hor
mone receptor-positive or negative breast cancer), bladder 
cancer, lung cancer, kidney cancer, prostate cancer, and 
metastatic neuroendocrine prostate cancer. In some embodi
ments, classifying the fragmentation patterns identifies the 
subject as being positive or negative for one or more of 
breast cancer, bladder cancer, lung cancer, prostate cancer, 
and metastatic neuroendocrine prostate cancer. 

[0096] In some embodiments, classifying the fragmenta
tion patterns identifies the subject as being positive or 
negative for a cancer treatable with a certain drug. Exem
plary drugs in this regard include any one or more of the 
following drugs, in any combination: Abiraterone, Enzalu
tamide, Apalutamide, Darolutamide, Anastrozole, Erlotinib, 
Rapamycin, Sunitinib, PHA-665752, MG-132, Paclitaxel, 
Cyclopamine, AZ628, Sorafenib, Tozasertib, Imatinib, 
NVP-TAE684, Crizotinib, Saracatinib, S-Trityl-L-cysteine, 
Z-LLNle-CHO, Dasatinib, GNF-2, CGP-60474, CGP-
082996, A-770041, WH-4-023, WZ-1-84, BI-2536, BMS-
536924, BMS-509744, CMK, Pyrimethamine, JW-7-52-1, 
A-443654, GW843682x, Entinostat, Parthenolide, 
GSK319347 A, TGX221, Bortezomib, XMDS-85, Seliciclib, 
Salubrinal, Lapatinib, GSK269962A, Doxorubicin, Etopo
side, Gemcitabine, Mitomycin-C, Vinorelbine, NSC-87877, 
Bicalutamide, QSll, CP466722, Midostaurin, CHIR-99021, 
Ponatinib, AZD6482, JNK-9L, PF-562271, HG6-64-1, JQl, 
JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT 
inhibitor, VIII, Embelin, FH535, PAC-1 IPA-3, 
GSK650394, BAY-61-3606, 5-Fluorouracil, Thapsigargin, 
Obatoclax, Mesylate, BMS-754807, Linsitinib, Bexarotene, 
Bleomycin, LFM-A13, GW-2580, Luminespib, Phenformin, 
Bryostatin 1, Pazopanib, Dacinostat, Epothilone B, 
GSK1904529A, BMS-345541, Tipifarnib, Avagacestat, 
Ruxolitinib, AS601245, Ispinesib, Mesylate, TL-2-105, 
AT-7519, TAK-715, BX-912, ZSTK474,AS605240, Genen
tech, Cpd 10, GSK1070916, Enzastaurin, GSK429286A, 
FMK, QL-XII-47, IC-87114, Idelalisib, UNC0638, Caba-
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zantinib, WZ3105, XMD14-99, Quizartinib, CP724714, 
JW-7-24-1, NPK76-II-72-1, STF-62247, NG-25, TL-1-85, 
VX-lle, FR-180204, ACY-1215, Tubastatin,A Zibotentan, 
Sepantronium bromide, NSC-207895, VNLG/124, AR-42, 
CUDC-101, Belinostat, I-BET-762, CAY10603, Linifanib, 
BIX02189, Alectinib, Pelitinib, Omipalisib, JNJ38877605, 
SU11274, KIN00l-236, KIN00l-244, WHI-P97, KIN00l-
042, KIN00l-260, KIN001-266, Masitinib, Amuvatinib, 
MPS-l-IN-1, NVP-BHG712 OSI-930, OSI-027, CX-5461, 
PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, Fedra
tinib, Foretinib, Y-39983, YM201636, Tivozanib, WYE-
125132, GSK690693, SNX-2112, QL-XI-92, XMD13-2, 
QL-X-138, XMD15-27, T0901317, Selisistat, Tenovin-6, 
THZ-2-49, KIN00l-270, THZ-2-102-1, AT7867, CI-1033, 
PF-00299804, TWS119, Torin 2, Pilaralisib, GSK1059615, 
Voxtalisib, Brivanib, BMS-540215, BIBF-1120, AST-1306, 
Apitolisib, LIMKl,inhibitor, BMS4, kb NB 142-70, Sphin
gosine Kinase 1 Inhibitor II, eEF2K Inhibitor A-484954, 
MetAP2 Inhibitor A832234, Venotoclax, CPI-613, 
CAY10566, Ara-G, Pemetrexed, Alisertib, Flavopiridol, 
C-75, CAP-232 (CAP-232, TT-232, TLN-232), Trichostatin 
A, Panobinostat, LCL161, IMD-0354, MIMI, ETP-45835, 
CD532 

[0097] NSC319726, ARRY-520, SB505124, A-83-01, 
LDN-193189, FTY-720, BAM7 AGI-6780, Kobe2602, 
LGK974, Wnt-C59, RU-SKI 43, AICA Ribonucleotide, 
Vinblastine, Cisplatin, Cytarabine, Docetaxel, Methotrexate, 
Tretinoin, Gefitinib, Navitoclax, Vorinostat, Nilotinib, Refa
metinib, CI-1040, Temsirolimus, Olaparib, Veliparib, Bosu
tinib, Lenalidomide, Axitinib, AZD7762, GW441756, Les
taurtinib, SB216763, Tanespimycin, VX-702, Motesanib, 
KU-55933, Elesclomol, Afatinib, Vismodegib, PLX-4720, 
BX795, NU7441, SL0101, Doramapimod, JNK Inhibitor 
VIII, Wee! Inhibitor, Nutlin-3a (-), Mirin, PD173074, 
ZM447439, RO-3306, MK-2206, Palbociclib, Dactolisib, 
Pictilisib, AZD8055, PD0325901, SB590885, Selumetinib, 
CCT007093, EHT-1864, Cetuximab, PF-4708671, Ser
demetan, AZD4547, Capivasertib, HG-5-113-01, HG-5-88-
01, TW 37, XMD11-85h, ZG-10, XMD8-92, QL-VIII-58, 
CCT-018159, Rucaparib, AZ20, KU-60019, Tamoxifen, 
QL-XII-61, PFI-1, IOX2, YK-4-279, (5Z)-7-Oxozeaenol, 
Piperlongumine, Daporinad, Talazoparib, rTRAIL, 
UNC1215, UNC0642, SGC0946, ICL1100013, XAV939, 
Trametinib, Dabrafenib, Temozolomide, Bleomycin (50 
uM), AZD3514, Bleomycin (10 uM), AZD6738, AZD5438, 
AZD6094, Dyrklb_0191, AZD4877, EphB4_9721, Fulves
trant, AZD8931, FEN1_3940, FGFR_0939, FGFR_3831, 
BPTES, AZD7969, AZD5582, IAP _5620, IAP _7638, 
IGFR_3801, AZD1480, JAK1_3715, JAK3_7406, MCTI_ 
6447, MCT4 1422, AZD2014, AZD8186, AZD8835, PI3Ka 
4409, AZD1208, PLK_6522, RAF 9304, PARP 9495, PARP 
0108, PARP 9482, TANK 1366, AZD1332, TTK 3146, 
SN-38, Pevonedistat, PFI-3, Camptothecin, Staurosporine, 
Irinotecan, Oxaliplatin, PRIMA-lMET, Niraparib, 
MK-1775, Dinaciclib, EPZ004777, AZ960, Epirubicin, 
Cyclophosphamide, Sapitinib, Uprosertib, Alpelisib, 
Taselisib, EPZ5676, SCH772984, IWP-2,Leflunomide, 
VE-822, WZ4003, CZC24832, GSK2606414, PFI3, PCI-
34051, RVX-208, OTX015, GSK343, ML323, Entosple
tinib, PRT062607, Ribociclib, Picolinici-acid, AZD5153, 
CDK9_5576, CDK9_5038, Eg5_9814, ERK_2440, ERK_ 
6604, IRAK4_ 4710, JAK1_8709, AZD5991, PAK_5339, 
TAFl 5496, ULKl 4989, VSP34_8731, IGF1R_3801, JAK_ 
8517, Ibrutinib, Zoledronate, Acetalax, Carmustine, Topo-
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tecan, Teniposide, Mitoxantrone, Dactinomycin, Fludara
bine, Nelarabine, Vincristine, Podophyllotoxin bromide, 
Dihydrorotenone, Gallibiscoquinazole, Elephantin, Sinu
larin, Sabutoclax, LY2109761, OF-1, MN-64, KRAS 
(G12C) Inhibitor-12, BDP-00009066, Buparlisib, Ulixer
tinib, Venetoclax, ABT737, Afuresertib, AGI-5198, 
AZD3759, AZD5363, Osimertinib, Cediranib, Ipatasertib, 
GDC0810, GNE-317, GSK2578215A, I-BRD9, Telomerase 
Inhibitor IX, MIRA-1, NVP-ADW742, P22077, Savolitinib, 
UMI-77, WIKI4, WEHI-539, BPD-00008900, BIBR-1532, 
Pyridostatin, AMG-319, MK-8776, LJI308, AZ6102, 
GSK591, VE821, and AT13148. 

[0098] Classifying the fragmentation patterns can be per
formed with a classifier. A classifier is an algorithm com
puter code that receives, as input, test data and produces, as 
output, a classification of the input data as belonging to one 
or another class. A classifier can be trained for the purposes 
herein by determining the fragmentation patterns of cfDNA 
from test subjects having particular known disease states 
(e.g., cancer or particular types of cancer) and control 
subjects not having those disease states, or model samples 
representative of same. The classifier cfDNA can be cfDNA 
corresponding to any classifier region or set of classifier 
regions described herein, such as first exons of a set of 
cancer genes. Machine learning can then be used to distin
guish the fragmentation patterns of the cfDNA from subjects 
having particular disease states from cfDNA from subjects 
not having those particular disease states. Machine learning 
employs algorithms, executed by computer, that automate 
analytical model building, e.g., for clustering, classification 
or pattern recognition. Machine learning algorithms may be 
supervised or unsupervised. Machine learning algorithms 
include, for example, artificial neural networks ( e.g., back 
propagation networks), discriminant analyses (e.g., Bayes
ian classifier or Fischer analysis), support vector machines, 
decision trees ( e.g., recursive partitioning processes such as 
CART - classification and regression trees, or random for
ests), linear classifiers (e.g., multiple linear regression 
(MLR), partial least squares (PLS) regression, and principal 
components regression), hierarchical clustering, and cluster 
analysis. 

[0099] In various embodiments of the invention, the meth
ods described herein are capable of identifying a subject as 
being positive for cancer at an accuracy of at least about 
50%, at least about 55%, at least about 60%, at least about 
65%, at least about 70%, at least about 75%, at least about 
80%, at least about 85%, at least about 90%, at least about 
95%, at least about 99%, or about 100% using a sample from 
the subject having a ct-fraction from about 0.000001 to 
about 0.01, such as about 0.000005 to about 0.01, about 
0.00001 to about 0.01, about 0.00005 to about 0.01, about 
0.0001 to about 0.01, about 0.0005 to about 0.01, 0.000001 
to about 0.005, about 0.000005 to about 0.005, about 
0.00005 to about 0.005, about 0.00005 to about 0.005, about 
0.0001 to about 0.005, about 0.0005 to about 0.005, 
0.000001 to about 0.001, about 0.000005 to about 0.001, 
about 0.00001 to about 0.001, about 0.00005 to about 0.001, 
about 0.0001 to about 0.001, about 0.0005 to about 0.001, 
about 0.000001 to about 0.0005, about 0.000005 to about 
0.0005, about 0.00001 to about 0.0005, about 0.00005 to 
about 0.0005, about 0.0001 to about 0.0005, about 0.0005 to 
about 0.0005, about 0.000001 to about 0.0001, about 
0.000005 to about 0.0001, about 0.00001 to about 0.0001, 
about 0.00005 to about 0.0001, about 0.000001 to about 
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0.00005, about 0.000005 to about 0.00005, about 0.00001 to 
about 0.00005, about 0.000001 to about 0.00001, about 
0.000005 to about 0.00001, or about 0.000001 to about 
0.000005. 

[0100] In various embodiments of the invention, the meth
ods described herein are capable of identifying a subject as 
being positive for a particular type of cancer (e.g., breast 
cancer, bladder cancer, lung cancer, prostate cancer, and/or 
metastatic neuroendocrine prostate cancer), at an accuracy 
of at least about 50%, at least about 55%, at least about 60%, 
at least about 65%, at least about 70%, at least about 75%, 
at least about 80%, at least about 85%, at least about 90%, 
at least about 95%, at least about 99%, or about 100% using 
a sample from the subject having a ct-fraction from about 
0.001 to about 0.25, such as from about 0.005 to about 0.25, 
from about 0.01 to about 0.25, from about 0.05 to about 
0.25, from about 0.1 to about 0.25, from about 0.001 to 
about 0.1, from about 0.005 to about 0.1, from about 0.01 to 
about 0.1, from about 0.05 to about 0.1, from about 0.001 to 
about 0.05, from about 0.005 to about 0.05, from about 0.01 
to about 0.05, from about 0.001 to about 0.01, from about 
0.005 to about 0.01, or from about 0.001 to about 0.005. 

[0101] "Accuracy" as used herein is defined as the number 
of correct identifications ( e.g., correct identification of sub
jects as being positive for cancer or a particular type of 
cancer according to the methods described herein) divided 
by the total number of identifications made. A correct 
identification is an identification that matches the true con
dition of the subject. Methods of calculating ct-fractions can 
be performed according to the method ofVandekerkhove et 
al. 2021 (Vandekerkhove G, Lavoie J M, Annala M, Murtha 
A J, Sundahl N, Walz S, Sano T, Taavitsainen S, Ritch E, 
Fazli L, Hurtado-Coll A, Wang G, Nykter M, Black P C, 
Todenhiifer T, Ost P, Gibb EA, Chi KN, Eigl B J, Wyatt A 
W. Plasma ctDNA is a tumor tissue surrogate and enables 
clinical-genomic stratification of metastatic bladder cancer. 
Nat Commun. 2021 Jan. 8;12(1):184). 

[0102] The methods described herein can be used for 
screening subjects to identify those for diagnostic testing 
and/or treatment. Exemplary types of diagnostic testing 
include imaging and biopsy. Exemplary types of imaging 
include computerized tomography scans (CT or CAT scans), 
magnetic resonance imaging (MRI), nuclear scans, bone 
scans, positron emission tomography (PET) scans, ultra
sounds, X-rays, endoscopy (e.g., colonoscopy, bronchos
copy ). Biopsies include removal of tissue from the subject, 
typically with a needle or surgery. Biopsies include solid 
tissue biopsy and bodily fluid biopsy (liquid biopsy). In 
some embodiments, the methods described herein identify a 
subject as having a cancer of a particular tissue of origin, and 
the subject then undergoes imaging or biopsy of the par
ticular tissue of origin. In some embodiments, the particular 
tissue of origin is a solid tissue, and the subject undergoes 
imaging and/or biopsy of the solid tissue. 

[0103] In some embodiments, the subject is treated for the 
cancer after being identified as being positive for cancer. In 
some embodiments, the subject is treated for a particular 
type of cancer after being identified as being positive for that 
particular type of cancer. The treatment in some versions is 
a treatment specific for that particular type of cancer, such as 
a treatment that targets a particular tissue or specific cancer 
type. Exemplary treatments include surgeries ( e.g., resection 
surgeries), radiation therapies, and drug therapies. 
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[0104] Exemplary drug therapies include treatments with 
chemotherapy agents, targeted cancer therapy agents, dif
ferentiating therapy agents, hormone therapy agents, and 
immunotherapy agents. Exemplary chemotherapy agents 
include alkylating agents, antimetabolites, anthracyclines, 
anti-tumor antibiotics, cytoskeletal disruptors (taxans), 
topoisomerase inhibitors, mitotic inhibitors, corticosteroids, 
kinase inhibitors, nucleotide analogs, and platinum-based 
agents. Exemplary targeted cancer therapy agents include 
signal transduction inhibitors ( e.g. tyrosine kinase and 
growth factor receptor inhibitors), histone deacetylase 
(HDAC) inhibitors, retinoic receptor agonists, proteosome 
inhibitors, angiogenesis inhibitors, and monoclonal antibody 
conjugates. Exemplary differentiating therapy agents includ
ing retinoids, such as tretinoin, alitretinoin and bexarotene. 
Exemplary hormone therapy agents include anti-estrogens, 
aromatase inhibitors, progestins, estrogens, anti-androgens, 
and GnRH agonists or analogs. Exemplary immunotherapy 
agents include monoclonal antibody therapies such as rit
uximab (RITUXAN) and alemtuzumab (CAIVIPATH), non
specific immunotherapies and adjuvants, such as BCG, 
interleukin-2 (IL-2), and interferon-alfa, and immunomodu
lating drugs, for instance, thalidomide and lenalidomide 
(REVLIMID). Exemplary drugs that can be used in treat
ment include any one or more of the following drugs, in any 
combination: Abiraterone, Enzalutamide, Apalutamide, 
Darolutamide, Anastrozole, Erlotinib, Rapamycin, Suni
tinib, PHA-665752, MG-132, Paclitaxel, Cyclopamine, 
AZ628, Sorafenib, Tozasertib, Imatinib, NVP-TAE684, 
Crizotinib, Saracatinib, S-Trityl-L-cysteine, Z-LLNle-CHO, 
Dasatinib, GNF-2, CGP-60474, CGP-082996, A-770041, 
WH-4-023, WZ-1-84, BI-2536, BMS-536924, BMS-
509744, CMK, Pyrimethamine, JW-7-52-1, A-443654, 
GW843682x, Entinostat, Parthenolide, GSK319347A, 
TGX221, Bortezomib, XMD8-85, Seliciclib, Salubrinal, 
Lapatinib, GSK269962A, Doxorubicin, Etoposide, Gemcit
abine, Mitomycin-C, Vinorelbine, NSC-87877, Bicaluta
mide, QSll, CP466722, Midostaurin, CHIR-99021, Pona
tinib, AZD6482, JNK-9L, PF-562271, HG6-64-1, JQl, 
JQ12, DMOG, FTI-277, OSU-03012, Shikonin, AKT 
inhibitor, VIII, Embelin, FH535, PAC-1 IPA-3, 
GSK650394, BAY-61-3606, 5-Fluorouracil, Thapsigargin, 
Obatoclax, Mesylate, BMS-754807, Linsitinib, Bexarotene, 
Bleomycin, LFM-A13, GW-2580, Luminespib, Phenformin, 
Bryostatin 1, Pazopanib, Dacinostat, Epothilone B, 
GSK1904529A, BMS-345541, Tipifamib, Avagacestat, 
Ruxolitinib, AS601245, Ispinesib, Mesylate, TL-2-105, 
AT-7519, TAK-715, BX-912, ZSTK474,AS605240, Genen
tech, Cpd 10, GSK1070916, Enzastaurin, GSK429286A, 
FMK, QL-XII-47, IC-87114, Idelalisib, UNC0638, Cabo
zantinib, WZ3105, XMD14-99, Quizartinib, CP724714, 
JW-7-24-1, NPK76-II-72-1, STF-62247, NG-25, TL-1-85, 
VX-lle, FR-180204, ACY-1215, Tubastatin,A Zibotentan, 
Sepantronium bromide, NSC-207895, VNLG/124, AR-42, 
CUDC-101, Belinostat, I-BET-762, CAY10603, Linifanib, 
BIX02189, Alectinib, Pelitinib, Omipalisib, JNJ38877605, 
SU11274, KIN00l-236, KIN00l-244, WHI-P97, KIN00l-
042, KIN001-260, KIN001-266, Masitinib, Amuvatinib, 
MPS-l-IN-1, NVP-BHG712 OSI-930, OSI-027, CX-5461, 
PHA-793887, PI-103, PIK-93, SB52334, TPCA-1, Fedra
tinib, Foretinib, Y-39983, YM201636, Tivozanib, WYE-
125132, GSK690693, SNX-2112, QL-XI-92, XMD13-2, 
QL-X-138, XMD15-27, T0901317, Selisistat, Tenovin-6, 
THZ-2-49, KIN00l-270, THZ-2-102-1, AT7867, CI-1033, 
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PF-00299804, TWS119, Torin 2, Pilaralisib, GSK1059615, 
Voxtalisib, Brivanib, BMS-540215, BIBF-1120, AST-1306, 
Apitolisib, LIMKl,inhibitor, BMS4, kb NB 142-70, Sphin
gosine Kinase 1 Inhibitor II, eEF2K Inhibitor A-484954, 
MetAP2 Inhibitor A832234, Venotoclax, CPI-613, 
CAY10566, Ara-G, Pemetrexed, Alisertib, Flavopiridol, 
C-75, CAP-232 (CAP-232, TT-232, TLN-232), Trichostatin 
A, Panobinostat, LCL161, IMD-0354, MIMI, ETP-45835, 
CD532 
[0105] NSC319726, ARRY-520, SB505124, A-83-01, 
LDN-193189, FTY-720, BAM7 AGI-6780, Kobe2602, 
LGK974, Wnt-C59, RU-SKI 43, AICA Ribonucleotide, 
Vinblastine, Cisplatin, Cytarabine, Docetaxel, Methotrexate, 
Tretinoin, Gefitinib, Navitoclax, Vorinostat, Nilotinib, Refa
metinib, CI-1040, Temsirolimus, Olaparib, Veliparib, Bosu
tinib, Lenalidomide, Axitinib, AZD7762, GW441756, Les
taurtinib, SB216763, Tanespimycin, VX-702, Motesanib, 
KU-55933, Elesclomol, Afatinib, Vismodegib, PLX-4720, 
BX795, NU7441, SL0lOl, Doramapimod, JNK Inhibitor 
VIII, Wee! Inhibitor, Nutlin-3a (-), Mirin, PD173074, 
ZM447439, RO-3306, MK-2206, Palbociclib, Dactolisib, 
Pictilisib, AZD8055, PD0325901, SB590885, Selumetinib, 
CCT007093, EHT-1864, Cetuximab, PF-4708671, Ser
demetan, AZD4547, Capivasertib, HG-5-113-01, HG-5-88-
01, TW 37, XMD11-85h, ZG-10, XMD8-92, QL-VIII-58, 
CCT-018159, Rucaparib, AZ20, KU-60019, Tamoxifen, 
QL-XII-61, PFI-1, IOX2, YK-4-279, (5Z)-7-Oxozeaenol, 
Piperlongumine, Daporinad, Talazoparib, rTRAIL, 
UNC1215, UNC0642, SGC0946, ICL1100013, XAV939, 
Trametinib, Dabrafenib, Temozolomide, Bleomycin (50 
uM), AZD3514, Bleomycin (10 uM), AZD6738, AZD5438, 
AZD6094, Dyrklb_0191, AZD4877, EphB4_9721, Fulves
trant, AZD8931, FEN1_3940, FGFR_0939, FGFR_3831, 
BPTES, AZD7969, AZD5582, IAP _5620, IAP _7638, 
IGFR_3801, AZD1480, JAK1_3715, JAK3_7406, MCTI_ 
6447, MCT4 1422, AZD2014, AZD8186, AZD8835, PI3Ka 
4409, AZD1208, PLK_6522, RAF _9304, PARP 9495, 
PARP 0108, PARP 9482, TANK 1366, AZD1332, TTK 
3146, SN-38, Pevonedistat, PFI-3, Camptothecin, Stauro
sporine, Irinotecan, Oxaliplatin, PRIMA-lMET, 
[0106] Niraparib, MK-1775, Dinaciclib, EPZ004777, 
AZ960, Epirubicin, Cyclophosphamide, Sapitinib, Upros
ertib, Alpelisib, Taselisib, EPZ5676, SCH772984, IWP-2, 
Leflunomide, VE-822, WZ4003, CZC24832, GSK2606414, 
PFI3, PCI-34051, RVX-208, OTX015, GSK343, ML323, 
Entospletinib, PRT062607, Ribociclib, Picolinici-acid, 
AZD5153, CDK9_5576, CDK9_5038, Eg5_9814, ERK_ 
2440, ERK_6604, IRAK4 4710, JAK1_8709, AZD5991, 
PAK_5339, TAFl 5496, ULKl 4989, VSP34_8731, 
IGF1R_3801, JAK_8517, Ibrutinib, Zoledronate, Acetalax, 
Carmustine, Topotecan, Teniposide, Mitoxantrone, Dactino
mycin, Fludarabine, Nelarabine, Vincristine, Podophyllo
toxin bromide, Dihydrorotenone, Gallibiscoquinazole, 
Elephantin, Sinularin, Sabutoclax, LY2109761, OF-1, 
MN-64, KRAS (G12C) Inhibitor-12, BDP-00009066, 
Buparlisib, Ulixertinib, Venetoclax, ABT737, Afuresertib, 
AGI-5198, AZD3759, AZD5363, Osimertinib, Cediranib, 
Ipatasertib, GDC0810, GNE-317, GSK2578215A, I-BRD9, 
Telomerase InhibitorIX, MIRA-I, NVP-ADW742, P22077, 
Savolitinib, UMI-77, WIKI4, WEHI-539, BPD-00008900, 
BIBR-1532, Pyridostatin, AMG-319, MK-8776, LJI308, 
AZ6102, GSK591, VE821, and AT13148. 
[0107] It is within the capabilities of a skilled physician or 
oncologist to select an appropriate cancer therapeutic agent 
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based on characteristics such as the type of tumor, cancer 
stage, previous exposure to cancer treatment or therapeutic 
agent, and other characteristics of the cancer. 
[0108] In some embodiments, the methods described 
herein identify a subject as having a cancer of a particular 
tissue of origin, and the subject then undergoes surgery on 
the particular tissue of origin. In some embodiments, the 
particular tissue of origin is a solid tissue, and the subject 
undergoes surgery the solid tissue. 
[0109] The correspondence of various elements described 
herein can be determined by alignment of sequences using 
an alignment algorithm, for example, Needleman-Wunsch 
algorithm (see e.g., the EMBOSS Needle aligner available at 
the URL ebi.ac.uk/Tools/psa/emboss_needle/nucleotide. 
html, optionally with default settings), the BLAST algorithm 
(see e.g., the BLAST alignment tool available at the URL 
blast.ncbi.nlm.nih.gov/Blast.cgi, optionally with default set
tings), or the Smith-Waterman algorithm (see e.g., the 
EMBOSS Water aligner available at the URL ebi.ac.uk/ 
Tools/psa/emboss_water/nucleotide.html, optionally with 
default settings). Optimal alignment may be assessed using 
any suitable parameters of a chosen algorithm, including 
default parameters. 
[0110] In some cases, a sequence may be aligned to a 
reference genome or a reference sequence. A reference 
genome (sometimes referred to as an "assembly") is 
assembled from genetic data and intended to represent the 
genome of a species. Typically, reference genomes are 
haploid. Typically, reference genomes do not represent the 
genome of a single individual of the species but rather are 
mosaics of the genomes of several individuals. A reference 
genome can be publicly available or be a private reference 
genome. Human reference genomes include, for example, 
hgl9 or NCBI Build 37 or Build 38. A reference sequence is 
generally a nucleotide sequence against which a subject's 
nucleotide sequences are compared. Typically, a reference 
sequence is derived from a reference genome. 
[0111] Any element disclosed or claimed herein can com
prise, consist of, or consist essentially of the characteristics 
herein described with respect thereto. 
[0112] The elements and method steps described herein 
can be used in any combination whether explicitly described 
or not. 
[0113] All combinations of method steps as used herein 
can be performed in any order, unless otherwise specified or 
clearly implied to the contrary by the context in which the 
referenced combination is made. 
[0114] As used herein, the singular forms "a," "an," and 
"the" include plural referents unless the content clearly 
dictates otherwise. 
[0115] Numerical ranges as used herein are intended to 
include every number and subset of numbers contained 
within that range, whether specifically disclosed or not. 
Further, these numerical ranges should be construed as 
providing support for a claim directed to any number or 
subset of numbers in that range. For example, a disclosure 
of from 1 to 10 should be construed as supporting a range of 
from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 
to 4.6, from 3.5 to 9.9, and so forth. 
[0116] All patents, patent publications, and peer-reviewed 
publications (i.e., "references") cited herein are expressly 
incorporated by reference to the same extent as if each 
individual reference were specifically and individually indi
cated as being incorporated by reference. In case of conflict 
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between the present disclosure and the incorporated refer
ences, the present disclosure controls. 
[0117] It is understood that the invention is not confined to 
the particular construction and arrangement of parts herein 
illustrated and described, but embraces such modified forms 
thereof as come within the scope of the claims. 

EXAMPLES 

Fragmentomics of Targeted Circulating Tumor 
DNA Sequencing Panels 

Summary 

[0118] The isolation of cell-free DNA (cfDNA) from the 
bloodstream can be used to detect and analyze somatic 
alterations in circulating tumor DNA ( ctDNA), and multiple 
cfDNA targeted sequencing panels are now commercially 
available for FDA-approved biomarker indications to guide 
treatment. More recently, cfDNA fragmentation patterns 
have emerged as a tool to infer epigenomic and transcrip
tomic information. However, most of these analyses used 
whole-genome sequencing, which is insufficient to identify 
FDA-approved biomarker indications in a cost-effective 
manner. We used machine-learning models of fragmentation 
patterns at the first coding exon in targeted cancer gene 
cfDNA sequencing panels to distinguish between cancer vs. 
non-cancer patients, as well as the specific tumor type and 
subtype. We assessed this approach in two independent 
cohorts: a published cohort from GRAIL (breast, lung, and 
prostate cancers, non-cancer, N=198) and an institutional 
cohort from the University of Wisconsin (UW; breast, lung, 
prostate, bladder cancers, N=320). Each cohort was split 
70/30% into training and validation sets. In the UW cohort, 
training cross validated accuracy was 82.1 %, and accuracy 
in the independent validation cohort was 86.6% despite a 
median ctDNA fraction of only 0.06. In the GRAIL cohort, 
to assess how this approach performs in very low ctDNA 
fractions, training and independent validation were split 
based on ctDNA fraction. Training cross validated accuracy 
was 80.6%, and accuracy in the independent validation 
cohort was 76.3%. In the validation cohort where the ctDNA 
fractions were all <0.05 and as low as 0.0003, the cancer vs. 
non-cancer AUC was 0.99. To our knowledge, this is the first 
study to demonstrate that sequencing from targeted cfDNA 
panels can be utilized to analyze fragmentation patterns to 
classify cancer types, dramatically expanding the potential 
capabilities of clinical panels at minimal additional cost. 

Introduction 

[0119] Profiling of genomic driver alterations in cancer 
has become increasingly important, not only for studying the 
biological underpinnings of cancer, but also in identifying 
clinically actionable alterations for targeted therapies in 
clinical trials and practice. Historically, tumor samples have 
been required, but obtaining tissue specimens for molecular 
profiling is not always feasible and can be especially chal
lenging in the metastatic setting. Cell-free DNA (cfDNA) 
from cancer patients provides a minimally invasive 
approach for assessing molecular events in the tumor by 
detecting alterations in the tumor-derived cfDNA, also 
called circulating tumor DNA ( ctDNA)1

. This is a mature 
technology, with multiple commercially available next-gen
eration sequencing (NGS) ctDNA panels2

. 
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[0120] The stability of cfDNA in circulation is dependent 
on its association with proteins and protein complexes which 
offer protection against DNAses found in the blood3

-
4

. The 
nucleosome complex is the most common protector of 
cfDNA which is reflected in the size distribution of cfDNA 
fragments showing a mode fragment size of 167 bp corre
sponding to the wrapping of DNA around a single nucle
osome, with a smaller proportion of fragments at 334 bp 
corresponding to a di-nucleosome complex5

-
8

. Other studies 
have also described smaller peaks at a periodicity of 
approximately 10 bp at lower fragment sizes representing 
the accessibility of DNA minor grooves to endonuclease 
cleavage as it wraps around the histone complex, as well as 
the binding of transcription factors or other small DNA 
binding proteins 7 -

11 .The study of cfDNA fragmentation pat
terns has been referred to as "fragmentomics." 

[0121] Almost all clinical fragmentomic studies to date 
have utilized whole-genome sequencing (WGS) to assess 
fragmentation patterns across the genome in an unbiased 
manner27

. While WGS has the advantage of breadth of 
coverage, there is generally low sequencing depth making it 
unsuitable for cfDNA somatic alteration detection as it has 
poor sensitivity, especially at low ctDNA fractions28

. Con
versely, cfDNA targeted panels allow for deeper sequencing 
at areas of interest, which are typically coding regions of 
important cancer genes. Previous cfDNA fragmentomics 
analyses have generally focused on WGS which affords 
probing of fragmentation patterns at all genomic regions in 
an unbiased manner, as the investigated biological phenom
ena are typically not unique to regions profiled by target 
panels (e.g. exonic regions). For example, many analyses of 
fragmentation patterns have focused on the assessment of 
histone binding, which requires relatively uniform read 
support across large areas of the genome 7 •

9
•
1 7 

•
20

•
23

. This type 
of read support is not provided by targeted panel sequencing. 

[0122] While previous studies have focused on fragmen
tation patterns across the whole genome, we hypothesized 
that cfDNA fragmentation patterns in the coding regions of 
important oncogenes and tumor suppressors could provide 
important insights for distinguishing between tumor and 
normal samples, as well as between different tumor types 
and subtypes. We specifically focused on fragmentation 
patterns overlapping the first coding exon of targeted genes. 
To evaluate this, we examined the fragmentomic patterns in 
both a publicly available multi-cancer cfDNA dataset pro
filed using the GRAIL cfDNA assay29

, as well as an insti
tutional multi-cancer cohort profiled using a custom cfDNA 
panel. We found that analysis of the fragmentation patterns 
of first coding exons could distinguish between cancer types 
as well as between cancer vs. normal. The use of fragmen
tation patterns from targeted cfDNA panels would allow for 
the advantages of both variant calling and fragmentomics in 
a single assay which could be leveraged on any existing 
panels that are already commercially available. 

Methods 

UW Patient Cohort 

[0123] Peripheral blood samples were collected from 
patients with metastatic cancer enrolled in an !RB-approved 
liquid biopsy collection protocol at the University of Wis
consin-Madison (2014-1214), as well as from two ongoing 
clinical trials (NCT03090165, NCT03725761). 
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UW cfDNA Sample Collection, Preparation, and Sequenc
ing 

[0124] Blood was collected in 10 mL K2 EDTA (BD 
Vacutainer) or CellSave™ preservative blood collection 
tubes (Menarini Silicon Biosystems). Whole blood was 
processed within 4 hours (EDTA) or 36 hours (CellSave) 
from time of collection and was centrifuged at 300x g for 10 
minutes. Plasma (3-6 mL) was harvested and centrifuged at 
1500x g for 10 minutes, then stored at -80° C. cfDNA was 
isolated from 2-6mL plasma using the QIAamp Circulating 
Nucleic Acid kit (Qiagen). Germline DNA (gDNA) was 
isolated from matched peripheral blood mononuclear cells 
using the DNeasy blood and tissue kit (Qiagen) and frag
mented using the NEBNext Ultra II FS DNA module (New 
England Biolabs ). The Agilent Bioanalyzer high sensitivity 
DNA chip was used to quantify and assess cfDNA and 
fragmented gDNA quality. 50 ng cfDNA or 50 ng frag
mented gDNA were subjected to library preparation with 
unique molecular indexes using the xGen Prism DNA 
library preparation kit (Integrated DNA technologies). For 
samples with less than 50 ng available cfDNA, 1, 10, or 25 
ng DNA input was used. 8-12 libraries were pooled at 500 
ng per library followed by hybridization and capture with a 
custom 822-gene panel using the xGen hybridization capture 
of DNA libraries kit (Integrated DNA technologies). Paired 
end sequencing (2x150 bp) was performed on a NovaSeq 
6000 at the University of Wisconsin sequencing core, with 
a target depth of 20 million reads per germline sample and 
50 million reads per cfDNA sample. 

Sequencing Data Processing 

[0125] UW sequencing was aligned to the hg38 genome 
using BWA-mem30 (v0.7.17) followed by deduplication of 
the aligned BAM files with Connor v0.6.1 (https://github. 
com/umich-bref-bioinf/Connor) which uses both start-stop 
position and UMis along with filtering oflow quality reads. 
A minimum family size threshold of 1 (-s 1) was used to 
keep all unique reads. BAM files were filtered for properly 
paired reads (samtools flags -f3 -F2308), sorted by read 
name, then converted to BEDPE files using bedtools31 

(v2.30.0) bamtobed using the -bedpe flag. The start and stop 
positions of each read were extracted from the BEDPE file 
to yield a BED file of the sequencing reads to use for 
subsequent overlaps. GRAIL cfDNA sequencing data and 
metadata29 were accessed and downloaded through the 
European Genome Archive (Dataset ID 
EGAD00001005302). As raw FASTQ files were not avail
able, the hgl 9-prealigned BAM files were deduplicated 
using start-stop position and UMI followed by BAM to BED 
conversion as described above for the UW samples. 

Fragmentomics 

[0126] For each sample, a global fragmentation distribu
tion was calculated from the BED file by extracting the read 
insert size from the mapped end of the template and the 
mapped start of the template (stop-start) and then counting 
the number of reads at each size. The number of reads at 
each size was divided by the total number of reads in the 
sample to return the proportion of reads at each fragment 
size. Individual fragment distributions were plotted using 
the proportion of reads at each fragment size. 
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Shannon Entropy for First Coding Exon 

[0127] Canonical exon coordinates were downloaded as 
BED files from the UCSC Genome Browser using the Table 
Browser tool for both hg38 and hg19 (https://genome.ucsc. 
edu/cgi-bin/hgTables). 
[0128] The BED file of each cfDNA sample was then 
overlapped with the respective exon file (hg38 for UW data, 
hg19 for GRAIL data) using bedtools intersect (v2.30.0) to 
yield reads overlapping with canonical exons. A minimum 
of 1 bp overlap was required for a read to be considered 
overlapped with an exon of interest. Reads overlapping the 
first coding exon of each gene were extracted, and a frag
ment size distribution was calculated for each gene using 
only the reads overlapping exon 1. Throughout the manu
script, references to "exon 1" or "ElSE" refer to the first 
coding exon of the respective gene or genes. Shannon 
entropy was calculated with the entropy function from the 
"entropy" package (vl.3.1) in R (v4.0.4) using the count of 
read fragments at each fragment size. This returned a single 
Shannon entropy value for reads overlapping the first exon 
of each gene in each sample. Given the association between 
the number of fragments analyzed and Shannon entropy 
(FIG. 2F), with low fragment count leading to a less accurate 
estimation of Shannon entropy, we required a minimum of 
500 reads to overlap an exon across all samples to be 
included in the final dataset. 

GRAIL, Training, Cross Validation, and Independent 
Validation 

[0129] Using the El SE values for each gene in the GRAIL 
panel as features, multinomial regression using a general
ized linear model with elastic net penalty (GLMNET) was 
used to predict cancer types. Samples were split into 70% 
training and 30% validation with low ctDNA fraction 
samples placed in the validation cohort. For all model 
training, a range of a and A values were selected using latin 
hypercube sampling, and the best AUC on 10-fold cross 
validation was used select the final parameters. To estimate 
performance in the training cohort, 10-fold cross validation 
was performed, and training and parameter fitting (using 
10-fold cross validation nested within the training set of 
each fold) was performed within each fold separately to 
avoid any information leakage. Predictions from the hold
out test sets for each fold were combined to calculate 
accuracy and ROC curves. A final model was then trained 
using the full training cohort. The independent validation 
cohort was then entered into the model to yield prediction 
scores, again with no information leakage between training 
and validation. These prediction scores were used to calcu
late accuracy and ROC curves. 
UW training, Cross Validation, and Independent Validation 
[0130] A similar approach was used for the UW cohort, 
which was also split into 70% training and 30% training. 
However, due to more missing ctDNA fraction data and 
imbalanced tumor types, the split was random while strati
fying by tumor type, such that the relative proportions were 
similar across training and validation. Otherwise, training, 
cross validation, and independent validation were all per
formed the same as in GRAIL. 

Identification of Somatic Mutations in the UW Cohort 

[0131] Somatic variant identification was performed using 
VarDictJava vl .8.332 in paired sample mode using standard 
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filter settings. Somatic mutations were required to have a 
minimum of 10 supporting reads, a minimum of 20 total 
reads covering the position, and up to 2 mismatches in the 
cfDNA samples, and a minimum of 20 total reads in the 
matched gDNA samples. For SNVs, the average mapping 
quality of mutation supporting reads was required to be at 
least 50 and the average distance of the mutant allele from 
the nearest read end was required to be at least 15 bases. We 
then conservatively removed germline mutations and 
somatic mutations related to clonal hematopoiesis of inde
terminate potential (CHIP) by removing mutations to have 
more than 1 supporting read in any gDNA sample and 
removing any of 4,938 CHIP related mutations compiled by 
Bick et al. 33

. Lastly, mutations in the low-complexity 
genomic regions and shared common mutations in dbSNP 
(dbSNP _GS) were discarded. 

Copy Number Analysis in the UW Cohort 

[0132] Deduplicated BAM files were further filtered for 
uniquely mapped reads with high mapping quality using 
sambamba v0.8.2 (-F "mapping quality >=30 and not ([XA] 
!=null or [SA] !=null)". Using the deduplicated, filtered, 
sorted, and indexed barn files as input, we ran CNVkit 
v0.9.934 to call somatic copy number alterations. CNVkit is 
a read-depth approach and utilizes both targeted and non
targeted regions to infer copy number more evenly across 
the genome. An accessibility bed file was created (cnvkit.py 
access -s 10000) to remove unmappable regions (i.e. large 
stretches of "N" characters) from the reference genome. 
CNVkit was run in batch mode for all cfDNA samples with 
a flat reference, which assumes equal coverage in all bins. 
Bin-level read depth was corrected for GC content, sequence 
repeats, and target density, and individually compared with 
the flat reference to calculate read depth ratio (log2). Genes 
with copy number gain or loss were identified using the 
genemetrics command with minimum absolute log2 copy 
ratio threshold (log2) of 0.5. Genes with less than three bins 
(probes) and read depth (depth) less than 1000 in each 
sample were discarded. CN was only used to compare 
against ElSE in our analysis. As ctDNA fraction impacts 
both fragmentomic patterns and copy number, copy number 
was therefore not corrected for tumor content. 
Estimation of ctDNA Fraction in the UW Cohort 
[0133] The proportion of tumor-derived cfDNA (ctDNA 
fraction) was estimated based on VAF of autosomal somatic 
mutations. VAF in autosomes is elevated if a mutant allele 
is accompanied by deletion of the other allele (i.e., loss of 
heterozygosity, LOH). Assuming a diploid tumor model and 
that the mutation with the highest VAF displays LOH, 
ctDNA fraction and the highest VAF can be related as 

2 
ct DNA fraction= -

1
--. 

-+l 
VAF 

To account for stochastic variation, we modeled the can be 
related as mutant allele read count with a binomial distri
bution as suggested by Vandekerkhove et al. 35 and calcu
lated what the true VAF would be if the observed mutant 
allele read count was a 95% quantile outlier. After calculat
ing ctDNA fraction for each somatic mutation in a given 
sample, the highest estimate of ctDNA fraction was used for 
the given sample as the mutation with the highest VAF is the 
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most likely to be clonal. While the classification of LOH for 
the highest VAF is an assumption, many other reports utilize 
this method when analyzing targeted cfDNA sequencing15

• 

35-41. Data for ctDNA fraction for samples from the GRAIL 
cohort were obtained from their previously published 
report29 in the supplemental data (Source Data FIG. 2; tab 
"FIG. 2f') 

Summary of Differences Between GRAIL and UW Cohorts 

[0134] Patients: 
GRAIL: Patients with metastatic cancer who were progress
ing on stable doses of treatment. The normal (non-cancer) 
blood samples were obtained from the San Diego Blood 
Bank. 
UW: Patients with metastatic cancer. While in general, 
patients who were treatment naive or progressing were 
preferred, this also included patients who were responding 
to treatment. Neuroendocrine prostate cancer and bladder 
cancer were also included, which were not in the GRAIL 
dataset. No normal blood samples were included, as this was 
not allowed on the institutional blood collection protocol. 

Sample Tubes: 

[0135] GRAIL: Streck tubes were used 
UW: EDTA or CellSave tubes were used 
cfDNA Extraction: 

GRAIL: QIAamp Circulating Nucleic Acid Kit (Qiagen) 

UW: QIAamp Circulating Nucleic Acid kit (Qiagen) 

Library Preparation: 

[0136] GRAIL: Illumina TruSeq DNA nano protocol with 
6 mer UMis (Illumina) 
UW: xGen Prism DNA library preparation kit with 8 mer 
UMis (Integrated DNA Technologies) 

Target Capture: 

[0137] GRAIL: Custom 2.1 Mb panel with 508 cancer 
genes using Illumina Nextera Rapid Capture protocol (Illu
mina) 
UW: Custom 2.4 Mb panel with 822 cancer genes using the 
xGen hybridization capture kit (Integrated DNA Technolo
gies) 

Sequencing Depth: 

[0138] GRAIL: average raw cfDNA sequencing depth 
71,749x 
UW: average raw cfDNA sequencing depth 3,042x 

Results 

[0139] Overview of Two Independent Targeted ctDNA 
Panels and Cohorts 
[0140] We examined two cohorts of cfDNA profiled using 
targeted cancer gene exon panels. The first was a previously 
published multi-cancer cohort of 198 cfDNA samples 
assessed using the commercial assay from GRAIL, covering 
508 genes (-2 MB) at a sequencing depth of >60,000x 
across breast, lung, and prostate cancer patients along with 
healthy donors29

. The second cohort was an institutional 
multi-cancer cohort from the University of Wisconsin (UW) 
with 320 samples across breast, lung, bladder, prostate, and 
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neuroendocrine prostate cancers. Profiling was performed 
using a custom panel broadly covering the exons of 822 
cancer genes, covering-2.4 MB of the genome at an average 
sequencing depth of 3,042x. We hypothesized that cfDNA 
fragmentation patterns at transcription start sites (TSSs ), 
such as exon 1 of genes, could be used to inform tumor of 
origin using cfDNA sequencing from targeted panels which 
cover these regions in greater depth. To quantify the cfDNA 
fragmentation patterns at each exon 1 analyzed, the exon 1 
Shannon entropy (El SE) of the distribution was calculated 
which summarizes the diversity of fragments in the region. 
We then used these El SEs to train models to predict tumor 
type. Both the UW and GRAIL cohorts were split into 70% 
training in which cross-validation was used to assess per
formance, and 30% independent validation In the GRAIL 
cohort, training was specifically performed on the 70% 
samples with the highest ctDNA fraction, and validation was 
performed on the lowest 30% by ctDNA fraction (FIG. 1). 

Fragment Distributions in Targeted Panels 

[0141] The narrow breadth of genomic coverage in tar
geted panels compared to WGS may bias fragmentomic 
patterns. When we assessed the total distribution of fragment 
sizes from each targeted panel, the average global fragment 
distributions within each phenotype across both cohorts and 
assays were similar. In both, we observed a main peak at 167 
bp corresponding to a single nucleosome, as well as a 
smaller peak at 334 bp corresponding to two nucleosomes. 
In addition, we observed subnucleosomal peaks at smaller 
fragment sizes with roughly 10 bp periodicity which likely 
corresponding to the accessibility of DNA minor grooves to 
endonuclease digestion as the DNA wraps around the his
tone core, as well as the binding of transcription factors and 
other DNA-binding proteins7

• 
8 (FIGS. 2A, 2B). The frag

ment distribution from these targeted panels was similar to 
previously published cfDNA fragment patterns which used 
WGS8

• 
12

• 
14

• 
17

• 
21

• 
26

• 
42

, suggesting that fragmentomics 
might be successfully applied to targeted exon panels (FIGS. 
3A, 3B). 
[0142] Repressed genes contain high nucleosome occu
pancy at their TSS, leading to a more uniform distribution of 
fragment reads at 167 bp14

• 
16

• 
43

-
46

• In contrast, actively 
expressed genes have more open chromatin at their TSS, 
allowing the cfDNA originating from this region to be 
cleaved in a more random manner, leading to a more diverse 
distribution of DNA fragment sizes14

• 
16

• 
43

-
46

. These 
changes can be detected out to 2000 bp from the TSS, which 
overlaps most first coding exons7

• 
14

• 
47

. When we compared 
the fragment coverage around the TSS and first coding exon 
in highly expressed vs. lowly expressed genes from deep 
WGS in a separate cohort48

, we found that the lower 
coverage observed at the TSS of highly expressed genes 
extended well into the first coding exon, indicating that 
fragmentation profiles in the first coding exon are linked to 
gene expression (FIGS. 4A-4D). This is important because 
the majority of targeted cancer gene panels, including the 
GRAIL and UW panels, do not include the TSS in most 
cases and instead start at the first coding exon of targeted 
genes. 
[0143] To assess the diversity of fragment sizes at the first 
coding exon of each gene, Shannon entropies were calcu
lated for each individual gene in the respective sequencing 
panels for each patient using the distribution of fragment 
sizes overlapping the first coding exon. We defined this 
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metric as Exon 1 Shannon Entropy (El SE). To visualize the 
relationship between ElSE and fragment size distribution, 
we plotted the fragment distributions of all analyzed genes 
from highest to lowest El SE within individual samples from 
each cohort and noted that, as expected, high El SE genes 
were depleted in fragments around the mode of 167 bp with 
an increased proportion of fragments at lower ( <120 bp) and 
higher (>200 bp) sizes (FIGS. 2C, 2D; individual represen
tative sample shown for each cohort). Conversely, low El SE 
genes displayed a higher proportion of fragments at the 
mono-nucleosome peak (167 bp ), suggesting a more closed 
chromatin structure at exon 1 of those genes. We addition
ally noted that the El SE of the androgen receptor gene (AR) 
was significantly higher in prostate cancer samples com
pared to all other cancer types and normal samples in both 
the GRAIL and UW cohorts (FIGS. SA, SB). Further, AR 
ElSE was observed to be higher in high ctDNA fraction 
prostate cancer samples, but not lung cancer or breast cancer 
samples, suggesting that the high AR El SE originates from 
tumor-derived cfDNA (FIG. 9). This example highlights 
how differences in ElSE levels could help distinguish 
between tumor types and subtypes. 
[0144] Copy number alterations are common in cancer and 
can affect the number of reads mapping to each gene, which 
could potentially bias the measurement of fragment size 
diversity via ElSE. However, we did not observe a clear 
relationship between copy number and ElSE (FIG. 2E). 
El SE did start to trend up at very high copy numbers, though 
this should be interpreted with caution as there were only a 
small number of high copy number genes across our 
samples. Another possible influence on ElSE is the total 
number of observations used in its calculation, which cor
responds in our application to the number of fragments 
analyzed per exon. Variation in depth of sequencing at each 
exon can occur through variations in targeted probe pull
down efficiency and other technical factors. To isolate this 
effect from copy number, we analyzed the effect of the 
number of fragments per exon on El SE only in copy number 
neutral regions. The total number of reads mapped to an 
exon did not affect El SE above a count of -100 (FIG. 2F). 
GC content has also been shown to potentially bias cfDNA 
sequencing and various studies have corrected for this bias 
when performing fragmentomics analyses through shallow 
whole genome sequencing1 7 

• 
20

• 
23

. However, we did not find 
a significant correlation between exon 1 GC content and 
ElSE in either cohort (FIGS. 2G, 2H), possibly because 
these panels target a much smaller proportion of the genome 
and are comprised primarily of coding DNA. Thus, we 
sought to assess the potential utility of El SE in classifying 
and subtyping tumors using targeted panel fragmentomics, 
while simultaneously allowing for standard ctDNA somatic 
alteration identification. 

ElSE Fragmentomics Distinguishes Tumor Subtypes 

[0145] First, we examined if the ElSE fragmentation 
patterns could be used to reliably classify different cancer 
types in our institutional cohort and panel. The UW cohort 
contained 320 samples from patients with metastatic disease 
from six different tumor types: breast cancer (N=l00), 
bladder cancer (N=22), lung cancer (N=39), and prostate 
cancer (N=144). In addition, we had samples from patients 
with metastatic neuroendocrine prostate cancer (N=15, 
NEPC), a molecularly and clinically distinct subtype of 
prostate cancer. 
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[0146] Fragmentomic differences are subtle, and many 
studies use machine learning approaches to assess fragmen
tomic biomarkers. We used elastic-net regression to train a 
multi-class classifier to distinguish the different tumor types 
in the UW cohort, which was split into 70% training and 
30% independent validation. In the training cohort, we 
utilized 10-fold cross validation to assess performance and 
compared this to the independent validation. We found that 
in the training cohort, the El SE model was able to distin
guish the different tumor types with an overall accuracy of 
82.1 % on cross-validation. The performance was similar in 
the independent validation cohort, with an overall accuracy 
of 86.6% (FIG. 3A). We additionally tested the performance 
of the model using the middle and last coding exon of each 
gene and found that accuracy was highest when using the 
first coding exon (FIG. 10). When we examined the ROC 
curves for each tumor type, the AUCs for all tumor types 
were 2:0.89 (bladder cancer=0.98, breast cancer=0.98, lung 
cancer=0.89, prostate cancer=0.99, NEPC=l.00, FIG. 3B) 
indicating that ElSE is able to distinguish between tumor 
types and subtypes. These results were achieved despite a 
median ctDNA fraction of only 0.06. Prediction accuracy 
remained high across ctDNA fractions, though numbers are 
small in some subgroups (FIG. 3C). We additionally ana
lyzed the prediction scores for each sample within each 
cancer type to determine if incorrect predictions within a 
cancer type were biased toward a certain cancer. In all 
cancer types, the majority of samples had prediction scores 
matching the diagnosed cancer type for that patient (FIG. 
3D). 
ElSE Fragmentomics Distinguishes Tumor Types and 
Tumor vs. Normal in Low ctDNA Fraction Samples 
[0147] Given the multiplicity of targeted cfDNA sequenc
ing platforms currently in clinical and research use that can 
differ quite substantially in targeted genes and depth of 
sequencing, we sought to test whether our approach was 
reproducible, robust, and independent of the specific tar
geted sequencing panel used. Due to differences in panel 
construction, an independent model would be needed for 
each platform of interest. We therefore performed a similar 
approach in the GRAIL panel and cohort, which contained 
198 samples from patients with lung cancer (N=49), breast 
cancer (N=48), prostate cancer (N=54), as well as patients 
without cancer (N=47)29

. Approximately 347 of the genes 
overlap between the GRAIL and UW targeted sequencing 
panels. Because of the different panel designs, model train
ing was performed again using the GRAIL cohort and panel. 
The median ctDNA fraction in the GRAIL cohort was 0.076 
and the depth of sequencing was much higher than in our 
institutional cohort allowing an order of magnitude greater 
resolution of very low ctDNA fraction samples. Therefore, 
we sought to investigate the sensitivity of El SE in distin
guishing tumor types and normal samples at low ctDNA 
fractions. To assess this, we split the GRAIL cohort into 70% 
training and 30% validation based on ctDNA fractions, 
where the validation cohort consisted of the samples with 
the lowest ctDNA fractions, all <0.0481, and the training 
cohort contains all remaining samples. 
[0148] We found that in the training cohort, the ElSE 
model was able to distinguish the different tumor types with 
an overall accuracy of 80.6% on cross-validation. Remark
ably, in the independent validation, even at these low ctDNA 
fractions, the El SE model had an overall accuracy of76.3% 
(FIG. 4A). As with the UW cohort, we additionally tested 
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model performance using the middle and last coding exon of 
each gene and found that accuracy was highest when using 
the first coding exon. (FIG. 10). When we examined the 
ROC curves for each tumor type, the AUCs were all 2:0.83 
(breast cancer=0.90, lung cancer=0.83, prostate cancer=0. 
91, tumor vs. normal=0.99, FIG. 4B). Prediction accuracy 
was high in ctDNA fractions down to 0.001, with an 
accuracy of 85.7% in samples with ctDNA fractions from 
0.001 to 0.01 (FIG. 4C). Unsurprisingly, accuracy was 0% 
in predicting tumor type in ctDNA fractions <0.001, thus 
identifying the lower limit of distinguishing different tumor 
types with this approach. Notably, when considering the 
three tumor types grouped together into a single "cancer" 
category, the accuracy of distinguishing cancer samples 
from normal samples was 100% in samples with ctDNA 
fraction <0.001, with the lowest ctDNA fraction being 
0.0003. When we analyzed the prediction scores for each 
cancer type, as with the UW cohort, the majority of samples 
were correctly predicted as their true cancer type (FIG. 4D). 

Assessing Performance as a Function of Sequencing Depth 

[0149] Since the cost of NGS is not trivial, we wanted to 
evaluate how performance of the ElSE fragmentomics 
model varied as a function of depth of sequencing. To do 
this, we performed down-sampling of GRAIL cohort after 
the de-duplication step as this assessed the effect of unique 
read depth on model performance. Due to the increased 
depth of sequencing from the GRAIL data, we were able to 
down-sample all samples to 100, 50, 25, 10, 5, and 1 million 
de-duplicated reads which correspond to sequencing depths 
of roughly 15000x, 7500x, 3750x, 1500x, 750x, and 150x 
respectively for a 2 Mb panel. After down-sampling, El SE 
were calculated as described above. This down-sampling 
process was repeated ten times at each level to account for 
variability, and the resulting ElSE tables were used for 
model training, with assessment being performed in the 
independent validation cohort as above. Interestingly, we 
found that reduced sequencing had only a modest impact on 
model performance, withAUCs between 100 million and 10 
million reads remaining stable for breast (0.841 vs 0.888), 
prostate (0.929 vs 0.942), lung (0.814 vs. 0.781), and tumor 
vs. normal (1.00 vs 0.996) (FIG. SA). Predicting tumor vs. 
normal is particularly robust, with the mean AUC remaining 
close to 1 when down-sampled to 1 M reads (AUC=0.996). 
Similarly, down-sampling was found to have limited effect 
on the accuracy of the model, both overall and within cancer 
types down to 1 million reads (FIG. 5B). These results 
indicate that high levels of depth are not required for tumor 
type prediction using fragmentomics approaches within tar
geted panels and allows for its application to sequencing 
depths used in standard variant calling. 

Discussion 

[0150] Fragmentomic patterns of cfDNA are non-uniform 
and may reflect transcriptional and epigenetic changes from 
their cell of origin. A major challenge with current fragmen
tomic approaches is the requirement for WGS, which cannot 
be cost-effectively used to identify somatic alterations and 
thus is not the current standard for clinical assays. Herein, 
we describe the first fragmentomic approach that can use 
targeted cancer gene cfDNA panels to accurately classify 
tumor vs. normal as well as tumor types and subtypes, which 
performs in the same range as commercial WGS fragmen-
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tomics approaches 17
'
18

. This approach remains accurate at 
distinguishing different tumor types and subtypes down to a 
ctDNA fraction of0.001. At this ctDNA fraction, the GRAIL 
assay only has a sensitivity for detecting variants of 
65-75%28

. The ability to distinguish prostate cancer adeno
carcinoma from NEPC suggests that fragmentomics on 
targeted panels can also be useful in identifying clinically 
relevant biological subtypes for other cancers. Remarkably, 
this approach is nearly perfect at distinguishing tumor vs. 
normal samples even in samples with ctDNA fractions 
ranging from 0.001 to 0.0003. Sensitivity at such low 
ctDNA fractions suggests potential clinical applications 
such as multi-cancer early detection (MCED) and minimal 
residual disease (MRD) detection. 

[0151] The applicability of fragmentomics to targeted 
ctDNA panels represents a tremendous practical advance
ment to the field. A single assay could provide multiple 
layers of information depending on ctDNA fraction. Tumor 
type from fragmentomics can be identified reliably down to 
0.1 % ctDNA with high depth of sequencing, lower than 
many assays can even reliably detect somatic alterations28

' 

52, 53. Below that, tumor vs. normal can still be identified 
using fragmentomic approaches. Since ctDNA fraction is 
unknown prior to sequencing, a single unified assay pro
vides the maximum data regardless, and is also cost effec
tive. In addition, a single targeted panel cfDNA sequencing 
assay allows for maximal use of a plasma sample, as 
splitting a sample for multiple assays can decrease the 
sensitivity of each, especially at very low ctDNA quantities. 
Of note, while ctDNA fraction is a useful metric for these 
analyses, it is not always possible to obtain due to the lack 
of germline sequencing, which is required for accurate 
ctDNA fraction estimation. An advantage of our fragmen
tomics approach is that it does not require germline sequenc
ing. 

[0152] In conclusion, fragmentomics of targeted ctDNA 
panels is not only feasible, but can accurately distinguish 
tumor site of origin, tumor subtypes, and tumor vs. normal 
even in low ctDNA samples. A single assay combining 
fragmentomics and somatic alteration detection provides 
tremendous performance, logistical, and cost benefits com
pared to separate assays for each. This approach merits 
incorporation into all existing and future targeted ctDNA 
studies. 

[0153] Additional considerations are provided in Helzer et 
al. 2023 (Helzer K T, Sharifi M N, Sperger J M, Shi Y, 
Annala M, Bootsma M L, Reese S R, Taylor A, Kaufmann 
K R, Krause H K, Schehr J L, Sethakorn N, Kosoff D, 
Kyriakopoulos C, Burkard M E, Rydzewski N R, Yu M, 
Harari P M, Bassetti M, Blitzer G, Floberg J, Sjostrom M, 
Quigley DA, Dehm S M, Armstrong A J, Beltran H, Mckay 
R R, Feng FY, O'Regan R, Wisinski K B, Emamekhoo H, 
Wyatt AW, Lang J M, Zhao S G. Fragmentomic analysis of 
circulating tumor DNA-targeted cancer panels. Ann Oneal. 
2023 September;34(9):813-825), which is incorporated by 
reference in its entirety and forms a part of the present 
disclosure. 
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Renal Cell Carcinoma 

[0208] El SE was tested for its ability to distinguish renal 
cell carcinoma (RCC) from other cancer types (FIGS. llA
llD). The UW cohort contained 44 RCC samples and 320 
non-RCC samples which were split 70/30 into training and 
validation cohort, respectively. Validation ROCA UC (which 
will be referred to as just AUC below) for RCC using all 
genes in the UW panel was 0.85. Validation AUC for RCC 
using common genes between the UW panel and the Tempus 
XF panel was 0.70. ValidationAUC for RCC using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.78. Validation AUC for RCC using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.77. 

Breast Cancer Subtypes 

[0209] El SE was tested for its ability to distinguish hor
mone receptor positive (HR+) breast cancer from triple 
negative breast cancer (TNBC) (FIGS. 12A-12D). The UW 
cohort contained 81 samples with HR subtype information, 
which was split 70/30 into training and validation cohort, 
respectively. Validation AUC for HR subtyping using all 
genes in the UW panel was 0.96. Validation AUC for HR 
subtying using common genes between the UW panel and 
the Tempus xF panel was 0.96. Validation AUC for HR 
subtying using common genes between the UW panel and 
the Guardant 360 CDx panel was 0.75. Validation AUC for 
HR subtying using common genes between the UW panel 
and the Foundation One Liquid CDx panel was 0.82. 

Exon 1 Shannon Entropy Using Overlapping 
Tempus/Guardant/Foundation Gene Lists 

[0210] Using El SE as above (FIGS. 13A-13H), validation 
AUC in the UW cohort using common genes between the 
UW panel and the Tempus xF panel was 0.91 for bladder 
cancer, 0.95 for breast cancer, 0.76 for lung cancer, 0.96 for 
NEPC, and 0.97 for prostate cancer. Validation AUC in the 
UW cohort using common genes between the UW panel and 
the Guardant 360 CDx panel was 0.9 for bladder cancer, 
0.94 for breast cancer, 0.77 for lung cancer, 0.93 for NEPC, 
and 0.97 for prostate cancer. Validation AUC in the UW 
cohort using common genes between the UW panel and the 
Foundation One Liquid CDx panel was 0.9 for bladder 
cancer, 0.97 for breast cancer, 0.78 for lung cancer, 0.99 for 
NEPC, and 0.97 for prostate cancer. 
[0211] Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus XF 
panel was 0.7 for breast cancer, 0.78 for lung cancer, 0.87 for 
prostate cancer, and 0.98 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.74 for 
breast cancer, 0.75 for lung cancer, 0.9 for prostate cancer, 
and 0.97 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.76 
for breast cancer, 0.83 for lung cancer, 0.9 for prostate 
cancer, and 1.00 for cancer vs normal. 

Exon 1 Depth of Sequencing 

[0212] Depth of sequencing was calculated by counting 
the number of fragments overlapping with each individual 
exon across all genes in each respective panel. A minimum 
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of 1 bp overlap was required to count as an overlap. Counts 
for each exon were then normalized by dividing by the size 
of the exon in base pairs and then dividing by the total reads 
in the sample. This depth metric in the first coding exons of 
each gene in each respective panel was used for model 
training and validation as in the ElSE model (FIGS. 14A-
14H). 

[0213] Validation AUC in the UW cohort using genes in 
the UW panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.96 for lung cancer, 1.00 for NEPC, and 0.99 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.99 for bladder cancer, 0.98 for breast cancer, 
0.91 for lung cancer, 0.99 for NEPC, and 0.98 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.97 for bladder cancer, 0.97 for breast cancer, 
0.82 for lung cancer, 0.99 for NEPC, and 0.97 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.93 for lung cancer, 0.99 for NEPC, and 1.00 for 
prostate cancer. 

[0214] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.96 for breast cancer, 0.92 for lung 
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.87 for breast cancer, 0.80 for lung cancer, 0.89 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.87 for 
breast cancer, 0.68 for lung cancer, 0.89 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.93 
for breast cancer, 0.86 for lung cancer, 0.99 for prostate 
cancer, and 1.00 for cancer vs normal. 

Full Gene Depth of Sequencing 

[0215] Full gene depth of sequencing was calculated by 
counting the number of fragments overlapping with any 
exon for each gene in each respective panel. A minimum of 
1 bp overlap was required to count as an overlap. Counts for 
each gene were then normalized by dividing by the size of 
the sum of the gene's exons in base pairs and then dividing 
by the total reads in the sample. This depth metric for each 
gene in each respective panel was used for model training 
and validation as in the ElSE model (FIGS. 15A-15H). 

[0216] Validation AUC in the UW cohort using genes in 
the UW panel was 1.00 for bladder cancer, 0.97 for breast 
cancer, 0.85 for lung cancer, 1.00 for NEPC, and 0.98 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.99 for bladder cancer, 0.99 for breast cancer, 
0.88 for lung cancer, 0.99 for NEPC, and 0.98 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.97 for bladder cancer, 0.96 for breast cancer, 
0.83 for lung cancer, 0.98 for NEPC, and 0.93 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
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CDx panel was 1.00 for bladder cancer, 0.97 for breast 
cancer, 0.83 for lung cancer, 0.99 for NEPC, and 0.99 for 
prostate cancer. 
[0217] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.95 for breast cancer, 0.87 for lung 
cancer, 0.95 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.89 for breast cancer, 0.76 for lung cancer, 0.96 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.86 for 
breast cancer, 0.72 for lung cancer, 0.95 for prostate cancer, 
and 0.99 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.87 
for breast cancer, 0.75 for lung cancer, 0.96 for prostate 
cancer, and 1.00 for cancer vs normal. 

Exon 1 Motif Diversity 

[0218] For each exon in each gene in each respective 
panel, the motif diversity score (MDS) was calculated for 
the set of fragments overlapping each exon. A minimum of 
1 bp overlap was required to count as an overlap. MDS was 
calculated as reported previously24

. The MDS metric at the 
first coding exon of all genes in the respective panels was 
used for model training and validation as in the El SE model 
(FIGS. 16A-16H). 
[0219] Validation AUC in the UW cohort using genes in 
the UW panel was 0.99 for bladder cancer, 0.99 for breast 
cancer, 0.92 for lung cancer, 0.97 for NEPC, and 0.99 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.98 for bladder cancer, 0.91 for breast cancer, 
0.84 for lung cancer, 0.87 for NEPC, and 0.92 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.94 for bladder cancer, 0.86 for breast cancer, 
0.83 for lung cancer, 0.89 for NEPC, and 0.88 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.97 for bladder cancer, 1.00 for breast 
cancer, 0.94 for lung cancer, 0.91 for NEPC, and 0.97 for 
prostate cancer. 
[0220] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.89 for breast cancer, 0.78 for lung 
cancer, 0.89 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.73 for breast cancer, 0.82 for lung cancer, 0.77 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.65 for 
breast cancer, 0.72 for lung cancer, 0.77 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.89 
for breast cancer, 0.82 for lung cancer, 0.87 for prostate 
cancer, and 1.00 for cancer vs normal. 

Exon 1 Fragment Size Bins 

[0221] For each exon in each gene in each respective 
panel, fragments overlapping each exon were extracted and 
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then binned by fragment size. A minimum of 1 bp overlap 
was required to count as an overlap. The fragment size bins 
were 0-100 bp, 101-150 bp, 151-200 bp, 201-250 bp, 
251-300 bp, and greater than 300 bp. The proportion of 
fragments falling into each of these bins for each exon was 
calculated by dividing the number of fragments in each bin 
by the total number of fragments overlapping the respective 
exon. Each exon is represented by six fragment size bins. 
The fragment bins for the first coding exon of all genes in the 
respective panel was used for model training and validation 
as in the ElSE model (FIGS. 17A-17H). 
[0222] Validation AUC in the UW cohort using genes in 
the UW panel was 0.98 for bladder cancer, 0.98 for breast 
cancer, 0.87 for lung cancer, 0.99 for NEPC, and 0.97 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.94 for bladder cancer, 0.97 for breast cancer, 
0.87 for lung cancer, 0.94 for NEPC, and 0.97 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.89 for bladder cancer, 0.96 for breast cancer, 
0.89 for lung cancer, 0.99 for NEPC, and 0.96 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.96 for bladder cancer, 0.97 for breast 
cancer, 0.82 for lung cancer, 0.95 for NEPC, and 0.96 for 
prostate cancer. 
[0223] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.90 for breast cancer, 0.85 for lung 
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.88 for breast cancer, 0.78 for lung cancer, 0.92 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.90 for 
breast cancer, 0.76 for lung cancer, 0.94 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.88 
for breast cancer, 0.86 for lung cancer, 0.98 for prostate 
cancer, and 1.00 for cancer vs normal. 

Exon 1 Small Fragment Proportions 

[0224] For each exon in each gene in each respective 
panel, fragments overlapping each exon were extracted and 
then the proportion of fragments less than or equal to 150 bp 
was calculated for each individual exon. A minimum of 1 bp 
overlap was required to count as an overlap. The proportion 
of small fragments for the first coding exon of all genes in 
the respective panel was used for model training and vali
dation as in the El SE model (FIGS. 18A-18H). 
[0225] Validation AUC in the UW cohort using genes in 
the UW panel was 0.92 for bladder cancer, 0.98 for breast 
cancer, 0.79 for lung cancer, 0.98 for NEPC, and 0.93 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.76 for bladder cancer, 0.88 for breast cancer, 
0.85 for lung cancer, 0.92 for NEPC, and 0.86 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.68 for bladder cancer, 0.85 for breast cancer, 
0.65 for lung cancer, 0.98 for NEPC, and 0.83 for prostate 
cancer. Validation AUC in the UW cohort using common 
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genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.94 for bladder cancer, 0.91 for breast 
cancer, 0.71 for lung cancer, 0.93 for NEPC, and 0.87 for 
prostate cancer. 
[0226] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.91 for breast cancer, 0.88 for lung 
cancer, 0.90 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.86 for breast cancer, 0.78 for lung cancer, 0.82 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.82 for 
breast cancer, 0.73 for lung cancer, 0.83 for prostate cancer, 
and 0.98 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.89 
for breast cancer, 0.89 for lung cancer, 0.93 for prostate 
cancer, and 1.00 for cancer vs normal. 

All Exons Shannon Entropy 

[0227] Shannon entropy (SE) was calculated as described 
above for all exons for all genes in each respective gene 
panel. SE for all exons for all genes were used as features for 
model training and validation (FIGS. 19A-19H). 
[0228] Validation AUC in the UW cohort using genes in 
the UW panel was 0.97 for bladder cancer, 0.99 for breast 
cancer, 0.89 for lung cancer, 1.00 for NEPC, and 0.99 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.97 for bladder cancer, 0.98 for breast cancer, 
0.87 for lung cancer, 1.00 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.96 for bladder cancer, 0.95 for breast cancer, 
0.86 for lung cancer, 1.00 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.97 for bladder cancer, 0.99 for breast 
cancer, 0.91 for lung cancer, 1.00 for NEPC, and 0.99 for 
prostate cancer. 
[0229] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.84 for breast cancer, 0.81 for lung 
cancer, 0.97 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.77 for breast cancer, 0.76 for lung cancer, 0.91 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.78 for 
breast cancer, 0.81 for lung cancer, 0.91 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.81 
for breast cancer, 0.81 for lung cancer, 0.96 for prostate 
cancer, and 1.00 for cancer vs normal. 

All Exons Depth 

[0230] Depth of sequencing was calculated by counting 
the number of fragments overlapping with each individual 
exon acorss all genes in each respective panel. A minimum 
of 1 bp overlap was required to count as an overlap. Counts 
for each exon were then normalized by dividing by the size 
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of the exon in base pairs and then dividing by the total reads 
in the sample. This depth metric in all coding exons of each 
gene in each respective panel was used for model training 
and validation (FIGS. 20A-20H). 
[0231] Validation AUC in the UW cohort using genes in 
the UW panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.97 for lung cancer, 1.00 for NEPC, and 1.00 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 1.00 for bladder cancer, 0.99 for breast cancer, 
0.94 for lung cancer, 1.00 for NEPC, and 1.00 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.99 for bladder cancer, 0.98 for breast cancer, 
0.93 for lung cancer, 0.99 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.95 for lung cancer, 1.00 for NEPC, and 1.00 for 
prostate cancer. 
[0232] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.95 for breast cancer, 0.91 for lung 
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.95 for breast cancer, 0.90 for lung cancer, 0.98 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.92 for 
breast cancer, 0.88 for lung cancer, 0.97 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.94 
for breast cancer, 0.90 for lung cancer, 0.98 for prostate 
cancer, and 1.00 for cancer vs normal. 

All Exons Motif Diversity Score 

[0233] For each exon in each gene in each respective 
panel, the motif diversity score (MDS) was calculated for 
the set of fragments overlapping each exon. A minimum of 
1 bp overlap was required to count as an overlap. MDS was 
calculated as reported previously24. The MDS metric at all 
coding exon of all genes in the respective panels was used 
for model training and validation as in the ElSE model 
(FIGS. 21A-21H). 
[0234] Validation AUC in the UW cohort using genes in 
the UW panel was 0.99 for bladder cancer, 0.98 for breast 
cancer, 0.88 for lung cancer, 0.99 for NEPC, and 0.98 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 1.00 for bladder cancer, 0.99 for breast cancer, 
0.92 for lung cancer, 0.99 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.99 for bladder cancer, 0.97 for breast cancer, 
0.86 for lung cancer, 0.99 for NEPC, and 0.98 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.94 for lung cancer, 1.00 for NEPC, and 0.99 for 
prostate cancer. 
[0235] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.86 for breast cancer, 0.73 for lung 
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs 
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normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.79 for breast cancer, 0.74 for lung cancer, 0.92 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.82 for 
breast cancer, 0.72 for lung cancer, 0.89 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.85 
for breast cancer, 0.75 for lung cancer, 0.96 for prostate 
cancer, and 1.00 for cancer vs normal. 

All Exons Small Fragment Proportions 

[0236] For each exon in each gene in each respective 
panel, fragments overlapping each exon were extracted and 
then the proportion of fragments less than or equal to 150 bp 
was calculated for each individual exon. A minimum of 1 bp 
overlap was required to count as an overlap. The proportion 
of small fragments for all coding exons of all genes in each 
respective panel was used for model training and validation 
as in the El SE model (FIGS. 22A-22H). 
[0237] Validation AUC in the UW cohort using genes in 
the UW panel was 0.98 for bladder cancer, 0.99 for breast 
cancer, 0.85 for lung cancer, 1.00 for NEPC, and 0.97 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.93 for bladder cancer, 0.96 for breast cancer, 
0.78 for lung cancer, 1.00 for NEPC, and 0.93 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.87 for bladder cancer, 0.99 for breast cancer, 
0.78 for lung cancer, 1.00 for NEPC, and 0.93 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.98 for bladder cancer, 0.99 for breast 
cancer, 0.86 for lung cancer, 1.00 for NEPC, and 0.97 for 
prostate cancer. 
[0238] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.91 for breast cancer, 0.85 for lung 
cancer, 0.97 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.89 for breast cancer, 0.83 for lung cancer, 0.96 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.89 for 
breast cancer, 0.80 for lung cancer, 0.93 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.91 
for breast cancer, 0.87 for lung cancer, 0.97 for prostate 
cancer, and 1.00 for cancer vs normal. 

Combination Strategies-E 1 Se+ E 1 depth 

[0239] The features from ElSE and Eldepth were com
bined into one feature table which was then used for model 
training and validation (FIGS. 23A-23H). 
[0240] Validation AUC in the UW cohort using genes in 
the UW panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.95 for lung cancer, 0.99 for NEPC, and 0.99 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
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panel was 1.00 for bladder cancer, 0.98 for breast cancer, 
0.93 for lung cancer, 0.99 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.98 for bladder cancer, 0.97 for breast cancer, 
0.91 for lung cancer, 0.99 for NEPC, and 0.99 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.95 for lung cancer, 0.98 for NEPC, and 0.99 for 
prostate cancer. 
[0241] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.88 for breast cancer, 0.82 for lung 
cancer, 0.96 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.87 for breast cancer, 0.80 for lung cancer, 0.94 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.83 for 
breast cancer, 0.75 for lung cancer, 0.94 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.89 
for breast cancer, 0.82 for lung cancer, 0.95 for prostate 
cancer, and 1.00 for cancer vs normal. 

Combination Strategies-All Exons Shannon 
Entropy and Depth 

[0242] The Shannon Entropy and Depth for each exon for 
each gene in each respective gene panel were combined into 
one feature table which was then used for model training and 
validation. In instances where the number of features was 
greater than 15000, the features were limited to the top 
15000 feature with the highest variance across samples 
(FIGS. 24A-24H). 
[0243] Validation AUC in the UW cohort using genes in 
the UW panel was 1.00 for bladder cancer, 0.99 for breast 
cancer, 0.93 for lung cancer, 1.00 for NEPC, and 1.00 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 1.00 for bladder cancer, 0.99 for breast cancer, 
0.96 for lung cancer, 1.00 for NEPC, and 1.00 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 1.00 for bladder cancer, 0.99 for breast cancer, 
0.94 for lung cancer, 0.99 for NEPC, and 1.00 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
CDx panel was 0.99 for bladder cancer, 0.99 for breast 
cancer, 0.93 for lung cancer, 1.00 for NEPC, and 1.00 for 
prostate cancer. 
[0244] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.92 for breast cancer, 0.86 for lung 
cancer, 0.99 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.92 for breast cancer, 0.87 for lung cancer, 0.98 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.90 for 
breast cancer, 0.85 for lung cancer, 0.97 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
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panel and the Foundation One Liquid CDx panel was 0.92 
for breast cancer, 0.88 for lung cancer, 0.99 for prostate 
cancer, and 1.00 for cancer vs normal. 

Predicting Ctdna Fraction Using Exon 1 Shannon 
Entropy 

[0245] Cancer samples in both the UW and GRAIL 
cohorts were separated into two categories based on their 
ctDNA fraction. Samples with a ctDNA fraction less than 
0.05 were categorized as "low" and samples with a ctDNA 
fraction greater than or equal to 0.05 were categorized as 
"high". 
[0246] The El SE metric from each gene in each respective 
gene panel was then used to predict high or low ctDNA 
fraction using a 10-fold cross validation approach in each 
cohort separately (FIGS. 25A-25B). The AUC for predicting 
high vs. low ctDNA fraction in the UW cohort was 0.87 and 
the AUC for predicting high vs. low ctDNA fraction in the 
GRAIL cohort was 0.91. 

Shannon Entropy of Reads Overlapping 
Trascription Factor Binding Sites 

[0247] Consensus transcription factor binding sites 
(TFBS) were obtained from the Gene Transcription Regu
lation Database (GTRD). The transcription factors analyzed 
were ADA2, ADCYAPl, ADNP, AEBP2, AFFl, AFF4, 
AGO!, AGO2, AHR, AHRR, ALKBH3, ALX4, ALYREF, 
AMH, APC, APOBEC3B, AR, ARHGAP35, ARIDlA, 
ARIDlB, ARID2, ARID3A, ARID3B, ARID4B, ARID5B, 
ARNT, ARNT2, ARNTL, ARRBl, ASCLl, ASCL2, 
ASFlA, ASHIL, ASH2L, ASXL2, ATFl, ATF2, ATF3, 
ATF4, ATFS, ATF6, ATF7, ATF7IP, ATM, ATOHI, ATRX, 
AUTS2, BACHI, BACH2, BAHDl, BANP, BAPl, 
BARHLl, BARXl, BARX2, BATF, BATF2, BATF3, BBX, 
BCHE, BCLilA, BCLllB, BCL3, BCL6, BCL6B, 
BCLAFl, BCOR, BDPl, BHLHE40, BHLHE41, BICRA, 
BMII, BPTF, BRCAl, BRDl, BRD2, BRD3, BRD4, BRD7, 
BRD9, BRFl, BRF2, BRPF3, CARMI, CASP8AP2, 
CASZI, CAT, CAVIN!, CBFA2T2, CBFA2T3, CBFB, 
CBXl, CBX2, CBX3, CBX5, CBX6, CBX7, CBXS, 
CC2D1A, CCAR2, CCND2, CCNT2, CDC5L, CDC73, 
CDK12, CDK2, CDK7, CDKS, CDK9, CDKNlB, CDXI, 
CDX2, CEBPA, CEBPB, CEBPD, CEBPE, CEBPG, 
CEBPZ, CENPA, CENPT, CGAS, CHAFlA, CHAFIB, 
CHAMP!, CHDl, CHD2, CHD4, CHD7, CHDS, CHTOP, 
CIC, CIITA, CLOCK, c-myc, CNOT3, COBLLl, COIL, 
COPS2, CPSF3, CREBl, CREB3, CREB3Ll, CREB3L2, 
CREB3L4, CREBBP, CREBL2, CREM, CRY!, CSHLl, 
CSNK2Al, CTBPl, CTBP2, CTCF, CTCFL, CTNNBl, 
CTR9, CUL4A, CUXl, CXXCl, CXXC4, DACHI, DAXX, 
DBP, DCPlA, DDIT3, DDXll, DDX20, DDX21, DDX5, 
DEAF!, DEK, DICER!, DIDO!, DKKl, DLXI, DLX2, 
DLX4, DLX6, DMAPl, DMCl, DMRTl, DNMTl, 
DNMT3A, DNMT3B, DOTlL, DPF2, DPPA3, DRAPl, 
DROSHA, DTL, DUX4, DYRKlA, E2Fl, E2F2, E2F3, 
E2F4, E2F5, E2F6, E2F7, E2F8, E4Fl, EBFl, EBF3, 
EBNAIBP2, EBP, EED, EGFR, EGRl, EGR2, EGR3, EHF, 
EHMT2, ELF!, ELF2, ELF3, ELF4, ELF5, ELK!, ELK3, 
ELK4, ELL2, EMSY, EMXl, EOMES, EP300, EP400, 
EPASl, EPCl, ERCC2, ERCC3, ERCC6, ERCCS, ERF, 
ERG, ESCO2, ESRl, ESR2, ESRRA, ETSI, ETS2, ETVl, 
ETV2, ETV4, ETV5, ETV6, ETV7, EVXl, EWSRl, EZH2, 
Fl0, F2RL1, FAM208A, FANCD2, FEY, FEZFl, FGFRl, 
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FIPlLl, FLil, FOS, FOSB, FOSLl, FOSL2, FOXAl, 
FOXA2, FOXA3, FOXCl, FOXD2, FOXD3, FOXEI, 
FOXFl, FOXF2, FOXGl, FOXHI, FOXJ2, FOXKl, 
FOXK2, FOXMI, FOXN3, FOXOl, FOX03, FOXO4, 
FOXPl, FOXP2, FOXP3, FOXQl, FOXR2, FUS, FXRl, 
FXR2, GABPA, GABPBI, GATA!, GATA2, GATA3, 
GATA4, GATA6, GATADl, GATAD2A, GATAD2B, GFII, 
GFIIB, GLil, GLI2, GLI3, GLI4, GLISl, GLIS2, GLIS3, 
GMEBI, GMEB2, GREB!, GRHLl, GRHL2, GRHL3, 
GTF2A2, GTF2B, GTF2E2, GTF2Fl, GTF3A, GTF3C2, 
GTF3C5, GUCY1B3, GZFl, H2AFZ, HAND!, HAND2, 
HBPl, HBZ, HCFCl, HDACl, HDAC2, HDAC3, HDAC4, 
HDAC6, HDACS, HDGF, HDGFL3, HES!, HES2, HES4, 
HESS, HES7, HESXl, HEXIMI, HEYi, HEY2, HEYL, 
HHEX, HICl, HIC2, HIFlA, HIF3A, HINFP, HIRA, HIS
TIHIT, HIVEPl, HIVEP3, HJURP, HLF, HMBOXl, 
HMCES, HMG20A, HMG20B, HMGAl, HMGA2, 
HMGBl, HMGB2, HMGN3, HMGXB4, HNFlA, HNFIB, 
HNF4A, HNF4G, HNRNPHI, HNRNPK, HNRNPL, 
HNRNPLL, HNRNPULl, HOMEZ, HOXAl, HOXAl0, 
HOXA13, HOXA2, HOXA4, HOXA5, HOXA6, HOXA7, 
HOXA9, HOXB13, HOXB4, HOXB5, HOXB6, HOXB7, 
HOXBS, HOXCll, HOXC13, HOXC5, HOXC6, HOXCS, 
HOXC9, HOXDl, HOXDll, HOXD4, HOXD9, 
HSD17B8, HSFl, HSF2, HSF4, ID!, ID2, ID3, ID4, 
IGFlR, IGLV5-37, IKZFl, IKZF2, IKZF3, IKZF5, ILF3, 
ILK, ING2, ING5, INOS0, INSM2, INSR, INTSll, 
INTS12, INTS13, INTS3, IRFl, IRF2, IRF3, IRF4, IRF5, 
IRFS, IRF9, IRX2, IRX3, IRX5, ISL!, ISL2, IVNSIABP, 
JARID2, JDP2, JMJD6, JUN, JUNB, JUND, KAT2A, 
KAT2B, KATS, KAT7, KATS, KDMlA, KDMIB, KDM2B, 
KDM3A, KDM3B, KDM4A, KDM4B, KDM4C, KDM5A, 
KDM5B, KDM5C, KDM5D, KDM6A, KDM6B, KDM7 A, 
KLFl, KLFl0, KLFll, KLF12, KLF13, KLF14, KLF15, 
KLF16, KLFl 7, KLF3, KLF4, KLF5, KLF6, KLF7, KLFS, 
KLF9, KMT2A, KMT2B, KMT2C, KMT2D, L3 MBTL2, 
L3 MBTL4, LAMB3, LAMTOR5, LARP7, LCORL, 
LDBl, LEFl, LEO!, LHX2, LHX3, LHX4, LHX5, LHX6, 
LHX9, LMNA, LMNBl, LMNB2, LMOl, LMTK3, 
LMXIB, LYLl, MAF, MAFB, MAFF, MAFG, MAFK, 
MAMLl, MAPILC3B, MAP2Kl, MAPK14, MAPK3, 
MAX, MAZ, MBDl, MBD2, MBD3, MBD3L2, MBD4, 
MBL2, MBTDl, MBTPS2, MCM2, MCM3, MCM5, 
MCM7, MCRSl, MDM2, MEI, ME3, MECOM, MECP2, 
MED12, MED26, MEF2A, MEF2B, MEF2C, MEF2D, 
MEIS!, MEIS2, MEN!, MEOX2, METTL 14, METTL3, 
MGA, MIER!, MIER2, MIER3, MITF, MIXLl, MLLTl, 
MLLT3, MLX, MLXIP, MNT, MNXl, MORC2, 
MPHOSPHS, MSC, MSXl, MSX2, MTAl, MTA2, MTA3, 
MTHFDl, MTOR, MUC22, MXDl, MXD3, MXD4, MXII, 
MYB, MYBLl, MYBL2, MYC, MYCN, MYF5, MYF6, 
MYHll, MYNN, MYOCD, MYODl, MYOG, MYRF, 
MZFl, NAB2, NANOG, NBN, NCAPH2, NCOAl, 
NCOA2, NCOA3, NCOA4, NCOA6, NCORl, NCOR2, 
NELFA, NELFE, NEURODl, NEUROD2, NEUROG2, 
NEUROG3, NFAT5, NFATCl, NFATC3, NFATC4, NFE2, 
NFE2Ll, NFE2L2, NFE2L3, NFlA, NFIB, NFIC, NFIL3, 
NFKBl, NFKB2, NFKBlA, NFKBIZ, NFRKB, NFXLl, 
NFYA, NFYB, NFYC, NHLHI, NIPBL, NKX2-1, NKX2-2, 
NKX2-3, NKX2-5, NKX2-8, NKX3-l, NKX6-l, NME2, 
NONO, NOTCH!, NOTCH3, NPAT, NROBI, NRIDl, 
NRIH2, NR1H3, NRIH4, NR112, NR2Cl, NR2C2, NR2E3, 
NR2Fl, NR2F2, NR2F6, NR3Cl, NR3C2, NR4Al, 
NR4A2, NR5Al, NR5A2, NRFl, NSD2, NUFIPl, 
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NUPI53, NUP98, NXFI, OGGI, ONECUT2, OR2M7, 
ORCI, ORC2, OSR2, OTXI, OTX2, OVOL2, OVOL3, 
p65, PADI2, PAFI, PALB2, PARPI, PATZI, PAX2, PAX3, 
PAX5, PAX6, PAX7, PAX8, PBRMI, PBXI, PBX2, PBX3, 
PBX4, PBXIPI, PCBPI, PCBP2, PCFll, PCGFI, PCGF2, 
PCGF5, PCGF6, PDXI, PERI, PEX2, PGBD5, PGR, 
PHB2, PHF2, PHF20, PHF2IA, PHF5A, PHF6, PHF8, 
PHOX2B, PIASI, PIAS4, PITXI, PITX3, PKNOXI, 
PLAGI, PLRGI, PML, POU2FI, POU2F2, POU3F2, 
POUSFI, PPARA, PPARD, PPARG, PPARGCIA, PRDMI, 
PRDMI0, PRDMll, PRDMI2, PRDMI4, PRDM2, 
PRDM4, PRDM5, PRDM6, PRDM9, PRKCQ, PRKDC, 
PRMTl, PRMT5, PROXI, PRPF4, PSMB5, PTBPI, PTEN, 
PTPRA, PTTGI, PYGO2, RAD2I, RAD5I, RAGI, RAG2, 
RARA, RARB, RARG, RAX2, RBI, RBAK, RBBP5, 
RBFOX2, RBLI, RBL2, RBMI4, RBMI5, RBMI7, 
RBM22, RBM25, RBM34, RBM39, RBPJ, RCORI, 
RCOR2, REL, RELA, RELB, REPINI, RERE, REST, 
RFXI, RFX2, RFX3, RFX5, RFX7, RFXANK, RINGI, 
RLF, RNF2, RNGTT, RORA, RPAI, RPA2, RUNXI, 
RUNXITl, RUNX2, RUNX3, RUVBLI, RUVBL2, 
RXRA, RXRB, RYBP, SAFB, SAFB2, SALLI, SALL2, 
SALL3, SALL4, SAPI30, SAP30, SATBI, SCML2, 
SCRTl, SCRT2, SETBPI, SETDlA, SETD7, SETDBI, 
SETX, SFMBTl, SFPQ, SIGMARI, SIN3A, SIN3B, 
SIPAI, SIRTl, SIRT3, SIRT6, SIXI, SIX2, SIX4, SIX5, 
SKI, SKIL, SKP2, SLC30A9, SMADl, SMAD2, SMAD3, 
SMAD4, SMAD5, SMARCAI, SMARCA2, SMARCA4, 
SMARCA5, SMARCBI, SMARCCI, SMARCC2, 
SMARCEI, SMCIA, SMC3, SMCHDl, SMNI, SNAII, 
SNAI2, SNAPC2, SNAPC4, SNIPI, SNRNP70, SODl, 
SON, SOXI0, SOXll, SOXI3, SOXI5, SOXI7, SOX2, 
SOX3, SOX4, SOX5, SOX6, SOX9, SPI, SPI40, SP2, SP3, 
SP4, SP5, SP7, SPDEF, SPII, SPIB, SQSTMI, SRC, 
SRCAP, SREBFI, SREBF2, SRF, SRPKI, SRPK2, SRSF3, 
SRSF4, SRSF7, SRSF9, SSI8, SSI8/SSXI, SSRPI, SSU72, 
STAG I, STAG2, STATl, STAT2, STAT3, STAT4, STAT5A, 
STAT5B, STAT6, STNI, SUMOl, SUMO2, SUPT16H, 
SUPT20H, SUPT5H, SUZI2, SVIL, SYNCRIP, T, TAFI, 
TAFI2, TAFI5, TAF3, TAF7, TAF9B, TALI, TARDBP, 
TAZ, TBLIXRI, TBP, TBPLI, TBXI, TBX2, TBX2I, 
TBX3, TBX5, TCFI2, TCF3, TCF4, TCF7, TCF7LI, 
TCF7L2, TCFL5, TCOFI, TDRD3, TEADl, TEAD2, 
TEAD3, TEAD4, TERFI, TERF2, TERT, TETI, TET2, 
TET3, TFAM, TFAP2A, TFAP2C, TFAP4, TFCP2, TFDPI, 
TFDP2, TFE3, TFEB, TGIFI, TGIF2, THAPI, THAPll, 
THRA, THRAP3, THRB, TLE3, TLXI, TOPI, TOP2B, 
top2beta, TOX4, TP53, TP53BPI, TP63, TP73, TRIM22, 
TRIM24, TRIM25, TRIM28, TRIP13, TRPSI, TSC22D4, 
TSHZI, TUBGI, TWISTl, U2AFI, U2AF2, UBE2I, 
UBNI, UBPI, UBTF, USFI, USF2, USP7, VDR, VEZFI, 
WDHDl, WDR5, WIZ, WRN, WRNIPI, WTl, XBPI, 
XRCC3, XRCC4, XRCC5, XRN2, YAPI, YBXI, YBX3, 
YYI, YY2, ZA, ZBEDl, ZBED4, ZBED5, ZBTBI, 
ZBTBI0, ZBTBll, ZBTBI2, ZBTBI4, ZBTBI6, ZBTBI7, 
ZBTBI8, ZBTB2, ZBTB20, ZBTB2I, ZBTB24, ZBTB25, 
ZBTB26, ZBTB33, ZBTB39, ZBTB40, ZBTB42, ZBTB44, 
ZBTB48, ZBTB49, ZBTB5, ZBTB6, ZBTB7A, ZBTB7B, 
ZBTB8A, ZC3H1IA, ZC3H8, ZEBI, ZEB2, ZFAT, ZFHX2, 
ZFHX3, ZFPI, ZFP28, ZFP3, ZFP36, ZFP36LI, ZFP37, 
ZFP42, ZFP64, ZFP69B, ZFP82, ZFP9I, ZFX, ZGPAT, 
ZHXI, ZHX2, ZIC2, ZIKI, ZIM3, ZKSCANI, ZKSCAN8, 
ZMIZI, ZMYM2, ZMYM3, ZMYNDlI, ZMYND8, 
ZNFI0, ZNFI0I, ZNF112, ZNF114, ZNFI2I, ZNF132, 
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ZNF133, ZNFI34, ZNFI36, ZNFI38, ZNFI40, ZNFI43, 
ZNFI46, ZNFI48, ZNFI55, ZNFI57, ZNFI6, ZNFI65, 
ZNFI69, ZNFI74, ZNFI75, ZNFI8, ZNFI84, ZNFI89, 
ZNFI9, ZNFI95, ZNFI97, ZNF2, ZNF202, ZNF205, 
ZNF207, ZNF211, ZNF213, ZNF2I4, ZNF2I7, ZNF22, 
ZNF22I, ZNF223, ZNF224, ZNF23, ZNF236, ZNF239, 
ZNF24, ZNF248, ZNF250, ZNF257, ZNF26, ZNF260, 
ZNF263, ZNF264, ZNF266, ZNF274, ZNF280A, 
ZNF280C, ZNF280D, ZNF28I, ZNF282, ZNF292, ZNF3, 
ZNF30, ZNF300, ZNF302, ZNF311, ZNF3I6, ZNF3I7, 
ZNF3I8, ZNF320, ZNF322, ZNF324, ZNF329, ZNF33I, 
ZNF335, ZNF33A, ZNF34, ZNF34I, ZNF35, ZNF350, 
ZNF354A, ZNF354B, ZNF354C, ZNF362, ZNF366, 
ZNF37A, ZNF382, ZNF384, ZNF39I, ZNF394, ZNF395, 
ZNF398, ZNF404, ZNF407, ZNF4I, ZNF4I0, ZNF4I6, 
ZNF4I8, ZNF4I9, ZNF423, ZNF426, ZNF433, ZNF436, 
ZNF444, ZNF445, ZNF449, ZNF454, ZNF467, ZNF473, 
ZNF48, ZNF486, ZNF488, ZNF490, ZNF49I, ZNF493, 
ZNFS0I, ZNF502, ZNF507, ZNFSI0, ZNF511, ZNF5I2, 
ZNF5I2B, ZNF513, ZNF5I4, ZNF5I8A, ZNF52I, 
ZNF524, ZNF528, ZNF529, ZNF530, ZNF532, ZNF544, 
ZNF547, ZNF548, ZNF549, ZNF554, ZNF555, ZNF558, 
ZNF560, ZNF56I, ZNF563, ZNF57I, ZNF574, ZNF577, 
ZNF579, ZNF580, ZNF58I, ZNF582, ZNF584, ZNF585B, 
ZNF586, ZNF589, ZNF592, ZNF595, ZNF596, ZNF597, 
ZNF600, ZNF6I0, ZNF6I4, ZNF6I8, ZNF62I, ZNF622, 
ZNF623, ZNF624, ZNF626, ZNF629, ZNF639, ZNF644, 
ZNF645, ZNF652, ZNF654, ZNF658, ZNF660, ZNF662, 
ZNF664, ZNF667, ZNF669, ZNF670, ZNF677, ZNF680, 
ZNF687, ZNF692, ZNF697, ZNF7, ZNF70I, ZNF704, 
ZNF707, ZNF708, ZNF711, ZNF740, ZNF747, ZNF75A, 
ZNF76, ZNF766, ZNF768, ZNF770, ZNF774, ZNF776, 
ZNF777, ZNF778, ZNF78I, ZNF784, ZNF785, ZNF79I, 
ZNF792, ZNF8, ZNF8I6, ZNF83, ZNF830, ZNF837, 
ZNF84, ZNF843, ZNF85, ZNF92, ZSCANI6, ZSCANI8, 
ZSCAN2, ZSCAN2I, ZSCAN22, ZSCAN23, ZSCAN26, 
ZSCAN29, ZSCAN30, ZSCAN3I, ZSCAN4, ZSCANSA, 
ZSCAN5B, ZSCAN5C, ZSCANSDP, ZSCAN9, ZXDB, 
ZXDC, and ZZZ3. Within each transcription factor, the top 
5,000 sites with the greatest experimental support were 
chosen. In this section "experimental support" is defined as 
the number of experiments which detected the site. cfDNA 
fragments were then overlapped with each set of TFBS to 
yield a set of reads which overlapped with each set ofTFBS. 
Shannon entropy was calculated using the counts of the read 
lengths for the reads overlapping each set ofTFBS for each 
sample to yield one feature per transcription factor. This 
feature table was used for model training and validation as 
in the ESE model (FIGS. 26A-26H). 

[0248] Validation AUC in the UW cohort using genes in 
the UW panel was 0.97 for bladder cancer, 0.99 for breast 
cancer, 0.93 for lung cancer, 0.99 for NEPC, and 0.97 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.89 for bladder cancer, 0.80 for breast cancer, 
0.80 for lung cancer, 0.92 for NEPC, and 0.88 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.86 for bladder cancer, 0.89 for breast cancer, 
0.86 for lung cancer, 0.89 for NEPC, and 0.94 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
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CDx panel was 0.90 for bladder cancer, 0.89 for breast 
cancer, 0.87 for lung cancer, 0.96 for NEPC, and 0.93 for 
prostate cancer. 

[0249] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.91 for breast cancer, 0.82 for lung 
cancer, 0.94 for prostate cancer, and 1.00 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.76 for breast cancer, 0.89 for lung cancer, 0.95 
for prostate cancer, and 1.00 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.79 for 
breast cancer, 0.84 for lung cancer, 0.92 for prostate cancer, 
and 1.00 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.83 
for breast cancer, 0.83 for lung cancer, 0.92 for prostate 
cancer, and 1.00 for cancer vs normal. 

Shannon Entropy of Reads Overlapping Areas of 
Open Chromatin Defined by Atac-Seq 

[0250] Consensus genomic regions of open chromatin as 
defined by the Assay for Transposase-Accessible Chromatin 
with sequencing (ATAC-Seq) was downloaded from The 
Cancer Genome Atlas (TCGA) for 23 different cancer types. 
The cancer types analyzed were Adrenocortical carcinoma 
(ACC), Bladder Urothelial Carcinoma (BLCA), Breast inva
sive carcinoma (BRCA), squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), Cervical Cholangio
carcinoma (CHOL), Colon adenocarcinoma (COAD), 
Esophageal carcinoma (ESCA), Glioblastoma multiforme 
(GBM), Head and Neck squamous cell carcinoma (HNSC), 
Kidney renal clear cell carcinoma (KIRC), Kidney renal 
papillary cell carcinoma (KIRP), Low Grade Glioma (LGG), 
Liver hepatocellular carcinoma (LIHC), Lung adenocarci
noma (LUAD), Lung squamous cell carcinoma (LUSC), 
Mesothelioma (MESO), Pheochromocytoma and Paragan
glioma (PCPG), Prostate adenocarcinoma (PRAD), Skin 
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma 
(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid 
carcinoma (THCA), and Uterine Corpus Endometrial Car
cinoma (UCEC). cfDNA fragments were then overlapped 
with each set of open chromatin regions to yield a set of 
reads which overlapped with each set of open chromatin 
regions for each cancer type. Shannon entropy was calcu
lated using the counts of the read lengths for reads overlap
ping each set of open chromatin regions for each sample to 
yield one feature per cancer type listed above. This feature 
table was used for model training and validation as in the 
ElSE model (FIGS. 27A-27H). 

[0251] Validation AUC in the UW cohort using genes in 
the UW panel was 0.86 for bladder cancer, 0.85 for breast 
cancer, 0.81 for lung cancer, 0.85 for NEPC, and 0.84 for 
prostate cancer. Validation AUC in the UW cohort using 
common genes between the UW panel and the Tempus xF 
panel was 0.89 for bladder cancer, 0.82 for breast cancer, 
0.79 for lung cancer, 0.90 for NEPC, and 0.81 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Guardant 360 CDx 
panel was 0.82 for bladder cancer, 0.72 for breast cancer, 
0.72 for lung cancer, 0.74 for NEPC, and 0.74 for prostate 
cancer. Validation AUC in the UW cohort using common 
genes between the UW panel and the Foundation One Liquid 
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CDx panel was 0.81 for bladder cancer, 0.81 for breast 
cancer, 0.83 for lung cancer, 0.94 for NEPC, and 0.84 for 
prostate cancer. 
[0252] Validation AUC in the GRAIL cohort using genes 
in the GRAIL panel was 0.72 for breast cancer, 0.73 for lung 
cancer, 0.61 for prostate cancer, and 0.99 for cancer vs 
normal. Validation AUC in the GRAIL cohort using com
mon genes between the GRAIL panel and the Tempus xF 
panel was 0.62 for breast cancer, 0.70 for lung cancer, 0.69 
for prostate cancer, and 0.97 for cancer vs normal. Validation 
AUC in the GRAIL cohort using common genes between the 
GRAIL panel and the Guardant 360 CDx panel was 0.63 for 
breast cancer, 0.66 for lung cancer, 0.81 for prostate cancer, 
and 0.96 for cancer vs normal. Validation AUC in the 
GRAIL cohort using common genes between the GRAIL 
panel and the Foundation One Liquid CDx panel was 0.64 
for breast cancer, 0.70 for lung cancer, 0.72 for prostate 
cancer, and 0.97 for cancer vs normal. 

Testing Model Performance Across Features 

[0253] Using all metrics calculated (ElSE, exon 1 depth, 
El SE and exon 1 depth, all exons Shannon entropy (SE), all 
exons depth, combining all exons depth and Shannon 
entropy, full gene depth, exon 1 MDS, all exon MDS, exon 
1 small fragment proportions, all exons small fragment 
proportions, fragment size bins, TFBS entropy, and ATAC 
region entropy) samples in the UW cohort (FIGS. 28A-28L) 
and the GRAIL cohort (FIGS. 29A-29H) were analyzed for 
model performance to predict cancer type. The UW cohort 
comprises bladder cancer, breast cancer, lung cancer, renal 
cell cancer (RCC), prostate adenocarcinoma (Prostate), and 
neuroendocrine prostate cancer (NEPC). UW breast cancer 
samples were further split into ER positive (ERpos) and ER 
negative (ERneg) samples. UW lung cancer samples were 
further split into small cell lung cancer (SCLC) and non
small cell lung cancer (NSCLC). Ten replicates of the 
10-fold cross-validation model were performed and 
AUROC was calculated to assess performance. The best 
performing metric in the UW cohort with the UW panel was 
"all exons Shannon entropy and depth" with meanAUROCs 
ranging from 0.872-0.985. Across all feature types, the mean 
AUROC ranged from 0.692-0.989 (FIG. 28A). The best 
performing metric in the UW cohort with the Tempus xF 
panel was "all exons depth" with mean AUROCs ranging 
from 0.852-0.975. Across all feature types, the mean 
AUROC ranged from 0.584-0.991 (FIG. 28B). The best 
performing metric in the UW cohort with the Guardant 360 
CDx panel was "all exons depth" with mean AUROCs 
ranging from 0.856-0.978. Across all feature types, the mean 
AUROC ranged from 0.546-0.978 (FIG. 28C). The best 
performing metric in the UW cohort with the Foundation 
One Liquid CDx panel was "all exons depth" with mean 
AUROCs ranging from 0.844-0.980. Across all feature 
types, the mean AUROC ranged from 0.657-0.989 (FIG. 
28D). The best performing metric in the GRAIL cohort with 
the GRAIL panel was "all exons depth" with mean AUROCs 
ranging from 0.922-1.000. Across all feature types, the mean 
AUROC ranged from 0.807-1.000 (FIG. 29A). The best 
performing metric in the GRAIL cohort with the Tempus XF 
panel was "all exons depth" with mean AUROCs ranging 
from 0.904-1.000. Across all feature types, the mean 
AUROC ranged from 0.745-1.000 (FIG. 29B). The best 
performing metric in the GRAIL cohort with the Guardant 
360 CDx panel was "all exons SE and depth" with mean 
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AUROCs ranging from 0.894-1.000. Across all feature 
types, the mean AUROC ranged from 0.728-1.000 (FIG. 
29C). The best performing metric in the GRAIL cohort with 
the Foundation One Liquid CDx panel was "all exons SE 
and depth" with mean AUROCs ranging from 0.895-1.000. 
Across all feature types, the mean AUROC ranged from 
0.743-1.000 (FIG. 29D). 

Testing Model Performance Across Features by 
Ctdna Fraction 

[0254] Using all metrics calculated (ElSE, exon 1 depth, 
El SE and exon 1 depth, all exons Shannon entropy (SE), all 
exons depth, combining all exons depth and Shannon 
entropy, full gene depth, exon 1 MDS, all exon MDS, exon 
1 small fragment proportions, all exons small fragment 
proportions, fragment size bins, TFBS entropy, and ATAC 
region entropy) samples in the UW cohort (FIGS. 30A-30L) 
and the GRAIL cohort (FIGS. 31A-31L) were analyzed for 
model performance to predict cancer type by ctDNA fraction 
bin. Samples were separated into "low" ctDNA fraction 
(0-0.05) and "high" ctDNA fraction (0.05-1). The best 
performing metric in the UW cohort with the UW panel was 
"all exons depth and SE" with mean AUROCs in the low 
ctDNA fraction ranging from 0.910-0.976 and mean 
AUROCs in the high ctDNA fraction ranging from 0.939-
0.999. Across all feature types, the mean AUROC ranged 
from 0.494-1.000 (FIG. 30A). The best performing metric in 
the UW cohort with the Tempus XF panel was "all exons 
depth" with mean AUROCs in the low ctDNA fraction 
ranging from 0.853-0.974 and mean AUROCs in the high 
ctDNA fraction ranging from 0.978-0.999. Across all feature 
types, the mean AUROC ranged from 0.544-1.000 (FIG. 
30B). The best performing metric in the UW cohort with the 
Guardant 360 CDx panel was "all exons depth" with mean 
AUROCs in the low ctDNA fraction ranging from 0.899-0. 
974 and meanAUROCs in the high ctDNAfraction ranging 
from 0.968-0.999. Across all feature types, the mean 
AUROC ranged from 0.507-0.999 (FIG. 30C). The best 
performing metric in the UW cohort with the Foundation 
One Liquid CDx panel was "all exons depth" with mean 
AUROCs in the low ctDNA fraction ranging from 0.873-0. 
978 and mean AUROCs in the high ctDNA fraction ranging 
from 0.959-1.000. Across all feature types, the mean 
AUROC ranged from 0.535-1.000 (FIG. 30D). The best 
performing metric in the GRAIL cohort with the GRAIL 
panel was "all exons depth" with mean AUROCs in the low 
ctDNA fraction ranging from 0.917-0.978 and mean 
AUROCs in the high ctDNA fraction ranging from 0.924-
0.994. Across all feature types, the mean AUROC ranged 
from 0.751-0.998 (FIG. 31A). The best performing metric in 
the GRAIL cohort with the Tempus XF panel was "all exons 
SE and depth" with mean AUROCs in the low ctDNA 
fraction ranging from 0.892-0.977 and meanAUROCs in the 
high ctDNA fraction ranging from 0.945-0.999. Across all 
feature types, the mean AUROC ranged from 0.632-0.999 
(FIG. 31B). The best performing metric in the GRAIL 
cohort with the Guardant 360 CDx panel was "all exons SE 
and depth" with mean AUROCs in the low ctDNA fraction 
ranging from 0.916-0.980 and mean AUROCs in the high 
ctDNA fraction ranging from 0.926-0.998. Across all feature 
types, the mean AUROC ranged from 0.640-0.998 (FIG. 
31C). The best performing metric in the GRAIL cohort with 
the Foundation One Liquid CDx panel was "all exons SE 
and depth" with mean AUROCs in the low ctDNA fraction 
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ranging from 0.890-0.980 and mean AUROCs in the high 
ctDNA fraction ranging from 0.954-0.997. Across all feature 
types, the mean AUROC ranged from 0.626-0.997 (FIG. 
31D). 

Testing Model Performance to Predict Ctdna 
Fraciton Across Features 

[0255] Using all metrics calculated (ElSE, exon 1 depth, 
El SE and exon 1 depth, all exons Shannon entropy (SE), all 
exons depth, combining all exons depth and Shannon 
entropy, full gene depth, exon 1 MDS, all exon MDS, exon 
1 small fragment proportions, all exons small fragment 
proportions, fragment size bins, TFBS entropy, and ATAC 
region entropy) samples in the UW cohort (FIGS. 32A-32H) 
and the GRAIL cohort (FIGS. 33A-33H) were analyzed for 
model performance to predict ctDNA fraction. Samples 
were binned into four groups of ctDNA fraction levels which 
were low (0-0.01 ctDNA fraction), mid (0.01-0.1 ctDNA 
fraction), high (0.1-1.0 ctDNA fraction) and healthy 
samples. The best performing metric in the UW cohort with 
the UW panel was "MDS all exons" with meanAUROCs for 
predicting ctDNA fraction ranging from 0. 73 7-0.987. Across 
all feature types, the mean AUROC ranged from 0.580-0. 
993 (FIG. 32A). The best performing metric in the UW 
cohort with the Tempus XF panel was "all exons SE and 
depth" with mean AUROCs for predicting ctDNA fraction 
ranging from 0.673-0.989. Across all feature types, the mean 
AUROC ranged from 0.566-0.989 (FIG. 32B). The best 
performing metric in the UW cohort with the Guardant 360 
CDx panel was "all exons depth" with mean AUROCs for 
predicting ctDNA fraction ranging from 0.680-0.979. Across 
all feature types, the mean AUROC ranged from 0.556-0. 
984 (FIG. 32C). The best performing metric in the UW 
cohort with the Foundation One Liquid CDx panel was "all 
exons depth" with mean AUROCs for predicting ctDNA 
fraction ranging from 0.702-0.987. Across all feature types, 
the meanAUROC ranged from 0.557-0.991 (FIG. 32D). The 
best performing metric in the GRAIL cohort with the 
GRAIL panel was "small fragment" with meanAUROCs for 
predicting ctDNA fraction ranging from 0.867-0.999. Across 
all feature types, the mean AUROC ranged from 0.705-1. 
000 (FIG. 33A). The best performing metric in the GRAIL 
cohort with the Tempus XF panel was "all exons SE and 
depth" with mean AUROCs for predicting ctDNA fraction 
ranging from 0.823-1.000. Across all feature types, the mean 
AUROC ranged from 0.624-1.000 (FIG. 33B). The best 
performing metric in the GRAIL cohort with the Guardant 
360 CDx panel was "all exons SE and depth" with mean 
AUROCs for predicting ctDNA fraction ranging from 
0.815-1.000. Across all feature types, the mean AUROC 
ranged from 0.604-1.000 (FIG. 33C). The best performing 
metric in the GRAIL cohort with the Foundation One Liquid 
CDx panel was "full gene depth" with mean AUROCs for 
predicting ctDNA fraction ranging from 0.820-0.999. Across 
all feature types, the mean AUROC ranged from 0.656-1. 
000 (FIG. 33D). 

Genes 

Tempus Gene List 

[0256] Genes from the Tempus Xf sequencing panel were: 
AKTl, AKT2, ALK, APC, AR, ARAF, ARIDlA, ATM, 
ATR, B2M, BAPl, BRAF, BRCAl, BRCA2, BTK, 
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CCNDl, CCND2, CCND3, CCNEl, CD274 (PD-Ll), 
CDHl, CDK4, CDK6, CDKN2A, CTNNBl, DDR2, 
DPYD, EGFR, ERBB2 (HER2), ERRFil, ESRl, EZH2, 
FBXW7, FGFRl, FGFR2, FGFR3, FGFR4, FLT3, FOXL2, 
GATA3, GNAll, GNAQ, GNAS, HNFlA, HRAS, IDHl, 
IDH2, JAKl, JAK2, JAK3, KDR, KEAPl, KIT, KMT2A, 
KRAS, MAP2Kl, MAP2K2, MAPKl, MET, MLHl, MPL, 
MSH2, MSH3, MSH6, MTOR, MYC, MYCN, NFl, NF2, 
NFE2L2, NOTCHl, NPMl, NRAS, NTRKl, PALB2, 
PBRMl, PDCD1LG2, PDGFRA, PDGFRB, PIK3CA, 
PIK3Rl, PMS2, PTCHl, PTEN, PTPNll, RAD51C, RAFI, 
RBI, RET, RHEB, RHOA, RITl, RNF43, ROSI, SDHA, 
SMAD4, SMO, SPOP, STKll, TERT, TP53, TSCl, TSC2, 
UGTlAl, and VHL. Of the 105 genes in the Tempus Xf 
gene panel, 99 genes overlapped with the UW panel, and 98 
genes overlapped with the GRAIL panel. 

Foundation Gene List 

[0257] Genes from the Foundation One CDx sequencing 
panel were: ABLl, ACVRlB, AKTl, AKT2, AKT3, ALK, 
ALOX12B, AMERI (FAM123B), APC, AR, ARAF, 
ARFRPl, ARIDlA, ASXLl, ATM, ATR, ATRX, AURKA, 
AURKB, AXINl, AXL, BAPl, BARDl, BCL2, BCL2Ll, 
BCL2L2, BCL6, BCOR, BCORLl, BRAF, BRCAl, 
BRCA2, BRD4, BRIPl, BTGl, BTG2, BTK, Cllorf30 
(EMSY), C17orf39 (GID4), CALR, CARDll, CASP8, 
CBFB, CBL, CCNDl, CCND2, CCND3, CCNEI, CD22, 
CD274 (PD-Ll), CD70, CD79A, CD79B, CDC73, CDHl, 
CDK12, CDK4, CDK6, CDK8, CDKNlA, CDKNlB, 
CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEKl, 
CHEK2, CIC, CREBBP, CRKL, CSFIR, CSF3R, CTCF, 
CTNNAl, CTNNBl, CUL3, CUL4A, CXCR4, CYP17Al, 
DAXX, DDRl, DDR2, DIS3, DNMT3A, DOTlL, EED, 
EGFR, EP300, EPHA3, EPHBl, EPHB4, ERBB2, ERBB3, 
ERBB4, ERCC4, ERG, ERRFil, ESRl, EZH2, FAM46C, 
FANCA, FANCC, FANCG, FANCL, FAS, FBXW7, 
FGFl0, FGF12, FGF14, FGF19, FGF23, FGF3, FGF4, 
FGF6, FGFRl, FGFR2, FGFR3, FGFR4, FH, FLCN, FLTl, 
FLT3, FOXL2, FUBPl, GABRA6, GATA3, GATA4, 
GATA6, GNAll, GNA13, GNAQ, GNAS, GRM3, GSK3B, 
H3F3A, HDACl, HGF, HNFlA, HRAS, HSD3Bl, ID3, 
IDHl, IDH2, IGFlR, IKBKE, IKZFl, INPP4B, IRF2, IRF4, 
IRS2, JAKl, JAK2, JAK3, JUN, KDM5A, KDM5C, 
KDM6A, KDR, KEAPl, KEL, KIT, KLHL6, KMT2A 
(MLL), KMT2D (MLL2), KRAS, LTK, LYN, MAF, 
MAP2Kl (MEKl), MAP2K2 (MEK2), MAP2K4, 
MAP3Kl, MAP3K13, MAPKl, MCLI, MDM2, MDM4, 
MED12, MEF2B, MENl, MERTK, MET, MITF, MKNKl, 
MLHl, MPL, MREllA, MSH2, MSH3, MSH6, MSTlR, 
MTAP, MTOR, MUTYH, MYC, MYCL (MYCLl), 
MYCN, MYD88, NBN, NFl, NF2, NFE2L2, NFKBlA, 
NKX2-1, NOTCHl, NOTCH2, NOTCH3, NPMl, NRAS, 
NSD3 (WHSCILI), NT5C2, NTRKl, NTRK2, NTRK3, 
P2RY8, PALB2, PARK2, PARPl, PARP2, PARP3, PAX5, 
PBRMl, PDCDI (PD-1), PDCD1LG2 (PD-L2), PDGFRA, 
PDGFRB, PDKl, PIK3C2B, PIK3C2G, PIK3CA, PIK3CB, 
PIK3Rl, PIMl, PMS2, POLDl, POLE, PPARG, PPP2R1A, 
PPP2R2A, PRDMl, PRKARlA, PRKCl, PTCHl, PTEN, 
PTPNll, PTPRO, QKl, RACl, RAD21, RAD51, RAD51B, 
RAD51C, RAD51D, RAD52, RAD54L, RAFI, RARA, 
RBI, RBMl0, REL, RET, RICTOR, RNF43, ROSI, 
RPTOR, SDHA, SDHB, SDHC, SDHD, SETD2, SF3Bl, 
SGKl, SMAD2, SMAD4, SMARCA4, SMARCBl, SMO, 
SNCAIP, SOCSl, SOX2, SOX9, SPEN, SPOP, SRC, 
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STAG2, STAT3, STKll, SUFU, SYK, TBX3, TEK, TET2, 
TGFBR2, TIPARP, TNFAIP3, TNFRSF14, TP53, TSCl, 
TSC2, TYR03, U2AF1, VEGFA, VHL, WHSCl, WTl, 
XPOl, XRCC2, ZNF217, and ZNF703. Of the 309 genes in 
the Foundation One CDx gene panel, 228 genes overlapped 
with the UW panel, and 267 genes overlapped with the 
GRAIL panel. 

Guardant Gene List 

[0258] Genes from the Foundation One CDx sequencing 
panel were: AKTl, ALK, APC, AR, ARAF, ATM, BRAF, 
BRCAl, BRCA2, CCNDl, CDHl, CDK12, CDK4, CDK6, 
CDKN2A, CTNNBl, EGFR, ERBB2, ESRl, FGFRl, 
FGFR2, FGFR3, GATA3, GNAll, GNAQ, HNFlA, HRAS, 
IDHl, IDH2, KIT, KRAS, MAP2Kl, MAP2K2, MET, 
MLHl, MTOR, MYC, NFl, NFE2L2, NRAS, NTRKl, 
NTRK3, PDGFRA, PIK3CA, PTEN, RAFI, RET, RHEB, 
ROSI, SMAD4, SMO, STKll, TERT, TSCl, and VHL. Of 
the 55 genes in the Guardant 360 CDx gene panel, 53 genes 
overlapped with the UW panel, and 54 genes overlapped 
with the GRAIL panel. 

1. A method of detecting cancer or a particular type or 
subtype thereof in a subject and, optionally, treating the 
cancer or particular type or subtype thereof, the method 
comprising: 

determining fragmentation patterns of classifier cell-free 
deoxyribonucleic acid ( cfDNA) from the subject, 
wherein the classifier cfDNA comprises cfDNA from 
the subject corresponding to at least a portion of at least 
one exon of at least one classifier gene in a panel of one 
or more classifier genes; and 

classifying the fragmentation patterns to identify the 
subject as being negative or positive for the cancer or 
the particular type or subtype thereof. 

2. The method of claim 1, wherein the at least the portion 
of the at least one exon of the at least one classifier gene 
comprises a coding sequence of a first exon of the at least 
one classifier gene. 

3. The method of claim 1, wherein the at least the portion 
of the at least one exon of the at least one classifier gene 
comprises one or more predefined exon regions selected 
from the group consisting of transcription factor binding 
sites, regions of open chromatin, and specific motifs. 

4. The method of claim 1, wherein the classifier cfDNA 
excludes cfDNA from the subject corresponding to one or 
more exons of the at least one classifier gene other than the 
at least one exon. 

5. The method of claim 1, wherein the classifier cfDNA 
corresponds to less than 2,500 Mb of a genome of the 
subject. 

6. The method of claim 1, further comprising isolating 
from the subject a biological sample comprising the classi
fier cfDNA. 

7. The method of claim 1, further comprising isolating the 
classifier cfDNA from at least some non-classifier cfDNA, 
wherein the non-classifier cfDNA is cfDNA that is not 
classifier cfDNA. 

8. The method of claim 1, further comprising sequencing 
the classifier cfDNA. 

9. The method of claim 8, wherein the sequencing com
prises sequencing the classifier cfDNA at a deduplicated 
sequencing depth of at least 1 00x. 
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10. The method of claim 1, wherein the method excludes 
sequencing at least some non-classifier cfDNA from the 
subject. 

11. The method of any one of claims 8-10, wherein the 
method sequences cfDNA corresponding to no more than 
2,500 Mb of a genome of the subject. 

12. The method of claim 1, wherein the determining the 
fragmentation patterns comprises determining a fragment 
size distribution of the classifier cfDNA. 

13. The method of claim 1, wherein the determining the 
fragmentation patterns comprises determining a separate 
fragment size distribution of the classifier cfDNA corre
sponding to each classifier gene. 

14. The method of claim 1, wherein each classifier gene 
comprises a coding region of an exon and the determining 
the fragmentation patterns comprises determining a separate 
fragment size distribution of the classifier cfDNA corre
sponding to the coding region of each exon. 

15. The method of claim 1, wherein each classifier gene 
comprises a coding region of a first exon and the determin
ing the fragmentation patterns comprises determining a 
separate fragment size distribution of the classifier cfDNA 
corresponding to the coding region of each first exon. 

16. The method of claim 1, wherein each classifier gene 
comprises a coding region of multiple exons and the deter
mining the fragmentation patterns comprises determining a 
separate fragment size distribution of the classifier cfDNA 
corresponding to the coding region of each of the multiple 
exons. 

17. The method of claim 12, wherein the determining the 
fragmentation patterns comprises quantitating each frag
ment size distribution. 

18. The method of claim 17, wherein the determining the 
fragmentation patterns comprises quantitating each frag
ment size distribution using size bins. 

19. The method of claim 17, wherein the quantitating 
comprises quantitating an entropy value for each fragment 
size distribution. 

20. The method of claim 17, wherein the quantitating 
comprises quantitating a number of reads (depth) for each 
fragment size distribution. 

21. The method of claim 1, wherein the determining the 
fragmentation patterns comprises determining a motif diver
sity score. 

22. The method of claim 1, wherein the determining the 
fragmentation patterns comprises determining the fragmen-
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tation patterns of one or more predefined exon regions 
selected from the group consisting of transcription factor 
binding sites, regions of open chromatin, and specific 
motifs. 

23. The method of claim 1, wherein the classifier genes 
comprise cancer genes. 

24. The method of claim 1, wherein the one or more 
classifier genes comprise at least 50 genes from Gene Set 1. 

25. The method of claim 1, wherein the one or more 
classifier genes comprise at least 1 gene from Gene Set 2. 

26. The method of claim 1, wherein the classifying 
identifies the subject as being negative or positive for at least 
one type of cancer. 

27. The method of claim 26, wherein the at least one type 
of cancer comprises one or more tumor sites of origin. 

28. The method of claim 27, wherein the one or more 
tumor sites of origin comprise one or more of breast, 
bladder, lung, kidney, and prostate. 

29. The method of claim 1, wherein the method is capable 
of identifying the subject as being positive for cancer at an 
accuracy of at least 90% in a biological sample from the 
subject having a ct-fraction from 0.0001 to 0.001. 

30. The method of claim 1, wherein the method is capable 
of identifying the subject as being positive for a cancer 
selected from the group consisting of breast cancer, bladder 
cancer, lung cancer, prostate cancer, and metastatic neuroen
docrine prostate cancer at an accuracy of at least 70% in a 
biological sample from the subject having a ct-fraction from 
0.001 to 0.01 

31. The method of claim 1, further comprising identifying 
the subject as having a cancer of a particular tissue of origin 
and subjecting the subject to imaging or biopsy of the 
particular tissue of origin. 

32. The method of claim 31, wherein the particular tissue 
of origin is a solid tissue and wherein the imaging or biopsy 
is of the solid tissue. 

33. The method of claim 1, further comprising identifying 
the subject as having cancer and treating the cancer. 

34. The method of claim 1, further comprising identifying 
the subject as having a cancer of a particular tissue of origin 
and subjecting the subject to surgery on the particular tissue 
of origin. 

35. The method of claim 34, wherein the particular tissue 
of origin is a solid tissue and wherein the surgery is on the 
solid tissue. 

* * * * * 
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