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: -MODIFY A CONVOLUTIONAL NEURAL NETWORK (CNN) TO -v 
: ADD A FIRST LAYER THAT INCLUDES MULTIPLE CODING : 
: TENSORS USED TO ENCODE TIMESTAMPS INTO : 
: COMPRESSED HISTOGRAMS AND A DECODING LAYER : 
"- - -- - - --- - --- - - - --- - - ----- -- ]. --------- -- --- - - - -- - - --- - - -- _, 704 

:--- TRAIN THE MODIFIED CNN USING TRAINING AND TEST-~ 
: DATASETS : 
, ___ -- - -- - - - -- - - - - - -- - ---- - --- - --- - - ---- -- - -- - -- - - - --- - - ___ , 706 

DETECT PHOTON AT TIME t AT A DETECTOR 

DETERMINE TIME BIN i AND DETECTOR POSITION p· FOR 
THE PHOTON RECEIVED AT TIME t 

GENERATE A CODE WORD (LENGTH K) REPRESENTING 
TIME BIN i AT POSITION p' USING THE CODING TENSORS 

UPDATE VALUES OF K BINS OF A COMPRESSIVE 
HISTOGRAM FOR A BLOCK b THAT INCLUDES POSITION p' 

USING THE VALUES OF THE CODE WORD 

NO 

714 

FRAME 
ELAPSED1/ 

/ 
YES 

OUTPUT VALUES OF THE K BINS AS A COMPRESSED 
HISTOGRAM FOR EACH BLOCK 

DECOMPRESS THE COMPRESSED HISTOGRAMS 

716 

~--------~--------~720 

: --PROVIDE THE-DECOMPRESSED HISTOGRAM VALUES AS V 
: INPUT TO A LAYER OF THE CNN : 

~~ RECEIVE OUTPUT FROM THEt CNN-INDICATIVE OF ONE OR -~

2 

: MORE PROPERTIES OF A SCENE (E.G., DEPTH) : 
,_ - -- -- --- - ---- ----- -- --- -- --- ----- ---- -- --- -- - -- - - --- - ____ , 724 

GENERATE VALUES BASED ON THE DECOMPRESSED 
HISTOGRAM AND/OR OUTPUTS FROM THE CNN 
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SYSTEMS, METHODS, AND MEDIA FOR 
SINGLE PHOTON DEPTH IMAGING WITH 
IMPROVED EFFICIENCY USING LEARNED 

COMPRESSIVE REPRESENTATIONS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] The present application is based on, claims priority 
to, and incorporates herein by reference in its entirety for all 
purposes, U.S. Provisional Patent Application Ser. No. 
63/516,137, filed Jul. 27, 2023. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] This invention was made with govermnent support 
under 1846884, 1943149 and 2138471 awarded by the 
National Science Foundation and under DE-NA0003921 
awarded by the US Department of Energy. The government 
has certain rights in the invention. 

BACKGROUND 

[0003] Detectors that can detect the arrival time of an 
individual photon, such as single-photon avalanche diodes 
(SPADs), can facilitate active vision applications in which a 
light source is used to interrogate a scene. For example, such 
single-photon detectors have proposed for use with fluores­
cence lifetime-imaging microscopy (FLIM), non-line-of­
sight (NLOS) imaging, transient imaging, LiDAR systems, 
and other depth imaging systems. The combination of high 
sensitivity and high timing resolution has the potential to 
improve performance of such systems in demanding imag­
ing scenarios, such as in systems having a limited power 
budget. For example, single-photon detectors can play a role 
in realizing effective long-range LiDAR for automotive 
applications (e.g., as sensors for autonomous vehicles) in 
which a power budget is limited and/or in which a signal 
strength of the light source is limited due to safety concerns. 
[0004] Three-dimensional imaging systems (e.g., cam­
eras) based on SPAD technology are becoming increasingly 
popular for a wide range of applications that require high­
resolution and low-power depth sensing, ranging from 
autonomous vehicles to consumer smartphones. Kilopixel to 
megapixel resolution SPAD pixel arrays that are being 
developed will have the capability of capturing the time-of­
arrival of billions of individual photons per frame with 
extremely high (picosecond) time resolution. However, this 
extreme sensitivity and high speed comes at a cost, as the 
raw timestamp data causes a severe bottleneck between the 
image sensor and an image signal processor (ISP) that 
processes this data ( e.g., as described below in connection 
with FIG. 1, panel (a)). This data bottleneck severely limits 
the wider use of high-resolution SPAD arrays in 3D sensing, 
and other, applications. 
[0005] One approach that has been developed to avoid 
transferring individual photon timestamps is to build a 
histogram in each pixel. This results in a 3D histogram 
tensor that is transferred off-sensor for processing. Although 
this may be practical at low spatio-temporal resolutions 
(e.g., 64x32 pixels with 16 time bins), it requires higher 
in-sensor memory. Additionally, the data rates of this histo­
gram tensor representation also scale rapidly with the spatio­
temporal resolution and maximum depth range ( or other 
time bins) of the sensor. For example, a megapixel SPAD-
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based 3D camera operating at 30 frames per second (fps) 
that outputs a histogram tensor with a thousand 8-bit bins per 
pixel would require a data transfer rate of 240 gigabits pers 
second (Gbps). 
[0006] FIG. 1 shows an example of a SPAD-based pulsed 
LiDAR system (sometimes referred to by other names such 
as Geiger-mode LiDAR and Single Photon LiDAR). The 
example shown in FIG. 1 includes a laser configured to send 
out light pulses periodically, and a SPAD that records the 
arrival time of the first detected photon in each laser period. 
Note that the first detected photon is not necessarily the first 
photon that is incident on the SPAD, as some photons that 
are incident will not be detected (the proportion of incident 
photons detected is sometimes referred to as the quantum 
efficiency of the detector), and some detections result from 
noise rather than an incident photon. 
[0007] In such systems, the first photon detection times in 
each laser cycle can be collected and used to generate a 
histogram of the time-of-arrival of the photons that repre­
sents the distribution of detections. For example, as 
described below in connection with FIG. 2, a histogram 
representing arrival times of photons can be generated. If the 
incident flux level is within an acceptable range, the histo­
gram can be expected to approximate a scaled version of the 
received temporal waveform of the reflected laser pulses. In 
such circumstances, the counts represented by the histogram 
can be used to estimate scene depths and reflectivity based 
on the location and height of a local maxima in the data 
represented by the histogram. 
[0008] As described above, SPAD-based systems can gen­
erate very large amounts of data. For example, consider a 
megapixel SPAD-based 3D camera. For short range indoor 
applications ( e.g., up to tens of meters), a millimeter depth 
resolution would be desirable. For longer range outdoor 
applications (e.g., hundreds of meters), centimeter level 
depth resolution would be desirable. Assuming state-of-the­
art sub-bin processing techniques, this corresponds to his­
tograms with thousands of bins per pixel, which would 
require reading out thousands of values per pixel in order to 
generate a depth for each pixel. Additionally, the rate at 
which such histograms can be generated can vary from tens 
of fps for low speed applications ( e.g., land surveying) to 
hundreds of fps for high speed applications ( e.g., an auto­
motive application where objects may be moving at high 
speeds). Even a conservative estimate of a 30 fps megapixel 
camera leads to a large data rate ( e.g., 106 pixels/framex 
1000 bins/pixelx2 bytes/binx30 fps=60 GB/sec). 
[0009] Coarse in-pixel histogramming has been proposed 
to reduce data rates in SPAD-based 3D cameras. Despite the 
low time resolution in coarse histograms, it is possible to 
achieve relatively high depth resolution by using wide 
pulses, pulse dithering, or with coarse-to-fine histogram 
architectures. However, as described below, coarse histo­
gramming is a sub-optimal strategy. 
[0010] Accordingly, systems, methods, and media for 
single photon depth imaging with improved efficiency using 
learned compressive representations are desirable. 

SUMMARY 

[0011] In accordance with some embodiments of the dis­
closed subject matter, systems, methods, and media for 
single photon depth imaging with improved efficiency using 
learned compressive representations are provided. 
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[0012] In some aspects, the present disclosure can provide 
a system for determining a depth in a scene. The system can 
include a light source and an array including a plurality of 
detectors. The plurality detectors can detect arrival of indi­
vidual photons. At least one processor can be programmed 
to detect a photon arrival based on a signal from a detector 
of the plurality of detectors. The detector of the plurality of 
detectors can have a position p'. The processor can be 
programmed to determine a time bin i associated with the 
photon arrival. The time bin can be in a range from 1 to N, 
where N, is a total number of time bins. The processor can 
be programmed to update a compressed histogram with K 
stored values representing bins of the compressed histogram 
based on K values in a code word calculated based on the 
time bin i and the position p' and K coding tensors. Each 
coding tensor of the K coding tensors can be different than 
each other coding tensor. The processor can be programmed 
to perform an imaging task based on the K values of the 
compressed histogram. 
[0013] In some aspects, the present disclosure can provide 
a method for determining a depth in a scene. A photon arrival 
can be detected based on a signal from a detector of a 
plurality of detectors. The detector of the plurality of detec­
tors can have a position p'. A time bin i can be determined. 
The time bin i can be associated with the photon arrival. The 
time bin can be in a range from 1 to N, where N, is a total 
number of time bins. A compressed histogram can be 
updated. The compressed histogram can include K stored 
values representing bins of the compressed histogram based 
on K values in a code word calculated based on the time bin 
i and the position p' and K code tensors. Each coding tensor 
of K code tensors can be different than each other coding 
tensor. An imaging tasks can be performed based on the K 
values of the compressed histogram. 

[0014] In some aspects, the present disclosure can provide 
a system for generating compressed single-photon histo­
grams. The system can include a light source and an array 
including a plurality of detectors. The plurality of detectors 
can detect arrival of individual photons. At least one pro­
cessor can be programmed to detect a photon arrival based 
on a signal from a detector of the plurality of detectors. The 
detector of the plurality of detectors can have a position p'. 
The at least one processor can be programmed to determine 
a time bin i associated with the photon arrival. The time bin 
can be in a range from 1 to N, where N, is a total number of 
time bins. The at least one processor can be programmed to 
update a compressed histogram including K stored values 
representing bins of the compressed histogram based on K 
values in a code word calculated based on the time bin i and 
the position p' and K coding tensors. Each coding tensor of 
the K coding tensors can be different than each other. The at 
least one processor can be programmed to output the com­
pressed histogram to another processor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0015] Various objects, features, and advantages of the 
disclosed subject matter can be more fully appreciated with 
reference to the following detailed description of the dis­
closed subject matter when considered in connection with 
the following drawings, in which like reference numerals 
identify like elements. 

[0016] FIG. 1 shows an example of a single photon 
avalanche diode (SPAD)-based pulsed LiDAR system. 
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[0017] FIG. 2 shows an example of a histogram represent­
ing arrival times of photons in a series of cycles. 
[0018] FIG. 3 shows an example illustrating a data bottle­
neck in a conventional single-photon imaging system, and a 
single-photon imaging system implemented in accordance 
with some embodiments of the disclosed embodiments. 
[0019] FIG. 4 shows an example of a flow for compressing 
single-photon data using a compressive representation in 
accordance with some embodiments of the disclosed 
embodiments. 
[0020] FIG. SA shows an example of a flow for generating 
compressive histograms that represent single-photon data 
collected over a period of time in accordance with some 
embodiments of the disclosed embodiments. 
[0021] FIG. 5B shows an example of a flow for decoding 
compressive histograms that represent single-photon data 
collected over a period of time in accordance with some 
embodiments of the disclosed embodiments. 
[0022] FIG. 6 shows an example of a system for single 
photon depth imaging with improved efficiency using 
learned compressive representations in accordance with 
some embodiments of the disclosed subject matter. 
[0023] FIG. 7 shows an example of a process for improv­
ing the efficiency of transferring data from a single-photon 
image sensor in accordance with some embodiments of the 
disclosed subject matter. 
[0024] FIG. SA shows an example of compression ratio 
and mean absolute depth errors computed over a test set for 
various techniques for estimating depth in a single photon 
depth imaging system. 
[0025] FIG. 8B shows an example of compression ratio 
and a percent number of pixels with errors computed over a 
test set for various techniques for estimating depth in a 
single photon depth imaging system. 
[0026] FIG. 9 shows examples of depth reconstructions 
generated using compressed histograms generating using 
various techniques including manually designed coding ten­
sors, randomly initialized coding tensors, and learned coding 
tensors in accordance with some embodiments of the dis­
closed subject matter. 
[0027] FIG. 10 shows examples of depth reconstructions 
generated from single-photon data compressed using vari­
ous techniques, including on-chip depth calculation, and 
learned coding tensors in accordance with some embodi­
ments of the disclosed subject matter. 
[0028] FIG. 11 shows examples of depth reconstructions 
generated from single-photon data compressed using differ­
ent spatial block sizes of learned coding tensors in accor­
dance with some embodiments of the disclosed subject 
matter at a fixed compression ratio, and associated mean 
average error. 
[0029] FIG. 12 shows examples of depth reconstructions 
generated from single-photon data compressed using differ­
ent spatial block sizes of learned coding tensors in accor­
dance with some embodiments of the disclosed subject 
matter at a higher fixed compression ratio, and associated 
mean average error. 
[0030] FIG.13 shows examples of temporal dimensions of 
compression in accordance with some embodiments of the 
disclosed subject matter. 
[0031] FIG. 14 shows a comparison between compression 
and test set metrics on large depths test set. 
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[0032] FIGS. 15A and 15B show example depth recon­
structions at 32x and 128x compression for scenes, respec­
tively. 
[0033] FIG. 16 shows an effect of spatial tensor dimen­
sion. 
[0034] FIG. 17 shows an effect of another spatial tensor 
dimension. 
[0035] FIG. 18 shows the quantitative and qualitative 
performance of different learned coding tensors at 32x 
compression and 128x compression. 
[0036] FIGS. 19 and 20 show the quantitative and quali­
tative performance of different learned coding tensors at 32x 
compression and 128x compression, respectively. 
[0037] FIG. 21 shows a temporal dimension of 64x com­
pression. 
[0038] FIGS. 22 and 23 show the overall test set perfor­
mance and qualitative depth reconstructions for multiple 
compressive histogram models at 64x and 128x compres­
sion, respectively. 
[0039] FIG. 24 shows the depth reconstructions for the 
oracle baselines and multiple compressive histograms at 
128x compression. 
[0040] FIG. 25 shows the expected compression ratios for 
different histogram tensor and coding tensor sizes. 
[0041] FIG. 26 shows the expected compression ratios for 
different histogram tensor and coding tensor sizes for a 
separable coding tensor that is 16x smaller than a full coding 
tensor. 

DETAILED DESCRIPTION 

[0042] In accordance with various embodiments, mecha­
nisms (which can, for example, include systems, methods, 
and media) for single photon depth imaging with improved 
efficiency using learned compressive representations are 
provided. 
[0043] In some embodiments, mechanisms described 
herein can be used to generate compressive histograms that 
can improve the efficiency of single photon depth imaging 
systems, for example, by reducing the per-pixel output data 
rate at a particular depth resolution and frame rate. 
[0044] Single-photon cameras (SPC) are an emerging sen­
sor technology with ultra-high sensitivity down to individual 
photons. In addition to their extreme sensitivity, SPCs based 
on single-photon avalanche diodes (SPADs) can also record 
photon-arrival timestamps with extremely high (sub-nano­
second) time resolution. Moreover, SPAD-based SPCs are 
compatible with complementary metal-oxide semiconductor 
(CMOS) photolithography processes which can facilitate 
fabrication of kilo-to-mega-pixel resolution SPAD arrays at 
relatively low costs. Due to these characteristics, SPAD­
based SPCs are gaining popularity in various imaging appli­
cations including 3D imaging, passive low-light imaging, 
HDR imaging, non-line-of-sight (NLOS) imaging, fluores­
cence lifetime imaging (FLIM) microscopy, and diffuse 
optical tomography. 
[0045] Unlike a conventional camera pixel that outputs a 
single intensity value integrated over micro-to-millisecond 
timescales, a SPAD pixel generates an electrical pulse for 
each photon detection event. A time-to-digital conversion 
circuit converts each pulse into a timestamp recording the 
time-of-arrival of each photon. Under normal illumination 
conditions, a SPAD pixel can generate millions of photon 
timestamps per second. The photon timestamps are often 
captured with respect to a periodic synchronization signal 
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generated by a pulsed laser source. To make this large 
volume of timestamp data more manageable, SPAD-based 
SPCs can build a timing histogram on-chip instead of 
transferring the raw photon timestamps to the host computer. 
The histogram can record the number of photons as a 
function of the time delay with respect to the synchroniza­
tion pulse. 

[0046] In some embodiments, mechanisms described 
herein can be used to implement bandwidth-efficient acqui­
sition strategies using coding tensors which can be used to 
encode a block of a 3D histogram tensor into a single 
compressive histogram. In some embodiments, rather than 
capturing the full timing histogram in each pixel, compres­
sive histograms can be constructed by mapping the time bins 
of the histograms for multiple pixels onto multiple a com­
pressive histogram though an encoding process. 

[0047] As described below, in some embodiments, mecha­
nisms described herein can utilize a family of compressive 
encoders that can be represented as a series of simple matrix 
operation. Such compressive encoders can be implemented 
efficiently using operations equivalent to multiply-add 
operations that can be computed on-the-fly (e.g., as each 
photon arrives), without the need to store large arrays of 
photon timestamps on-chip. In some embodiments, using 
mechanisms described herein can decouple the dependence 
of output data rate on the desired depth resolution. For 
example, while a full histogram requires more time bins to 
achieve higher depth resolution, compressive histograms 
generated using mechanisms described herein can represent 
a higher depth resolution using a similar ( e.g., almost the 
same) number, or lower number, of data points. 

[0048] As described below in connection with FIG. 3, 
SPCs (e.g., SPAD-based 3D cameras) encounter a data 
bottleneck between the image sensor array (e.g., SPAD 
array) and the compute module (e.g., a hardware processor) 
when transferring the photon timestamps. A histogram ten­
sor can help summarize timestamps at low resolutions, but 
as megapixel SPAD arrays become available, histogram 
tensors also lead to a data bottleneck. In some embodiments, 
mechanisms described herein can be used to generate com­
pressive histograms as a compact representation that can be 
built on-the-fly, as each photon is detected, which can 
mitigate the data bottleneck between the image sensor and 
compute module. In some embodiments, compressive his­
tograms generated using mechanisms described herein can 
reduce in-sensor memory and data rates, as neither the 
photon data stream nor a histogram tensor needs to be 
explicitly stored or transferred. Results described below 
(e.g., in connection with FIGS. SA to 13) show that high­
quality depth information can be recovered from a compres­
sive histogram representation ( e.g., generated using learned 
coding tensors) that is up to two orders of magnitude smaller 
than a histogram tensor representation. 

[0049] For a fixed compression level, as noise increases 
(e.g., as signal to background ratio (SBR) decreases) recon­
struction quality degrades. In results described below, deg­
radation in image quality first results in the loss of fine 
details and subsequently the loss of coarser higher-level 
scene information. By increasing the size of coding tensors, 
reconstruction quality can be recovered up to a certain 
degree ( e.g., as described below in connection with FIG. 12). 
Additionally, reducing the compression ratio is also an 
effective technique to recover this scene information. 
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[0050] As described in herein coding tensors with M,=N, 
can develop a depth range bias. For example, these coding 
tensors can learn to zero out photons coming from distances 
that are less common in the dataset since they are usually 
background/noise photons. Interestingly, learned coding ten­
sors with M,<N, avoid this bias and generalize to depths that 
are less common in the training set. 
[0051] While SPAD-based 3D cameras with large in-pixel 
memory could potentially store per-pixel histograms and 
reduce data rates by computing depths in-pixel (sometimes 
referred to herein as a peak compression oracle), results 
described below show that compressive histograms can 
provide similar reconstruction quality and outperform this 
technique at low SBR without requiring the storage of the 
full histogram tensor in-sensor. 
[0052] Note that although promising empirical results are 
shown for the coding tensor representations described 
herein, an optimal set of coding tensors depends on the 
hardware specifications (e.g, in-pixel memory, system band­
width) and scene-dependent parameters (e.g., SBR, geom­
etry, albedo). Additional lightweight coding tensors can be 
implemented using mechanisms described herein that rely 
on other factorization techniques and weight quantization. 
[0053] Note that histogram tensors are used in various 
active single-photon imaging modalities, in addition to 
depth sensing, such as fluorescence lifetime microscopy 
(FLIM), non-line-of-sight, and diffuse optical tomography. 
In some embodiments, mechanisms described herein can be 
used to find compressive representations suitable for these 
additional applications. 
[0054] As described below, while coarse histogramming 
can be considered a form of compressive histogram, coarse 
histogramming is sub-optimal compared to other compres­
sive histogramming strategies. Other data reduction strate­
gies, such as motion-driven operation or multi-photon trig­
gering have been proposed to reduce the amount of data 
generated by SPADs. Additionally, in the context of scan­
ning-based systems, adaptive sampling techniques have 
been proposed to reduce sampling rates and consequently 
data transfers. In some embodiments, such techniques can be 
used in a complementary manner with mechanisms 
described herein to further reduce data rates. 
[0055] Recently, Fourier-domain histograms (FDHs) were 
proposed for fast non-line-of-sight (NLOS) imaging and for 
single-photon 3D imaging. FDHs can be generated using 
mechanisms described herein as one type of compressive 
histogram that can achieve significant compression over 
regular histogramming. However, strategies described 
below can be used to implement coding tensors that are more 
efficient than FDH for 3D imaging, and that are also more 
robust to diffuse indirect reflections commonly found in 
flash illumination systems are described below. 
[0056] In some embodiments, mechanisms described 
herein can use a set of coding tensors ( e.g., K matrices that 
are each M,xMrxMc described below in connection with 
FIGS. 4, SA, and 5B, or a KxM,xMrxMc matrix) to generate 
a compressive histogram that represents a block of the 3D 
histogram tensor ( e.g., of size M,xMrxMc) as a compressed 
representation of a full-resolution histogram for a single­
photon detector that can be used to determine a time of flight 
of a light pulse emitted from a co-located source. For 
example, each coding tensor can correspond to a code word 
having M,xMrxMc elements ( e.g., each element within a 
predetermined range, such as from -1 to 1) that are added to 
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the compressed histogram. At the end of a frame, the values 
of the compressed histogram can be read out, decoded, and 
used to determine a depth ( or other value) for scene points 
corresponding to the single-photon detectors used to gener­
ate the compressed histogram ( e.g., using EQ. ( 6), described 
below). 
[0057] Compressive histograms, sometimes referred to as 
sketches, are an emerging framework for online in-sensor 
compression of SPAD timestamp data. A coarse histogram is 
one common compressive histogram approach to reduce 
data rates and in-pixel memory. Despite their practical 
hardware implementation, coarse histograms achieve sub­
optimal depth accuracy compared to compressive histo­
grams based on Fourier and Gray codes. One limitation of 
these approaches is that the compressive representation only 
exploits the temporal information of the incident timestamp, 
and disregards the spatial redundancy. As described herein, 
mechanisms described herein can generalize the compres­
sive histogram framework to utilize spatio-temporal infor­
mation of each timestamp. Additionally, instead of relying 
on hand-designed coded projections, mechanisms described 
herein can be used to learn coding tensors as a layer ( e.g., a 
first layer) of a convolutional neural network (CNN). 
[0058] In some embodiments, multiple neighboring 
single-photon detectors (e.g., SPAD pixels) can utilize a 
single shared memory where all timestamps are aggregated 
into a coarse histogram ( e.g., a 4x4 block of pixels, a 3x3 
block of pixels, etc.). Such techniques can discard local 
spatial information (e.g., precise pixel location) of the 
detected photon timestamps. Compressive histograms 
implemented using mechanisms described herein are well­
suited for such a shared memory implemented, as a com­
pressive histogram can be shared among multiple SPAD 
pixels and can preserve spatial information through the 
coded projection. For example, when a timestamp is 
detected at a pixel, K values are identified from the coding 
tensor, and those K values are aggregated to the compressive 
histogram. The K value from the coding tensor can encode 
spatial and temporal information, which help preserve the 
spatial information. If the timestamp is only aggregated on 
a regular histogram, the spatial information is discarded. 
[0059] Pixel processor arrays (PPAs) are an emerging 
sensing technology that embeds processing electronics 
inside each pixel. This sensing paradigm begins processing 
the image at the focal plane array, which allows it to reduce 
the sensor data rates by transmitting only the relevant 
information, and consequently, can increase sensor through­
put which can facilitate computer vision at 3,000 fps. PPAs 
have also become building blocks of novel computational 
imaging systems optimized end-to-end for HDR imaging, 
motion deblurring, video compressive sensing, and light 
field imaging. In some embodiments, compressive histo­
grams implemented using mechanisms described herein can 
utilize in-pixel processing techniques. For example, mecha­
nisms described herein can optimize sensor parameters ( e.g., 
values of coding tensors used to generate compressive 
histograms) and a processing algorithm (e.g., a CNN) to 
compress data generated by an array of single-photon detec­
tors. 
[0060] FIG. 1 shows an example of a SPAD-based pulsed 
imaging system (e.g., a LiDAR system, sometimes referred 
to by other names such as Geiger-mode LiDAR and Single 
Photon LiDAR, a single photon 3D camera). The example 
shown in FIG. 1 includes a light source (e.g., a laser) 
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configured to send out light pulses periodically, and a SPAD 
that records the arrival time of the first detected photon in 
each laser period, after which it enters a dead time, during 
which the SPAD is inhibited from detecting any further 
photons. Note that the first detected photon is not necessarily 
the first photon that is incident on the SPAD, as some 
photons that are incident will not be detected (the proportion 
of incident photons detected is sometimes referred to as the 
quantum efficiency of the detector), and some detections 
result from noise rather than an incident photon. 

[0061] In such systems, the first photon detection times in 
each laser cycle can be collected and used to generate a 
histogram of the time-of-arrival of the photons that repre­
sents the distribution of detections. For example, FIG. 2 
shows a histogram representing arrival times of photons in 
a series of cycles. If the incident flux level is sufficiently low, 
the histogram can be expected to approximate a scaled 
version of the received temporal waveform of the reflected 
laser pulses. In such circumstances, the counts represented 
by the histogram can be used to estimate scene depths and 
reflectivity based on the location and height of a local 
maxima in the data represented by the histogram. A SPAD­
based 3D camera can estimate distances by building a 
per-pixel histogram of the detected photons time-of-arrival. 
The histogram is a discrete approximation of the photon flux 
waveform incident on the pixel, which encodes distances in 
the time shift ( t2) of the pulse. 

[0062] In a SPAD-based 3D camera, the SPAD-based 
camera can include a SPAD sensor and a pulsed laser that 
illuminates the scene. The photon flux signal arriving at 
pixel, p, can be expressed as: 

(1) 

where aP is the amplitude of the returning signal accounting 
for laser power, reflectivity, and light fall-off; h (t) is the 
system's impulse response function (IRF) which accounts 
for pulse waveform and sensor IRF; dP is the distance to the 
point imaged by point p; c is the speed of light; and 4>/kg 
is the constant photon flux due to background illumination 
(e.g., sunlight, indoor lighting, etc.). This model assumes 
direct-only reflections which is generally a valid approxi­
mation, in particular, for scanning-based ToF 3D imaging 
systems. 

[0063] Time-correlated single photon counting (TCSPC)­
based SPAD cameras can measure (t) by building a per-pixel 
timing histogram (e.g., as shown in FIG. 2), where the i th 

histogram bin records the number of photons that arrived in 
a time interval of length fl, which follows a Poisson process 
J>: 

(2) 

A pulse repetition period, t, can determine the maximum 
timestamp value and the length of a histogram vector 
<PP=(<P;_p);~o N,- 1, where N,=t/Ll. Therefore, one assumption 
built into <PP, is that no signal photons had a timestamp 
larger than t, which means that the maximum distance that 
¢> P can encode is 
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Additionally, it can be assumed that pile-up distortions are 
minimized through various SPAD data acquisition tech­
niques. For example, it can be assumed that the SPAD sensor 
is being operated in asynchronous mode or is capable of 
multi-event timestamp collection, which can mitigate pile­
up distortions, and can guarantee that <P;.p is an appropriate 
approximation of 4>p(t). As shown in FIG. 2, the above 
process can be repeated for M cycles, and a histogram of the 
timestamps can be constructed which approximates ¢,P(t) 
[0064] This process can generate a N,xN)<Nc 3D histo­
gram tensor, H=(<P;_p)p~(o.o/N,-I.N,-Il_ In challenging 3D 
imaging scenarios (e.g., with high background illumination), 
building H off-sensor typically requires transferring thou­
sands of photon timestamps per-pixel, which can lead to data 
rates of hundreds of GB/s in a megapixel sensor. Addition­
ally, building and storing a high-resolution H in-sensor 
would require significant memory (e.g., at least 1 GB for a 
megapixel SPAD camera with 1000 time bins per-pixel), and 
transferring H from the in-sensor memory would continue to 
lead to impractical data rates of at least tens of GB/s on a 
SPAD-based 3D camera operating at 30 fps. In some 
embodiments, mechanisms described herein can be used to 
implement a practical SPAD-based 3D camera that builds 
and stores a compact representation of H in-sensor, and 
transfers the compact representation to a processing chip 
(e.g., a field-programmable gate array (FPGA), an image 
signal processor (ISP), an embedded computer) where H is 
processed. 
[0065] FIG. 3 shows an example illustrating a data bottle­
neck in a conventional single-photon imaging system, and a 
single-photon imaging system implemented in accordance 
with some embodiments of the disclosed embodiments. 
[0066] FIG. 3, panel (a), shows a conventional SPAD­
based 3D cameras are configured to stream raw photon 
timestamps or summary histograms off the image sensor 
which causes a data bottleneck between the image sensor 
and the on-camera ISP. FIG. 3, panel (b), shows an example 
in which a lightweight, on-sensor compressive coding 
scheme implemented in accordance with some embodiments 
of the disclosed subject matter to the photon times tamp data 
which can be decoded at the ISP, mitigating the data 
bandwidth limitation. 
[0067] In some embodiments, mechanisms described 
herein can be used to generate compressive representations 
of 3D histogram tensors. In order to reduce the data rates 
output by the SPAD camera, the compact representation can 
be built in-pixel or inside the focal plane array (FPA) (e.g., 
as shown in FIG. 3, panel (b)). Due to the limited in-pixel 
memory and compute, a compressive representation imple­
mented in accordance with mechanisms described herein 
can be built in a streaming manner, with minimal compu­
tations per photon. As photon histogram tensors are very 
different from conventional RGB images and video data, 
conventional compression algorithms (e.g., JPEG, MPEG, 
etc.) are not directly applicable, and often require the entire 
data set (e.g., cannot be built in a streaming manner). 
[0068] In some embodiments, mechanisms described 
herein can be used to implement a family of compressive 
representations for 3D histogram tensors that can be com­
puted in an online fashion with limited memory and com-
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pute. Compressive representations implemented in accor­
dance with mechanisms described herein can be based on 
the linear spatio-temporal projection of each photon time­
stamp, which can be expressed as a simple matrix operation. 
Instead of constructing per-pixel timestamp histograms, a 
compressive encoding implemented in accordance with 
mechanisms described herein can map its spatio-temporal 
information into a compressive histogram. To exploit local 
spatio-temporal correlations, a single compressive histo­
gram can be built for a local 3D histogram block (e.g., as 
described below in connection with FIG. 4). Instead of 
building and storing the full 3D histogram tensor in-sensor, 
multiple compressive histograms can be built and trans­
ferred off-sensor for processing, effectively reducing the 
required in-sensor memory and data rates (e.g., holding the 
size of the detector array constant). 
[0069] In some embodiments, mechanisms described 
herein can be used to integrate a compression framework 
with data-driven single-photon data processing techniques 
(e.g., using convolutional neural networks (CNNs)), which 
can facilitate end-to-end optimization of the compressive 
encoding and a single-photon data (e.g., SPAD data) pro­
cessing CNN. 
[0070] As described below in connection with FIGS. SA to 
13, experimental results were generated in which a com­
pressive histograms framework implemented in accordance 
with some embodiments of the disclosed subject matter is 
integrated with a state-of-the-art learning-based denoising 
model for SPAD-based 3D imaging. The results show that 
the jointly optimized compressive encoding and CNN can 
consistently reduce data rates up to 2 orders of magnitude in 
a wide range of signal and noise levels. Additionally, for a 
given compression level, it can increase 3D imaging accu­
racy over previous hand-designed compressive histograms 
that only exploit temporal information, especially in low 
signal-to-background ratio (SBR) scenarios and at higher 
compression rates. Further, the results show that learned 
compressive histograms can perform comparably and some­
times even outperform a theoretical SPAD sensor design 
where the full 3D histogram tensor is stored in-sensor and 
only per-pixel depths are transferred off-sensor (which 
requires prohibitive amounts of in-sensor memory and com­
pute, as described above). 
[0071] FIG. 4 shows an example of a flow for compressing 
single-photon data using a compressive representation in 
accordance with some embodiments of the disclosed 
embodiments. As shown in FIG. 4, histogram tensors, H, can 
be a 3D spatio-temporal grid with elements that store the 
number of photons that arrived within a relatively short time 
interval. As shown in FIG. 4, panel (a), in SPAD-based 3D 
imaging, the temporal axis of H can encode distances, as the 
time bin at which a photon is detected can correspond to a 
particular time-of-flight. FIG. 4, panel (b), shows a histo­
gram block, Hb, which can be expressed as the sum of J 
one-hot encoding tensors, where each tensor represents a 
photon timestamp. In FIG. 4, panel (c) a compact represen­
tation of Hb can be built by applying K linear projections 
(e.g., dot products) with pre-defined coding tensors, which 
can generate a compressive histogram that represents the 
information in block Hb, as shown in FIG. 4, panel (d), 
which can be a vector with K elements whose compression 
capacity can be represented as M,-Mr•M/K. 

[0072] A natural approach to compress H that exploits its 
local correlations due to smooth depths and photon flux, is 
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to build a compressive representation of a local 3D histo­
gram block as illustrated in FIG. 4. To avoid storing or 
transferring the photon timestamp stream, the compressive 
representation can be built as each timestamp arrives. As 
described below, mechanisms described herein can be used 
to implement an online compression framework for histo­
gram blocks based on the coded projection of photon 
timestamps. Such an online compression framework can 
operate in a streaming manner as photons are detected (e.g., 
rather than requiring all photon detections in a frame to have 
already occurred). 
[0073] A histogram Hb can be defined as a bth histogram 
block of H with dimensions M,><M,><Mc, where M,:o;N,, 
MrsNc, and Mc:s;Nc. It can be observed that Hb can be 
expressed as the sum of J one-hot encoding tensors, each 
representing one photon detection within Hb (e.g., as shown 
in FIG. 4, panel (b)). Specifically, tbJ can be a M,><M,><Mc 
one-hot encoding tensor representing the j'h photon time­
stamp detected in histogram block Hb, whose elements are 
all O except for tbJ.t.p;=l, where 

Tj is the timestamp value, and p' is the pixel where the 
timestamps was detected. Using this representation Hb can 
be represented as follows: 

I J-1 
Hb = 1&,j· 

j=O 

(3) 

In some embodiments, Hb can be compressed in an online 
fashion through the linear projection of each timestamp 
tensor. For example, expressed as an inner product with K 
pre-designed coding tensors, Ck, with dimensions M,><Mrx 
Mc (e.g., as shown in FIG. 4, panel (c)). This can be 
represented using the following relationship: 

(4) 

where • denotes element-wise multiplication, and 1 and p' are 
indices where tbJ.l.p;= 1. Using this representation, Y b=(Y b. 

kh=o K-l can be defined as a compressive histogram of Hb. A 
special case of EQ. (4) is described in U.S. patent applica­
tion Ser. No. 17/834,884, filed Jun. 7, 2022, which is hereby 
incorporated by reference herein in its entirety, where C 
compresses histograms associated with individual pixels, 
and disregards spatial information (e.g., M,=N,, Mr=l, 
Mc=l). Note that each timestamp in EQ. (4) can be pro­
cessed efficiently on-the-fly after each photon detection 
through a simple lookup operation. Additionally, individual 
histogram blocks and/or timestamps do not need to be 
explicitly stored or transferred off-sensor. 
[0074] Compressive histograms, when implemented as in 
EQ. (4), can introduce an in-sensor memory overhead 
because, in addition to storing Yb• C needs to be stored 
in-sensor for efficient lookup operations. In some examples, 
C can be shared among multiple pixels. So if a block has a 
spatial dimension of 2x2, C can be shared among 2x2 pixels. 
Therefore, a given pixel would only have to store the row of 
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C that is associated to it. In some embodiments, a practical 
compressive single-photon camera implemented using 
mechanisms described herein can rely on parameter-efficient 
coding tensors that mitigate such overhead. Note that two 
strategies to design practical coding tensors were evaluated, 
and results are described below in connection with FIGS. SA 
to 13. However, these are merely examples, and other coding 
tensor implementations consistent with techniques described 
herein can be used to generate compressive histograms. 
[0075] Certain coding tensor implementations may be 
impractical, as they may incur memory overhead that ren­
ders them unsuitable. Consider a set of coding tensors that 
operate on the full histogram tensor (e.g., Hb=H). In this 
case, the number of elements in C exceeds the number of 
elements of H. Consequently, although the data rates are 
reduced in this scenario since K <(N,-Nr•NJ, the in-sensor 
memory required exceeds the size of the histogram tensor. 
To mitigate this issue, two complementary strategies to 
implement lightweight coding tensors are described below: 
local block-based and separable. 
[0076] Local Block-based Coding Tensors: As the size of 
the histogram block Hb represented by a compressive his­
togram is reduced, the size of the coding tensors also 
decreases. Therefore, compressing local histogram blocks 
not only offers benefits due to local spatio-temporal redun­
dancies, but also can be beneficial because these local 
coding tensors have fewer parameters than larger coding 
tensors. For example, local block-based coding tensors are 
used in temporal compressive histograms described in U.S. 
patent application Ser. No. 17/834,884, which has been 
incorporated by reference herein, where Hb is a per-pixel 
histogram. Separable Coding Tensors: Another approach to 
implementing lightweight coding tensors that can be used is 
to make them separable along the temporal and spatial 
dimensions. This approach can be also be used in parameter­
efficient CNN models that use separable depth-wise convo­
lutional layers to reduce model size. A separable coding 
tensor can be represented as the outer product of two smaller 
tensors: 

Ck= (5) 

where cktemporal is a M,xlxl tensor, and C/patial is a 
lxM~c tensor. In some examples, each k has a different 
temporal component. So, for every k, there can be one 
ctemporal and one cspatial_ This implementation can also be 
beneficial due to differences between the temporal and 
spatial correlations encountered in histogram blocks. In 
addition to local correlations present in both dimensions, the 
temporal dimension often exhibits long-range correlations 
due to the background illumination offset (<I>/kg) in every 
histogram bin. Accordingly, EQ. (5) can be used to represent 
such correlations by encoding the temporal and spatial 
information independently. 

[0077] One assumption made in the memory overhead 
analysis described herein is that a compressive SPAD-based 
3D camera only needs to store a single C that is shared 
across the full sensor, which can be implemented in two 
general ways. One approach can distribute C across the local 
memory of all pixels and then allow communication across 
pixels (e.g., as in pixel processor arrays (PPAs)). Another 
approach can store C in a global memory that can be 

7 
Jan. 30, 2025 

accessed by all pixels which can be facilitated using any 
suitable techniques, such as in 3D-stacked SPAD cameras. 
Additionally, some of the coding tensor implementations 
described herein have as few as 640 parameters. In such an 
example, even if C is stored for every 4x4 group of pixels, 
the in-sensor memory can still be reduced by 20x compared 
to storing a 1024 bin per-pixel histogram. 
[0078] FIGS. SA and SB show examples flows for gener­
ating compressive histograms that represent single-photon 
data collected over a period of time, and decoding compres­
sive histograms that represent the single-photon data in 
accordance with some embodiments of the disclosed 
embodiments. 
[0079] FIG. SA, shows techniques that can be used to 
build a compressive histogram for each block in the histo­
gram tensor, which can be viewed as applying K strided 
convolutional filters with weights that are the coding ten­
sors. The compressed histogram tensor can be K 

tensors. FIG. SB shows techniques that can be used to lift the 
compressed histogram tensor back to the original domain, 
for example, using an unfiltered backprojection operation, 
which can be applied on each compressive histogram, 
thereby decoding a single block of the histogram. In some 
embodiments, the decoded histogram tensor can be 
assembled by concatenating all the decoded blocks into the 
original position of the block within H. 
[0080] In some embodiments, mechanisms described 
herein can build a compressive histogram for each histogram 
block Hb. Using a block size that is less than the size of H, 
multiple compressive histograms can be used to encode the 
complete histogram tensor H. In this way, the coding tensors 
can be viewed as a set of 3D convolutional filters, which can 
be implemented as a layer of a CNN (e.g., a first layer of a 
3D CNN). For simplicity, it is assumed that histogram 
blocks do not overlap, with the stride of the convolutional 
filters being equal to their dimensions. However, in some 
examples, the systems and methods described herein may 
also be used when the histogram blocks overlap by account­
ing for the overlap using the compression ratio expression. 
[0081] Note that the compressed histogram tensor repre­
sentation is not directly compatible with 3D CNNs that have 
been designed for SPAD-based 3D imaging (e.g., as 
described in Peng et al., "Photon-efficient 3d imaging with 
a non-local neural network," in European Conference on 
Computer Vision, pp. 225-241 (2020) and Lindell et al., 
"Single-photon 3d imaging with deep sensor fusion," ACM 
Trans. Graph, 37 (4): 113-1 (2018)). In some embodiments, 
each compressive histogram can be lifted back to the origi­
nal 3D domain through an unfiltered backprojection when 
used in connection with such a pre-trained CNN. For 
example, the following relationship can be used to decode 
the compressive histograms: 

(6) 

where fib is the decoded compressive histogram for block b, 
which is a weighted linear combination of the coding 
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tensors. The decoded histogram blocks can be concatenated 
and given as input to a processing 3D CNN. FIG. 5B shows 
techniques for decoding. In some embodiments, decoding 
using EQ. (6) can be performed off-sensor, after the com­
pressive histograms have been moved to a compute module 
which has access to larger memory and computational 
resources than the sensor module. A benefit of using unfil­
tered backprojection as the up sampling operator is that if all 
coding tensors are mutually orthogonal, in the limit when K 
approaches the size of H6 ( e.g., no compression), then 
H6 ,.,H6 . This suggests that at compression rates close to 
unity, an appropriately trained compressive histogram layer 
can be approximately equal to an identity transformation 
applied to H6 . 

[0082] In some embodiments, a compressive histogram 
layer can include an encoding/compression portion imple­
mented on a single-photon detection chip, and a decoding/ 
decompression portion and can be implemented off the 
single-photon detection chip (e.g., on a processor that 
receives the compressed histograms). This layer can be 
appended to the beginning of any CNN that has been 
designed to process 3D histogram tensors in any suitable 
application (e.g., depth estimation, FLIM, NLOS, etc.). 
Additionally, in some embodiments, at least a portion of the 
coding tensors can be jointly optimized with the downstream 
CNN in an end-to-end manner. In some examples, when the 
CNN is a three-dimensional CNN what was trained to 
process a three-dimensional histogram tensor, the decoding 
step in FIG. 5B can be performed. In other examples, the 
compressed histogram can be directly processed (e.g., the 
output of FIG. SA). For example, a CNN or a neural network 
can be used to process the encoded compressive histogram 
directly. In further examples, even if only a portion of the 
coding tensors is optimized, the decoding/decompression 
step can be performed. This step could be computed more 
efficiently for certain coding tensors. 

[0083] FIG. 6 shows an example 600 of a system for single 
photon depth imaging with improved efficiency using 
learned compressive representations in accordance with 
some embodiments of the disclosed subject matter. As 
shown, system 600 can include a light source 602; an image 
sensor 604 ( e.g., an area sensor that includes an array of 
detectors, a single detector, or a line sensor that includes a 
linear array of detectors); optics 606 (which can include, for 
example, one or more lenses, one or more attenuation 
elements such as a filter, a diaphragm, and/or any other 
suitable optical elements such as a beam splitter, etc.), a 
processor 608 for controlling operations of system 600 
which can include any suitable hardware processor (which 
can be a central processing unit (CPU), a graphics process­
ing unit (GPU), an accelerate processing unit (APU), a 
digital signal processor (DSP), a microcontroller (MCU), a 
field programmable gate array (FPGA), an application­
specific integrated circuit (ASIC), etc.) or combination of 
hardware processors; an input device/display 610 (such as a 
shutter button, a menu button, a microphone, a touchscreen, 
a motion sensor, a liquid crystal display, a light emitting 
diode display, etc., or any suitable combination thereof) for 
accepting input from a user and/or from the environment, 
and/or for presenting information (e.g., images, user inter­
faces, etc.) for consumption by a user; memory 612; a signal 
generator 614 for generating one or more signals to control 
operation of light source 602 and/or image sensor 604; a 
communication system or systems 616 for facilitating com-
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munication between system 600 and other devices, such as 
a smartphone, a wearable computer, a tablet computer, a 
laptop computer, a personal computer, a server, an embed­
ded computer (e.g., for controlling an autonomous vehicle, 
robot, etc.), etc., via a communication link, and on-chip 
processing circuitry 622. In some embodiments, memory 
612 can store histogram information, scene depth informa­
tion, image data, and/or any other suitable data. Memory 612 
can include a storage device ( e.g., a hard disk, a Blu-ray disc, 
a Digital Video Disk, RAM, ROM, EEPROM, etc.) for 
storing a computer program for controlling processor 608. In 
some embodiments, memory 612 can include instructions 
for causing processor 608 to execute processes associated 
with the mechanisms described herein, such as a process 
described below in connection with FIG. 7. 

[0084] In some embodiments, light source 602 can be any 
suitable light source that can be configured to emit modu­
lated light (e.g., as a stream of pulses) toward a scene 618 
illuminated by an ambient light source 620 in accordance 
with a signal received from signal generator 616. For 
example, light source 602 can include one or more laser 
diodes, one or more lasers, one or more light emitting 
diodes, and/or any other suitable light source. In some 
embodiments, light source 602 can emit light at any suitable 
wavelength. For example, light source 602 can emit ultra­
violet light, visible light, near-infrared light, infrared light, 
etc. In a more particular example, light source 602 can be a 
coherent light source that emits light in the green portion of 
the visible spectrum (e.g., centered at 532 nm). In another 
more particular example, light source 602 can be a coherent 
light source that emits light in the infrared portion of the 
spectrum (e.g., centered at a wavelength in the near-infrared 
such as 1060 nm or 1064 nm). 
[0085] In some embodiments, image sensor 604 can be an 
image sensor that is implemented at least in part using one 
or more SPAD detectors (sometimes referred to as a Geiger­
mode avalanche diode) and/or one or more other detectors 
that are configured to detect the arrival time of individual 
photons. In some embodiments, one or more elements of 
image sensor 604 can be configured to generate data indica­
tive of the arrival time of photons from the scene via optics 
606. For example, in some embodiments, image sensor 604 
can be a single SPAD detector. As another example, image 
sensor 604 can be an array of multiple SPAD detectors. As 
yet another example, image sensor 604 can be a hybrid array 
including one or more SPAD detectors and one or more 
conventional light detectors (e.g., CMOS-based pixels). As 
still another example, image sensor 604 can be multiple 
image sensors, such as a first image sensor that includes one 
or more SPAD detectors that is used to generate depth 
information and a second image sensor that includes one or 
more conventional pixels that is used to generate ambient 
brightness information and/or image data. In such an 
example, optical components can be included in optics 606 
( e.g., multiple lenses, a beam splitter, etc.) to direct a portion 
of incoming light toward the SPAD-based image sensor and 
another portion toward the conventional image sensor that is 
used for light metering. 
[0086] In some embodiments, image sensor 604 can 
include on-chip processing circuitry 622 that can be used to 
generate compressive histograms (e.g., using memory and 
logic implemented on the image sensor chip), which can be 
output to processor 608, which can facilitate a reduction in 
the volume of data transferred from image sensor 604. For 
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example, single-photon detectors of image sensor 604 can 
be associated with circuitry that implements at least a 
portion of process 700, described below. As a particular 
example, single-photon detectors of image sensor 604 can 
be associated with circuitry that is configured to determine 
which bin of a full resolution histogram ( e.g., which column 
and row of a block the detector is located in) is associated 
with a time at which a photon is detected. 

[0087] As another more particular example, a single­
photon detector or a group of single photon detectors of 
image sensor 604 can be associated with accumulators that 
are configured to update and store values for bins of the 
compressive histogram K associated with the single-photon 
detector(s) based on values of the code in a coding tensor 
associated with a time at which a photon is detected and the 
detector at which the photon was detected. In some embodi­
ments, the accumulators can be implemented using any 
suitable technique or combination of techniques. For 
example, for a fully binary coding tensor ( e.g., in which each 
element represents a 1 or a -1 ), the accumulators can be 
configured to increment or decrement by 1 from a current 
value (e.g., using a register configured to store a two's 
complement representation of an integer). As another 
example, for a coding tensor configured to use floating point 
values (e.g., Gray-based Fourier, Truncated Fourier, etc.), 
the accumulators can be configured to add a (positive or 
negative) multi bit value (e.g., a fixed-point number, a 
floating point number, an integer, etc.). As a more particular 
example, for a coding tensor configured to use fixed point 
values, the accumulators can be configured to add a (positive 
or negative) multi bit fixed point value (e.g., an 8-bit value, 
a 10 bit value, etc.). In some embodiments, a coding tensor 
can be configured to store values in a range of [-1, 1] using 
fixed point values that each represent a value in the range 
(e.g., using only positive binary values, using a two's 
complement representation, etc.). In such an example, the 
value from the coding tensor can be converted into a floating 
point or fixed-point representation prior to being added to 
the accumulator, or values stored in an accumulator can be 
converted to a floating point or fixed-point representation 
prior to being used to calculate a depth value. In a more 
particular example, values in a coding tensor can be repre­
sented using a representation of a particular bit depth ( e.g., 
using 8 bits, using 10 bits, using 12 bits, using two bytes, 
etc.), which can create a quantized representation of the 
value in the coding tensor ( e.g., in an 8 bit quantized 
representation 0000 0000 can represent -1, 1111 1111 can 
represent 1, 0000 0001 can represent-0.9921875, etc.; in an 
8 bit two's complement quantized representation 0000 0000 
can represent 0, 1000 0000 can represent 31 1, 0111 1111 can 
represent 1, 1000 0001 can represent -0.9921875, etc.). In 
such an example, the values in the coding tensor can be 
represented using the closest value available in the quantized 
representation. In some embodiments, the accumulators can 
be implemented using various different hardware implemen­
tations. 

[0088] As yet another more particular example, single­
photon detectors of image sensor 604 can be associated with 
components (e.g., memory, logic, etc.) configured to store a 
representation of the coding tensors C. In some embodi­
ments, a single representation of coding tensors C can be 
stored in on-chip memory, and can be accessed by circuitry 
associated with multiple single-photon detectors. For 
example, a single representation of coding tensors C can be 
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stored in global memory ( e.g., memory implemented on 
image sensor 604), and circuitry associated with each single­
photon detector can be configured to retrieve coding tensors 
C from the global memory (e.g., in connection with each 
frame). As another example, a representation of coding 
tensors C can be stored in multiple local memories (e.g., 
associated with one or more single-photon detectors), and 
circuitry associated with each single-photon detector can be 
configured to retrieve coding tensors C from the local 
memory ( e.g., in connection with each frame). Such local 
memory can be shared, for example, among a spatially local 
neighborhood of single-photon detectors of an array (e.g., 
among any suitable number of neighboring single-photon 
detectors, from several to hundreds, thousands, etc.). In such 
examples, image sensor 604 can be configured to use the 
representation(s) of the coding tensors C to update a com­
pressive histogram associated with a single-photon detector 
or block of single-photon detectors responsive to detection 
of a photon. 
[0089] In some embodiments, different coding tensors C 
can be used in connection with different time periods (e.g., 
coding matrices can be changed for difference frames) 
and/or for different areas of the image sensor. For example, 
during a first time period a first set of coding tensors C1 with 
a first compression ratio can be used, and during another 
time period another set of coding tensors C2 with a different 
compression ratio can be used. In such an example, the 
coding tensors C can be adjusted based on environmental 
conditions. For example, as the amount of ambient light 
increases, coding tensors C with a lower compression ratio 
can be used to reduce noise by decreasing compression. As 
described below in connection with FIGS. SA to 12, accu­
racy is generally better for high signal-to-background noise 
conditions, and as the number of photons detected increases. 
Thus, in a portion of a scene ( or at a time) having low 
ambient light, coding tensors C with a higher compression 
ratio can perform well, while in a portion of a scene ( or at 
a time) having higher ambient light coding tensors C with a 
lower compression ratio may improve performance (but may 
necessitate a reduction in frame rate to fit within an available 
data transmission budget). In some such embodiments, 
multiple coding matrices can be stored in global memory 
( e.g., a memory implemented on image sensor 604, memory 
612), and can be loaded to an appropriate memory for use in 
generating compressive histograms (e.g., to a local memory 
associated with a neighborhood of single-photon detectors 
when the coding tensor changes on a per neighborhood basis 
or changes between frames, and/or to a global memory used 
by all single-photon detectors when the coding tensor 
changes between frames). 
[0090] In some embodiments, the on-chip processing cir­
cuitry can be implemented using any suitable fabrication 
techniques. For example, 3D-stacking CMOS techniques 
can be used to implement circuit components configured to 
generate a compressive histogram for each single-photon 
detector. 
[0091] In some embodiments, system 600 can include 
additional optics. For example, although optics 606 is shown 
as a single lens and attenuation element, it can be imple­
mented as a compound lens or combination of lenses. Note 
that although the mechanisms described herein are generally 
described as using SPAD-based detectors, this is merely an 
example of a single photon detector that is configured to 
record the arrival time of a pixel with a time resolution on 
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the order of picoseconds, and other components can be used 
in place of SPAD detectors. For example, a photomultiplier 
tube in Geiger mode can be used to detect single photon 
arrivals. 
[0092] In some embodiments, optics 606 can include 
optics for focusing light received from scene 618, one or 
more narrow bandpass filters centered around the wave­
length oflight emitted by light source 602, any other suitable 
optics, and/or any suitable combination thereof. In some 
embodiments, a single filter can be used for the entire area 
of image sensor 604 and/or multiple filters can be used that 
are each associated with a smaller area of image sensor 604 
( e.g., with individual pixels or groups of pixels). Addition­
ally, in some embodiments, optics 606 can include one or 
more optical components configured to attenuate the input 
flux (e.g., a neutral density filter, a diaphragm, etc.). 
[0093] In some embodiments, system 600 can communi­
cate with a remote device over a network using communi­
cation system(s) 614 and a communication link. Addition­
ally, or alternatively, system 600 can be included as part of 
another device, such as a smartphone, a tablet computer, a 
laptop computer, an autonomous vehicle, a robot, etc. Parts 
of system 600 can be shared with a device within which 
system 600 is integrated. For example, if system 600 is 
integrated with an autonomous vehicle, processor 608 can 
be a processor of the autonomous vehicle and can be used to 
control operation of system 600. 
[0094] In some embodiments, system 600 can communi­
cate with any other suitable device, where the other device 
can be one of a general purpose device such as a computer 
or a special purpose device such as a client, a server, etc. Any 
of these general or special purpose devices can include any 
suitable components such as a hardware processor (which 
can be a microprocessor, digital signal processor, a control­
ler, etc.), memory, communication interfaces, display con­
trollers, input devices, etc. For example, the other device can 
be implemented as a digital camera, security camera, out­
door monitoring system, a smartphone, a wearable com­
puter, a tablet computer, a personal data assistant (PDA), a 
personal computer, a laptop computer, a multimedia termi­
nal, a game console, a peripheral for a game counsel or any 
of the above devices, a special purpose device, etc. 
[0095] Communications by communication system 614 
via a communication link can be carried out using any 
suitable computer network, or any suitable combination of 
networks, including the Internet, an intranet, a wide-area 
network (WAN), a local-area network (LAN), a wireless 
network, a digital subscriber line (DSL) network, a frame 
relay network, an asynchronous transfer mode (ATM) net­
work, a virtual private network (VPN). In further examples, 
data may also be transferred between one or more sensor 
chips to a processing chip/device using a universal serial bus 
(USB), a peripheral component interconnect express (PCie ), 
and/or low-voltage differential signaling (LVDS). The com­
munications link can include any communication links suit­
able for communicating data between system 100 and 
another device, such as a network link, a dial-up link, a 
wireless link, a hard-wired link, any other suitable commu­
nication link, or any suitable combination of such links. 
[0096] It should also be noted that data received through 
the communication link or any other communication link(s) 
can be received from any suitable source. In some embodi­
ments, processor 608 can send and receive data through the 
communication link or any other communication link(s) 
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using, for example, a transmitter, receiver, transmitter/re­
ceiver, transceiver, or any other suitable communication 
device. 
[0097] FIG. 7 shows an example 700 of a process for 
improving the efficiency of transferring data from a single­
photon image sensor in accordance with some embodiments 
of the disclosed subject matter. 
[0098] At 702, process 700 can include modifying a 
convolutional neural network (CNN) to add a first layer that 
includes multiple coding tensors ( e.g., coding tensors C) that 
can be used to encode timestamps corresponding to detected 
photons into compressed histograms. For example, a layer 
that includes K convolutional filters, as described above in 
connection with FIGS. 4 and SA. 
[0099] Additionally, at 702, in some embodiments, pro­
cess 700 can include modifying the CNN to add a decoding 
layer that can be used to decode the compressed histograms 
into an uncompressed histogram with the same dimension as 
an uncompressed 3D histogram tensor that would be gen­
erated from raw timestamp information. 
[0100] In some embodiments, 702 can be omitted. For 
example, in an implementation in which a downstream CNN 
is not used to analyze the data, the first layer and decoding 
layer can be implemented without modifying a pre-existing 
CNN architecture. 
[0101] At 704, process 700 can include training the modi­
fied CNN using training and test datasets. For example, in 
some embodiments, the CNN modified at 702 can be a 
pre-trained CNN ( e.g., trained to perform depth estimation 
from 3D histogram tensor data), and at 704 the first layer can 
be trained, without further training the rest of the CNN. As 
another example, in some embodiments, the CNN modified 
at 702 can be a pre-trained CNN (e.g., trained to perform 
depth estimation from 3D histogram tensor data), and at 704 
the first layer can be trained along with further training of 
other layers of the CNN. As yet another example, in some 
embodiments, the CNN modified at 702 can be an untrained 
or partially trained CNN, and at 704 the first layer can be 
trained along with training of other layers of the CNN. 
[0102] In some embodiments, weights for portions of the 
first layer can be trained ( e.g., a spatial portion of a separable 
coding tensor) and weights for another portion of the first 
layer ( e.g., a temporal portion of the separable coding 
tensor) can be predetermined. 
[0103] In some embodiments, 704 can be omitted. For 
example, in an implementation in which coding tensors are 
not learned, the first layer and decoding layer can be 
implemented without training. 
[0104] At 706, process 700 can detect an arrival of photon 
at a single-photon detector at time t using any suitable 
technique or combination of techniques. For example, pro­
cess 700 can detect the arrival of a photon based on 
activation of a SPAD, which can cause a timestamp ( e.g., by 
a time-to-digital converter) corresponding to the time t at 
which the photon was detected to be generated. The single­
photon detector at which the photon was detected can be 
associated with a position within an array of single-photon 
detectors, which can correspond to a particular position 
within a particular block H6 of a 3D histogram tensor H. 
[0105] At 708, process 700 can determine a time bin i of 
a histogram (e.g., a full-resolution histogram having a num­
ber of time bins corresponding to a full 3D histogram tensor 
H) for the photon detected at time t using any suitable 
technique or combination of techniques. For example, pro-
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cess 700 can determine a difference between a time when a 
light source emitted a pulse, and time t when the photon was 
detected, and can determine which bin of the histogram 
corresponds to the time difference. 
[0106] Additionally, at 708, process 700 can determine a 
position p' of the detector at which the photon was detected 
using any suitable technique or combination of techniques. 
For example, p' can be a position of the pixel where the 
photon was detected. This information can be obtained by 
using a logic in the SPAD. 
[0107] At 710, process 700 can generate a code word (e.g., 
of length K) representing time bin i for position p' using 
coding tensors C, and the relative position of p' within block 
H6 . For example, as described above in connection with 
FIGS. 4 and SA, the position p' at which a photon is detected 
can be encoded as a one-hot tensor that can be convolved 
with the K coding tensors. 
[0108] At 712, process 700 can update the values ofK bins 
of a compressive histogram for a block b that includes 
position p'. For example, process 700 can update values in 
a memory storing K bins of the compressive histogram for 
block b. As another example, process 700 can update values 
of K accumulators used to store the values of the compres­
sive histogram being constructed for block b. For example, 
each value in the code word can be added to a corresponding 
bin of the K bins or accumulator of the K accumulators. In 
some embodiments, accumulator updates can be performed 
using various techniques, and the techniques used can 
depend on the implementation of the coding tensor ( e.g., 
using integers, fixed-point numbers, floating point numbers, 
etc.). 
[0109] At 714, process 700 can determine whether a frame 
has elapsed ( e.g., whether a time period corresponding to a 
single depth measurement has elapsed). For example, after 
a time associated with a frame ( e.g., 33 milliseconds at 30 
fps, 10 milliseconds at 100 fps) has elapsed from a previous 
readout (e.g., based on a reset signal), process 700 can 
determine that a frame has elapsed. 
[0110] If process 700 determines that a frame has not 
elapsed ("NO" at 714), process 700 can return to 706 and 
can detect a next photon. Note that a photon may not be 
detected for each light source emission, and process 700 can 
move from 706 to 714 without a photon detection if a 
detection period T has elapsed without a photon detection. In 
some embodiments, process 700 can move from 706 to 714 
for each detector during each detection period -i:. 
[0111] Otherwise, if process 700 determines that a frame 
has elapsed ("YES" at 714), process 700 can move to 716. 
At 716, process 700 can output values from the K bins of the 
compressive histogram associated with each block. For 
example, after a frame has elapsed, process 700 can output 
the values of the K bins to processor 608. 
[0112] At 718, process 700 can decode and/or decompress 
the compressed histogram values for each block ( e.g., using 
techniques described above in connection with FIG. 5B). In 
some embodiments, decompressing can include concatenat­
ing blocks decoded from the compressed histogram associ­
ated with each block. In some embodiments, at 718 process 
700 can generate a 3D tensor histogram H that can represent 
the information aggregated across photons detected at 706. 
In some examples, step 718 can be made optional if the CNN 
or neural network is trained to work with the compressive 
histogram directly. In some examples, the decompression 
step can be used if the CNN is a 3D CNN. The 3D CNN s can 
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be used to process 3D histogram tensor. In other examples, 
other CNNs (e.g., 2D CNN) or neural networks can be used 
directly on the compressive histogram (i.e., the output of 
716). 

[0113] At 720, process 700 can provide the decompressed 
histogram values as input to a layer of the modified CNN. 
For example, process 700 can provide a 3D tensor histogram 
H decoded from the compressed histograms for each block 
to a subsequent layer of the CNN. 

[0114] At 722, process 700 can receive an output from the 
CNN indicative of one or more properties of the scene based 
on the information included in the decompressed histogram. 
For example, process 700 can receive depth values as output 
from the CNN. As another example, process 700 can receive 
lifetime values ( e.g., in FLIM imaging) as output from the 
CNN. 

[0115] In some embodiments, 720 and/or 722 can be 
omitted. For example, in an implementation in which a CNN 
is not used to generate depth or other values (e.g., where 
depth values or other values are calculated directly from the 
histogram values). 

[0116] At 724, process 700 can generate values based on 
the decompressed histogram and/or outputs from the CNN 
received at 722. For example, process 700 can use any 
suitable technique or combination of techniques to deter­
mine a depth value from the decompressed histogram (such 
as techniques described in connection with 814 of FIG. 8 in 
U.S. patent application Ser. No. 17 /834,884, which has been 
incorporated by reference herein). As another example, 
process 700 can use the outputs from CNN to calculate 
values. In some examples, process 700 can perform an 
imaging task based on the values. For example, process 700 
can estimate a depth value based on the values ( e.g., in 
SPAD LiDAR three-dimensional imaging, Fluorescence 
lifetime imaging, Non-line-of-sight (NLOS) imaging, com­
puter vision imaging, or any other suitable imaging task). 

[0117] In some embodiments, one or more portions of 
process 700 can be repeated for each frame and/or for each 
block of single-photon detectors (e.g., each block of SPAD 
outputs) of the image sensor. 

[0118] In some embodiments, depth values generated 
using process 700 can be used to generate a depth image 
(e.g., such as depth images shown in FIGS. 9-12). 

[0119] FIGS. SA to 13 show examples demonstrating 
results generated using techniques described herein on syn­
thetic and real binary frame sequences. 

[0120] Datasets used for model training and testing are 
described below, as well as implementation details for the 
compressive histogram layer and the 3D CNN used for the 
experiments. 

[0121] For training, a synthetic SPAD measurement data­
set including different scenes at a wide range of illumination 
settings were generated. A similar synthetic data generation 
pipeline was used as in previous learning-based SPAD­
based 3D imaging works (e.g., as described in Peng et al., 
"Photon-efficient 3d imaging with a non-local neural net­
work"; Lindell et al., "Single-photon 3d imaging with deep 
sensor fusion"; and Sun et al., "Spadnet: deep rgb-spad 
sensor fusion assisted by monocular depth estimation," 
Optics Express, 28 (10): 14948-14962 (2020)). Using EQ. 
(2), SPAD measurements can be simulated given an RGB-D 
image, the pulse waveform (h(t)), and the average number of 
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detected signal and background photons per pixel. Addi­
tional details of the simulation pipeline used are described 
below. 
[0122] Simulated Training Dataset: RGB-D images from 
the NYU v2 dataset were used to generate a simulated 
training dataset. The simulated histograms have N,=1024 
bins and a ll=80 picosecond (ps) bin size ( corresponding to 
a 12.3 meter (m) depth range). The pulse waveform used has 
a full-width half maximum (FWHM) of 400 ps. For each 
scene, the average number of signal and background pho­
tons detected per pixel were randomly set to [2, 5, or 1 OJ and 
[2, 10, 50], respectively. With appropriate normalization, the 
models generalize to other photon levels despite being 
trained on this photon-starved dataset. A total of 16,628 
histogram tensors with dimensions 1024x64x64 were simu­
lated and split into a training and a validation set with 13,851 
and 2,777 examples, respectively. 
[0123] Simulated Test Dataset: For testing 8 RGB-D 
images from the Middlebury stereo dataset were used. The 
simulated histograms have N,=1024 bins and a 4=100 ps bin 
size (corresponding to a 15.3 m depth range). The pulse 
waveform used is a Gaussian pulse with an FWHM of 318 
ps (with a a=135 ps). In some examples, a is the variance 
of the Gaussian pulse. The width of the Gaussian pulse can 
be described using the FWHM or the variance of the 
Gaussian. A total of 128 test histogram tensors were gener­
ated by simulating each scene with the following average 
number of detected signal/background photons: 2/2, 2/5, 
2/50, 5/2, 5/10, 5/50, 10/2, 10/10, 10/50, 10/200, 10/500, 
10/1000, 50/50, 50/200, 50/500, and 50/1000. 
[0124] Real-world Experimental Data: An evaluation of 
the generalization of our models to real-world experimental 
data captured in Lindell et al., "Single-photon 3d imaging 
with deep sensor fusion" is described. 
[0125] To simplify training, the input to all models was a 
3D histogram tensor, though techniques for generating com­
pressive histograms can be used directly on streams of 
photon timestamps (EQ. (4)). 
[0126] Compressive Histogram Layer: The encoder was 
implemented as a 3D convolution with a stride equal to the 
filter size, with learned filters that are the coding tensors, Ck. 
A constraint was applied to Ck to be zero-mean along the 
time dimension. The unfiltered backprojection decoder was 
implemented as a 3D transposed convolution with a stride 
equal to its filter size. To help the CNN model generalize to 
different photon count levels zero-normalization was 
applied along the channel dimension (along K) to the inputs 
(Y6 ) and the weights (C) of the transposed convolution, 
sometimes referred to as layer-norm. This normalization is 
also commonly used in depth decoding algorithms. 
[0127] Depth Estimation 3D CNN: To estimate depths 
from the decoded histogram tensor, the 3D deep boosting 
CNN model described in Peng et al., "Photon-efficient 3d 
imaging with a non-local neural network," was used for 
single-photon 3D imaging, without the non-local block. 
Similar to Peng et al., "Photon-efficient 3d imaging with a 
non-local neural network," and Lindell et al., "Single­
photon 3d imaging with deep sensor fusion," the pixel-wise 
KL-divergence between the output histogram tensor and a 
normalized true histogram tensor was used as the objective, 
and depths were estimated using a softargmax. In some 
examples, the models including the encoding and decoding 
layers can be trained without using pre-trained models. In 
other examples, a pre-trained 3D CNN can be used by 
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fine-tuning the model while the encoding layer is trained. In 
some embodiments, the decoding layer may not trained. The 
decoding layer can depend on the weights of the encoding 
layer. In other examples, only a subset of the weights of the 
encoding layer (i.e., parts of the coding tensors) can be 
trained. For example, some weights can be selected and 
initialized to initialized code (e.g., Fourier codes). Then, the 
other weights can be learned. 
[0128] Training: At each training iteration patches of size 
1024x32x32 were randomly sampled. All models were 
trained using the ADAM optimizer with ~1=0.9, ~2=0.999, 
batch size of 4, and a learning rate of 0.001 that decays by 
0.9 after every epoch. All models were trained for 30 epochs 
with periodical checkpoints, and for a given model the 
checkpoint was chosen that achieves the lowest root mean 
squared error (RMSE) on the validation set. 
[0129] The performance at various compression levels for 
different coding tensor designs jointly optimized with the 
depth estimation CNN described above are described below. 
A coding tensor design was determined by the dimensions of 
Ck (M,xMrxMc), the size of the compressive histograms (K), 
and if Ck is separable. 
[0130] Comparisons are against the following baselines: 
[0131] Temporal Truncated Fourier: A compressive histo­
gram that uses coding tensors with dimensions 1024xlxl 
and whose weights are set using the first K/2 frequencies of 
the Fourier matrix (e.g., as described in Gutierrez-Barragan 
et al., "Compressive single-photon 3d cameras," in Proceed­
ings of the IEEE/CVF conference on Computer Vision and 
Pattern Recognition, pp. 17854-17864 (2022), and Sheehan 
et al., "A sketching framework for reduced data transfer in 
photon counting lidar," IEEE Transactions on Computa­
tional Imaging, 7:989-1004 (2021). 
[0132] Temporal Coarse Histogram: Here C is a box 
downsampling operator along the temporal dimensions 
which produces a coarse histogram with K bins. 
[0133] No Compression Oracle: In this baseline, the ideal 
scenario is assumed where the histogram tensor is trans­
ferred off-sensor and processed with the depth estimation 3D 
CNN. Similar to Peng et al., "Photon-efficient 3d imaging 
with a non-local neural network," this model was trained 
with an initial learning rate of le-4 and total variation 
regularization. 
[0134] Peak Compression Oracle: This baseline imple­
ments an ideal SPAD camera with sufficient in-sensor 
memory to store a histogram tensor and sufficient compu­
tation power to compute per-pixel depths through an argmax 
along the temporal axis. To process the noisy 2D depth 
images with the 3D CNN, a 3D grid was generated where all 
elements are O except for one element per spatial location 
whose index is proportional to the depth value. This model 
was trained like the no compression oracle. 
[0135] Similar to mechanisms described herein, all com­
pressive histogram baselines described here were imple­
mented as a compressive histogram layer, with fixed 
weights, whose outputs were processed by the depth esti­
mation 3D CNN. 
[0136] Evaluation Metrics: The 3D imaging performance 
of each model was summarized using two metrics: (1) the 
mean absolute depth error (MAE), and (2) and the percent 
of pixels with absolute depth errors that are lower than 10 
mm. To understand the performance under these metrics the 
test set was divided into different SBR ranges and the 
metrics for each range were reported individually. The 
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overall dataset performance was also visualized as scatter 
plots (e.g., as shown in FIG. 9) where each point shows the 
MAE for a given test scene and the color hue represents the 
mean SBR of the scene. Outliers with an MAE larger than 
50 mm were not visible in the plot, however, they are 
included in the calculation of the statistics. When comparing 
different compressive histogram strategies the compression 
ratio is fixed. The compression ratio (CR) is the ratio of the 
block size and the length of the compressive histogram 
(CR=(M,-Mr-Mc-)/K). 
[0137] FIGS. SA and 8B show examples of compression 
ratio with mean absolute depth errors and a percent of pixels 
with errors, respectively, computed over a test set for various 
techniques for estimating depth in a single photon depth 
imaging system. 
[0138] FIG. SA shows two plots of the mean absolute error 
computed over the test set as we increase compression. 
Similarly, FIG. 8B shows two plots of the mean percent of 
pixels whose absolute depth errors were <l O mm. The 
simulated test set images were divided into low (SBRs0.1) 
and high (SBR>0.1) SBR groups to facilitate disentangling 
the impact of SBR on the performance of each model. The 
dashed lines show the peak and no compression baselines 
whose compression levels do not vary. In FIG. SA the top 
line is the 64-bin Coarse histogram, the middle line is the 
peak compression oracle, and the bottom line is the no 
compression oracle, whereas in FIG. 8B the top line is the 
no compression oracle, the middle line is the peak compres­
sion oracle, and the bottom line is the 64-bin Coarse 
histogram. Each solid line corresponds to a fixed coding 
tensor design for which K is varied to control the compres­
sion level. Additionally, each point for a given compression 
level corresponds to a single set of coding tensors jointly 
optimized with the depth estimation 3D CNN. 
[0139] As shown in FIGS. SA and 8B, the learned coding 
tensors consistently outperformed the temporal Fourier­
based scheme. At low SBR and CR> 100, it becomes more 
important for the learned coding tensors to utilize spatio­
temporal information (see lines (3) and (4) in FIGS. SA and 
8B). Additionally, the proposed models can outperform the 
peak compression oracle for CRs64. Overall, learned spatio­
temporal coding tensors provide robust performance that 
degrades gracefully as compression increases. 
[0140] FIG. 9 shows examples of depth reconstructions 
generated using compressed histograms generating using 
various techniques including manually designed coding ten­
sors, randomly initialized coding tensors, and learned coding 
tensors in accordance with some embodiments of the dis­
closed subject matter. 
[0141] FIG. 9 shows depth reconstructions at 64x (top) 
and 128x (bottom) compression for compressive histogram 
models with coding tensors that were hand-designed ( coarse 
histogram and Fourier-based), learned (using mechanisms 
described herein), and not learned (randomly initialized). 
The simulated scene had an SBR=0.1, where the mean 
signal and background photon levels were [50, 500]. 
[0142] Comparisons of depth reconstructions of compres­
sive histograms with coding tensors that were optimized 
(using mechanisms described herein) against coding tensors 
that were fixed and not optimized throughout training are 
shown in FIG. 9. The extreme quantization in coarse histo­
grams causes large systematic depth errors. Random unop­
timized coding tensors consistently produce lower-quality 
depth reconstructions. A well-designed coding tensor based 
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on Fourier codes can produce reasonable depth reconstruc­
tions at 64x compression, however, at 128x compression, 
scene details become blurred. The learned coding tensors 
were able to generate high-quality reconstructions compa­
rable to the no-compression oracle. Overall, optimizing the 
coding tensors can provide non-trivial performance gains. 
[0143] FIG. 10 shows examples of depth reconstructions 
generated from single-photon data compressed using vari­
ous techniques, including on-chip depth calculation, and 
learned coding tensors in accordance with some embodi­
ments of the disclosed subject matter. 
[0144] In FIG. 10, depth reconstructions at high and low 
SBR with mean signal and background photon levels of [10, 
1 OJ and [10, 1000], respectively are shown. The compressive 
histograms have a compression of 64. A comparison of the 
depth reconstruction quality of two learned coding tensors at 
64x compression with the peak compression oracle 
described above are shown. At high SBR, all techniques 
recover the fine and coarse scene details. At low SBR the 
peak compression oracle fails to reconstruct high-level scene 
structures such as the rings in the box, while the learned 
coding tensors better preserve these coarse and fine details. 
[0145] FIG. 11 shows examples of depth reconstructions 
generated from single-photon data compressed using differ­
ent spatial block sizes of learned coding tensors in accor­
dance with some embodiments of the disclosed subject 
matter at a fixed compression ratio and associated mean 
average error. 

[0146] Each scatter plot point in FIG. 11 corresponds to 
the MAE of a test scene. The images directly below each 
model correspond to the depth reconstructions for two test 
examples at high and low SBR levels whose mean signal and 
background photons per pixel are [10, 10] and [10, 1000], 
respectively. For a fixed compression level, the spatial block 
size of each model is increased from left to right and K is 
adjusted to maintain the same compression level. The coding 
tensors for all models in this plot were learned and are 
separable. In some examples, both parts of the coding sensor 
can be learned. In other examples, only the spatial part of the 
coding sensor can be learned. 

[0147] In FIG. 11, the effect of increasing the spatial 
dimension of C is shown at 64x compression. At high SBR, 
all techniques have similar MAE, but coding tensors with 
smaller spatial dimensions better preserve fine details (e.g., 
sticks). On the other hand, at low SBR, coding tensors with 
larger spatial dimensions preserve high-level details such as 
the pot handle. This difference is also observed in the scatter 
plot where the mean and median of the 256xlxl do not 
match which indicates multiple low SBR scenes with high 
MAE. 

[0148] FIG. 12 shows examples of depth reconstructions 
generated from single-photon data compressed using differ­
ent spatial block sizes of learned coding tensors in accor­
dance with some embodiments of the disclosed subject 
matter at a higher fixed compression ratio and associated 
mean average error. 

[0149] Each scatter plot point in FIG. 12 corresponds to 
the MAE of a test scene. The images directly below each 
model correspond to the depth reconstructions for two test 
scenes at high and low SBR levels whose mean signal and 
background photons per pixel are [10, 10] and [10, 1000], 
respectively. The size of C is reduced from left to right by 
making it separable or reducing the M,. 
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[0150] The effect of reducing the size of C at 128x 
compression is shown in FIG. 12. The coding tensors size 
was reduced by training models with separable coding 
tensors that operate on smaller histogram blocks. In some 
examples, both parts of the coding sensor can be learned. In 
other examples, only the spatial part of the coding sensor can 
be learned. The performance difference between full and 
separable coding tensors (1024x4x4) is negligible in FIG. 
12. As the number of parameters in C was further reduced, 
the overall performance degrades. Coding tensors with 
fewer parameters that operate on smaller histogram blocks 
tend to produce blurrier reconstructions in FIG. 12. This can 
be observed in the inset box where the coding tensors with 
less than 10,000 parameters blur the spikes. However, as 
discussed above in connection with 0.4, a parameter-effi­
cient C is desirable due to limits on in-sensor memory 
availability. Ultimately, a practical compressive SPAD­
based 3D camera design can require trade-offs between 
parameter efficiency and 3D imaging quality, which may be 
application dependent. 
[0151] Dataset Bias in Learned Coding Tensors with 
M,=N,: The training dataset depth bias that is embedded in 
some coding tensor designs is analyzed, and its effect on 
generalization to scenes with depths that appear less often in 
the dataset. 
[0152] Depth Range Bias in Learned Coding Tensors: 
FIG. 13 visualizes the temporal dimension for different 
coding tensor designs as a matrix. In FIG. 13, visualization 
of the temporal dimension for different coding tensors 
achieve 128x compression. The matrix visualized for coding 
tensors of dimension 1024xlxl (columns 1 and 2) is an 
8x1024 matrix, since K=S and M,=1024. On the other hand, 
the matrix for the learned separable 256x4x4k is 32x256 
since K=32 and M,=256. Similarly, the matrix for the 
learned separable 1024x4x4k is a 128x1024 matrix. The bias 
on the learned coding tensors with M,=1024 is displayed on 
the weights whose magnitude is close to 0 on the right-most 
side of the matrices. The learned coding tensors that operate 
on the full temporal dimension (i.e., M,=N,=1024) show 
structure in approximately the first half of the matrix, and in 
the second half their magnitude is close to 0. In some 
examples, coding tensors may have depth ambiguities in the 
second half of the depth range and may not be robust to noise 
when estimating depths in that range. These learned coding 
tensors are consistent with the depth range observed in the 
NYUv2 training dataset whose depths are concentrated 
between 0.5-7m (i.e., close to half of the depth range in our 
simulation). The results in the Detailed Description only 
included test scenes with depths <7m, therefore, this bias 
had little impact on the performance. To further analyze the 
impact of this bias on generalization, in the remainder of this 
section the models are evaluated on a modified Middlebury 
test set that contains a global depth offset of7m, making its 
depth range 7-10 (meters). 
[0153] Quantitative Performance Analysis on Depths 
Between 7-l0m: FIG. 14 shows how the performance of 
different compressive histogram models varies as a function 
of the compression ratio. FIG. 14 shows performance on the 
Middlebury test set with a 7 meter depth offset applied to all 
depth images before simulation. The two left-most plots 
show the mean absolute error computed over the test set as 
compression increased. Similarly, the two right-most plots 
show the mean percent of pixels whose absolute depth errors 
were <l 0 mm. The simulated test set images were divided 
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into low (SBRs0.1) and high (SBR >0.1) SBR groups to be 
able to disentangle the impact of SBR on the performance of 
each model. The dashed lines show the peak and no com -
pression baselines whose compression levels do not vary. 
Each line corresponds to a fixed coding tensor design for 
which K is varied to control the compression level. More­
over, each point for a given compression level corresponds 
to a single set of coding tensors jointly optimized with the 
depth estimation 3D CNN. The learned coding tensors with 
M,=N,=1024 (orange and green lines) show significantly 
elevated MAE compared to a learned with M,=256. This 
poor performance is due to the depth reconstruction artifacts 
observed in FIG. 15. The learned coding tensors with 
M,=N,=1024 (i.e, orange and green lines) consistently dis­
play poor performance across all compression levels. More­
over, the variance in their MAE is very high which is likely 
due to generalization artifacts. Fourier-based coding tensors 
(blue line) continue to achieve reasonable performance at 
CR <64 and poor performance for higher compression levels, 
which is consistent with the results in the main paper. 
Finally, the learned coding tensor with M,<N, (red line) 
displays good performance across all compression and SBR 
levels, comparable to the results in the Detailed Description, 
despite the aforementioned. 
[0154] Qualitative Performance Analysis on Depths 
Between 7-1 Om: FIG. 15 shows the depth reconstruction for 
multiple baselines and compressive histograms at 32x and 
128x compression. Depths are recovered for two scenes 
whose depths range between 7m and 9.5m. The compressive 
histogram models achieve 32x (a) and 128x (b) compres­
sion. The SBR levels of 1 and 0.05 correspond to a scene 
simulated with an average number of detected photons per 
pixel of [10,10] and [10,200]. Learned coding tensors with 
M,=N,=1024 produce reconstructions with multiple artifacts 
which indicates that they have poor generalization for this 
range of depths, which is consistent with the observed depth 
range bias observed in FIG. 13. The recovered depth images 
with learned coding tensors with M,=N,=1024 display mul­
tiple artifacts at both high (1) and low (0.05) SBR for both 
scenes. These artifacts explain why elevated MAE is 
observed in FIG. 14, but at the same time, the percent pixels 
with errors <10 mm is not incredibly low for some com­
pression levels. On the other hand, the learned separable 
256x4x4 not only obtains artifact-free reconstructions but 
also continues to show the same trends observed in the 
results in the Detailed Description. For instance, at 128x 
compression and SBR=0.05, it is able to preserve important 
scene information that is lost when using a Truncated 
Fourier. 
[0155] In general, dataset bias can be analyzed in any 
learning-based model. It was found that this bias can lead to 
learned coding tensors that only work well for a subset of 
depths. One way to resolve this problem is by augmenting 
the dataset to include examples with depths for the full depth 
range. However, an even simpler approach is to consider a 
coding tensor design that considers a smaller block size, 
making the tensor convolutional. In the disclosure, it was 
shown that the learned coding tensors that are robust to this 
dataset bias, continue to provide the same performance 
benefits that were observed. 
[0156] Supplemental Analysis of the Coding Tensor 
Design Space: In this section, additional results related to the 
ablation study on the coding tensor design space are pre­
sented. These results include the effect of the spatial block 



US 2025/0035750 Al 

dimensions, the effect of the size of C, and the performance 
difference between coding tensors whose temporal dimen­
sion is learned vs coding tensors whose temporal dimension 
is initialized and fixed to truncated Fourier codes. 

[0157] FIGS. 16 and 17 show the quantitative and quali­
tative performance of learned separable coding tensors as 
their spatial block dimension is varied from lxl up to 8x8. 
In FIG. 16, each point in the scatter plots shows the MAE for 
a given test scene and their color hue represent the mean 
SBR level used in that simulation. The horizontal black line, 
white circle, gray box, and error bars correspond to the 
median, mean, quartiles, and 1.5x the inter-quantile range, 
respectively. Outliers with an MAE larger than 50 mm are 
not visible in the plot, however, they are included in the 
calculation of the statistics. The images directly below each 
model correspond to the depth reconstructions for two test 
examples at low and high SBR levels whose mean signal and 
background photon detections per pixel are [10, 1 OJ and [10, 
lO00J, respectively. For a fixed compression level, the 
spatial block size of each model is increased from left to 
right and K is adjusted to maintain the same compression 
level. The coding tensors for all models in this plot are 
learned and separable for spatial blocks larger than lxl. In 
FIG. 17, each point in the scatter plots shows the MAE for 
a given test scene and their color hue represent the mean 
SBR level used in that simulation. The horizontal black line, 
white circle, gray box, and error bars correspond to the 
median, mean, quartiles, and 1.5x the inter-quantile range, 
respectively. Outliers with an MAE larger than 50 mm are 
not visible in the plot, however, they are included in the 
calculation of the statistics. The images directly below each 
model correspond to the depth reconstructions for two test 
examples at low and high SBR levels whose mean signal and 
background photon detections per pixel are [10, 1 OJ and [10, 
lO00J, respectively. For a fixed compression level, the 
spatial block size of each model is increased from left to 
right and K is adjusted to maintain the same compression 
level. The coding tensors for all models in this plot are 
learned and separable for spatial blocks larger than lxl. At 
low compression (32x) and high SBR levels, all models are 
able to produce high-quality reconstructions that recover 
both coarse and fine details of the scene. At low compression 
(32x) and extremely low SBR, models with a spatial block 
larger than lxl are able to better preserve some of the 
coarser scene details such as the sticks. However, quantita­
tively, the overall performance difference is small. At high 
compression and high SBR, models with a 2x2 and 4x4 
spatial block are able to recover fine details that are blurred 
in the 8x8, which are particularly noticeable in FIG. A7. 
Finally, in the most challenging scenario with high com­
pression and low SBR, it becomes more important to use a 
coding tensor that aggregates information from neighboring 
spatial locations. In this scenario, although all techniques 
blur some fine scene details, the coding tensors with large 
spatial dimensions better preserve coarser details such as the 
pot handle and the sticks. 

[0158] Why does 256xlxl fail at 128x compression? As 
observed in FIG. 6, the coding tensor with dimensions 
256xlxl fails when only K=2 coding tensors are learned. 
Although, it is possible to reconstruct depths from a com­
pressive histogram with as few as 2 coded projections, 
finding two coding tensors that can lead to an unambiguous 
depth range without further regularization can be challeng­
ing. 
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[0159] Overall, coding tensors that exploit spatial corre­
lations are more robust to low SBR settings. However, at 
high SBR, operating in a large spatial neighborhood can 
make it harder to resolve fine scene details. Moreover, 
increasing the spatial block dimension further increases the 
number of parameters of the coding tensor which, as dis­
cussed in the Detailed Description, is less practical. In this 
analysis, it was found that coding tensors with spatial block 
of 2x2 and 4x4 achieve good balance of robustness to noise 
at low SBR, while being able to reconstruct fine scene 
details at high SBR. 
[0160] FIGS. 18, 19, and 20 show the quantitative and 
qualitative performance of different learned coding tensors 
as the number of parameters is reduced from left to right. In 
FIG. 18, each point in the scatter plots shows the MAE for 
a given test scene and their color hue represent the mean 
SBR used in that simulation. The horizontal black line, white 
circle, gray box, and error bars correspond to the median, 
mean, quartiles, and 1.5x the inter-quantile range, respec­
tively. Outliers with an MAE larger than 50 mm are not 
visible in the plot, however, they are included in the calcu­
lation of the statistics. The images directly below each 
model correspond to the depth reconstructions for two test 
examples at low and high SBR levels whose mean signal and 
background photons per pixel are [10, l0J and [10, 1000], 
respectively. For a fixed compression level, the size of the 
coding tensors is reduced from left to right by making the 
coding tensors separable and also reducing the temporal 
dimension. All coding tensors are learned. In FIGS. 19 and 
20, each scatter plot point corresponds to the MAE for each 
test scene. The depth images directly below each model 
correspond to the reconstruction of one test scene whose 
mean signal and background photons per pixel are [ 50, 500J. 
The size of the coding tensors is reduced from left to right 
by making the coding tensors separable and also reducing 
the temporal dimension. 
[0161] The number of parameters is reduced by either 
making the coding tensors separable or making their tem­
poral dimension smaller. At low compression levels (32x 
compression), coding tensors with as few as 2,560 param­
eters perform comparably to larger coding tensors with 1 00x 
more parameters. At higher compression levels (128x com­
pression), the size of the coding tensors starts having a more 
pronounced effect on depth image quality. At higher SBR 
levels (i.e., SBR >0.1), the larger coding tensors are able to 
better recover fine scene structures such as the spikes in FIG. 
3.2 or the toy reindeer antlers in 3.2. Nonetheless, coding 
tensors with as few as 8,704 parameters can continue to 
perform comparably to coding tensors with millions of 
parameters. 
[0162] Learned vs. Fourier-based Temporal Compressive 
Representations: In this section, the performance of sepa­
rable coding tensors whose C/emporaZ is either learned or 
fixed to a truncated Fourier coding tensor during training are 
compared. 
[0163] Temporal Gray Fourier: In addition to comparing 
with the Truncated Fourier coding tensors, performance was 
also compared to another Fourier-based coding tensor 
design, which is referred to herein as Gray Fourier. A Gray 
Fourier compressive histogram can use coding tensors with 
dimensions 1024xlxl. The coding tensors are a Fourier 
matrix where every two rows the frequency of the sinusoidal 
signal doubles as illustrated in FIG. 21. In FIG. 21, visual­
ization of the temporal dimension for different coding ten-
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sors achieve 64x compression. The matrix visualized for 
coding tensors of dimension 1024xlxl (colunms 1 and 2) is 
an 16x1024 matrix, since K=16 and M,=1024. On the other 
hand, the matrix for the learned separable 256x4x4k is 
64x256 since K=64 and M,=256. Similarly, the matrix for 
the learned separable 1024x4x4k is a 256x1024 matrix. 
Similar to techniques described herien and the in Detailed 
Description, this can be implemented as a compressive 
histogram layer, with fixed weights, whose outputs are 
processed by the depth estimation 3D CNN. 
[0164] Fourier+Learned C: In this separable coding tensor 
design, the temporal coding tensors (C/emporal) were fixed to 
truncated Fourier coding tensors, and the spatial coding 
tensors (C/patial) were learned. The temporal coding tensors 
in this design can be represented with a small number of 
parameters that do not scale with K discussed above hence, 
the in-sensor memory overhead they introduce is smaller 
than a fully learned coding tensor. 
[0165] Results: FIGS. 22 and 23 show the overall test set 
performance and qualitative depth reconstructions for mul­
tiple compressive histogram models at 64x and 128x com­
pression, respectively. In FIG. 22, each scatter plot point 
corresponds to the MAE for each test scene. The depth 
images directly below each model correspond to the recon­
struction of one test scene whose mean signal and back­
ground photons per pixel are [50, 500] and [10, 1000]. All 
models use separable coding tensors. **The number of 
parameters for all coding tensors based on Fourier codes is 
calculated assuming the memory efficient representation 
described above. In FIG. 23, each scatter plot point corre­
sponds to the MAE for each test scene. The depth images 
directly below each model correspond to the reconstruction 
of one test scene whose mean signal and background pho­
tons per pixel are [50, 500] and [10, 1000]. All models use 
separable coding tensors. The number of parameters for all 
coding tensors based on Fourier codes is calculated assum­
ing the memory efficient representation described above. 
The models trained with 256xlxl coding tensors at this 
compression level are not able to converge and are not able 
to learn how to reconstruct the scene. This is likely due to the 
fact that only K=2 coding tensors are used, which as 
discussed above, can make the optimization challenging. 
[0166] As described in previous sections, coding tensors 
that exploit spatial information (e.g., 256x4x4 or 256x2x2) 
can be expected to provide higher quality reconstructions, 
especially, at lower SBR levels. At 64x compression (FIG. 
All), models with Fourier or learned C/emporaz perform 
comparably at all SBR levels. At 128x compression (FIG. 
A12), a fully learned coding tensor with dimensions 256x 
2x2 can provide some performance improvements for low 
SBR scenes over the Fourier+Learned 256x2x2 coding 
tensor. Nonetheless, at 128x compression, the 256x4x4 
coding tensors provide the best performance. 
[0167] Fourier-based temporal coding tensors have a 
memory-efficient implementation that does not scale with K. 
Using a flexible spatio-temporal compressive histogram 
framework described in the Detailed Description, coding 
tensors whose temporal dimension is fixed to Fourier codes 
and the spatial coding tensors are learned can be imple­
mented. This results in a practical compressive histogram 
model that can be implemented in existing SPAD pixels 
while providing robust performance across SBR and com­
pression levels. Fully learned coding tensors can still pro­
vide some improvements in the most challenging situations 
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(high compression and low SBR), however, they require 
additional in-sensor memory. Nonetheless, this additional 
in-sensor memory may be negligible in implementations 
where a large number of SPAD pixels share the same copy 
of the coding tensors. 

[0168] Evaluation on Real-world Data: To evaluate the 
generalization of the proposed models, raw histogram tensor 
data captured with a SPAD-based 3D camera prototype was 
downloaded. The dataset was captured with a line scanning 
system including a co-located picosecond laser and a ID 
LinoSPAD array with 256 SPAD pixels. The histogram 
tensors have N,=1536 time bins, a spatial resolution of 
256x256, and a bin size li.=26 ps. The raw histogram tensors 
were downsampled to be 1024x128x128 to make the time 
domain compatible with the learned coding tensors that use 
M,=1024 and also to avoid out-of-memory errors. 

[0169] FIG. 24 shows the depth reconstructions for the 
oracle baselines and multiple compressive histograms at 
128x compression. In FIG. 24, depth reconstructions of 
different scenes were captured with a SPAD-based 3D 
camera prototype. The first row shows a high-resolution 
intensity image of the captured scene and a point cloud 
visualization of the raw histogram tensor of that same scene. 

[0170] All models were able to produce plausible depth 
reconstructions, suggesting good generalization to real­
world data. However, all compressive histogram models 
display small artifacts throughout the image that could be 
due to high noise levels or generalization problems. These 
artifacts seem to be avoided by the oracle baselines (no 
compression and peak compression) by over-smoothing the 
images. This over-smoothing is due to the total variation 
regularizer that was used for the oracle baselines but not for 
the compressive histogram models, which was found to 
produce the better oracle models on the synthetic datasets. 
Therefore, these results suggest that a spatial regularizer can 
be used to improve compressive histogram model's gener­
alization on real-world data. Nonetheless, despite these 
minor artifacts, the depth reconstructions suggest good 
generalization by all models to these challenging scenarios. 

[0171] Comparison with Coarse Histogramming: 
Although, the depth images for the coarse histogramming 
coding tensor shown in FIG. 13 look reasonable qualita­
tively, they have large absolute depth errors when comparing 
them to the other approaches. A coarse histogram will often 
produce a quantized depth image, however, the depth esti­
mation 3D CNN learned to smooth and upsample the coarse 
histogram and produce more plausible depth images. None­
theless, coarse histograms consistently produce less accurate 
depth reconstructions than other compressive histogram 
approaches. 

[0172] Comparison with Fourier-based C: It was observed 
that the model that use a Gray-based Fourier C at 128x 
compression produce blurrier depth reconstructions than the 
learned C models, This was observed in the lamp scene 
where the wires merge into a single blob, or in the staircase 
scene where the stair edges are blurred. On the other hand, 
the models with a learned C produce sharper depth recon­
structions at the same compression level, despite being 
trained in the exact same manner. 

[0173] Simulating SPAD Measurements: In this section, a 
detailed description of how SPAD measurements were simu­
lated for the synthetic datasets used to generate results 
described herein and in the Detailed Description. 
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[0174] Given an RGB-D image, pulse waveform (h(t)), 
and the mean number of detected signal (<I>meansig) and 
background (<I>mea/kg) photons per pixel, the photon detec­
tion parameters for EQ. (2) was set as follows. First, the 
amplitude of the illumination signal arriving at each pixel 
was calculated (aP in EQ. (1)) by using the reflectance at that 
pixel and accounting for the intensity radial fall-off due to 
distance. The NYUv2 training set reflectance was estimated 
using intrinsic image decomposition on the blue channel of 
the RGB image, and the Middlebury testing set reflectance 
was estimated using the mean of the RGB channels. Intrinsic 
image decomposition can lead to more accurate reflectance 
estimates for non-lambertian surfaces. Consequently, given 
aP, h (t), the per-pixel depths, and the average number of 
signal photon per pixel, the average number of signal 
photons arriving at each time bin can be scaled such that 
LpL;<l>;_/ig=<l>meansig_ Similarly, the per-pixel background 
illumination (<I>bkg) can be emulated using the RGB channel 
mean and scaling it such that it matches the desired mean 
number of background photons per pixel. Finally, dark 
counts can be added to the per-pixel background illumina­
tion component. This can be done on the training set using 
a calibration dark count image obtained from the hardware 
prototype in. It was observed that the models trained with 
this dark count component generalize well to histogram 
tensors without the dark counts, as shown in the test results. 
[0175] Training and Implementation Details: In this sec­
tion, further training and implementation details are 
described. All models used to generate results described 
herein and the in the Detailed Description were implemented 
in PyTorch. The input to all the models was a 3D histogram 
tensor. Recall that due to the linearity of compressive 
histograms, encoding the histogram tensors is equivalent to 
encoding each individual photon timestamp and summing 
them up. Hence, models deployed with a compressive 
histogram layer can also take as input a stream of photon 
timestamps and build the compressive histogram. 
[0176] Compressive Histogram Layer: The compressive 
histogram layer was implemented as a single-layer encoder 
and decoder. The encoder was a 3D convolution with a stride 
equal to the filter size. The coding tensors, Ck, were the 
learned filters. All coding tensors were constrained to be 
zero-mean along the time dimension. This constraint makes 
the expected encoded value for background photons distrib­
uted uniformly along the time dimension be 0. The outputs 
of the encoder were the compressive histograms Yb· The 
decoder was an unfiltered backprojection that was imple­
mented as a 3D transposed convolution with a stride equal 
to its filter size. To help the CNN model generalize to 
different photon count levels zero-normalization was 
applied along the channel dimension (K) to the inputs (Yb) 
and the weights (C) of the transposed convolution as fol­
lows: 

ZN(Y ) = Yb - [E(Y&) 

b llfb -[E(Y&JII/ 

ZN(C) = C-[E(C) 
IIC - JE(C)ll2' 

(7) 

where the mean and L2 norm are computed over the channel 
dimension. This normalization is also known as layer nor­
malization. 
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[0177] Depth Estimation 3D CNN Model: To estimate 
depths from the decoded histogram tensor, 3D deep boosting 
CNN model described in Peng et al., "Photon-efficient 3d 
imaging with a non-local neural network," in European 
Conference on Computer Vision, pp. 225-241 (2020) was 
used for single-photon 3D imaging. Different from Peng et 
al., the implementation used to generate results described 
herein does not include a non-local block after the feature 
extraction stage. The output of the model was a denoised 
histogram tensor, H0 u', from which depths were estimated 
using a softargmax function along the time dimension. The 
pixel-wise Kullback-Leibler (KL) divergence between the 
denoised histogram tensor and a normalized ground truth 
histogram tensor, Hg', was used as an objective function. 
This loss can be written for each pixel, p, as: 

(8) 

[0178] Training: At each training iteration, sample patches 
of size 1024x32x32 were randomly sampled from the train­
ing set. All models were trained using the ADAM optimizer 
with default parameters (~ 1=0.9, ~2=0.999), batch size of 4, 
and an initial learning rate of 0.001 that decays by 0.9 after 
every epoch. All models were trained for 30 epochs with 
checkpoints every half an epoch, and for a given model the 
checkpoint that achieved the lowest root mean squared error 
(RMSE) on the validation set was chosen. 
[0179] Analysis of the Memory Overhead of Coding Ten­
sors: Compressive histograms have the potential to greatly 
reduce off-sensor data transmissions and the amount of 
in-sensor memory required compared to a conventional 
histogram tensor representation. However, the general com­
pression framework described in the Detailed Description 
can include the in-sensor storage of the K coding tensors 
(C=(Ckh=o K-I) that are used for compression. This means 
that a large C may introduce a significant amount of in­
sensor memory overhead, making these designs for C less 
practical. In this section, a quantitative analysis of this 
memory overhead is described for different coding tensor 
designs. 
[0180] Recall that Hand C can be N,><N,.><Nc and KxM,>< 
MrxMc tensors, respectively. Let, N=N,-Nr-Nc be the total 
number of elements in the histogram tensor. Moreover, let 
M=M,-Mr-Mc be the size of a single coding tensor which is 
also the size of the histogram block, Hb that is being 
compressed. For the remainder of this analysis, the follow­
ing is assumed: 
[0181] 1. That all histogram blocks Hb that are compressed 
are non-overlapping. This means that the total number of 
compressive histograms that are transferred off-sensor is 
B=NIM. 
[0182] 2. That only a single C is stored inside the sensor. 
This C will be shared among all SPAD pixels. 
[0183] 3. That the elements of C and H are represented 
using the same number of bits. 
[0184] Table 1 provides the expected compression ratios 
for off-sensor data transmission and in-sensor storage. These 
two compression ratios will differ due to the memory 
overhead incurred by compressive histograms when having 
to store the coding tensors. It is clear that a compressive 
histogram for a histogram block whose size equals the size 
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of the histogram tensor (i.e., M=N), would actually require 
more in-sensor memory than the histogram tensor making 
this compressive histogram design impractical. 
[0185] Table 1: Data Transmission and In-sensor Storage 
Requirements. This table shows the off-sensor data trans­
mission and in-sensor storage requirements for a histogram 
tensor of size N and a set of B compressive histograms that 
use K coding tensors of size M for compression. The 
compression ratio column shows the amount of compression 
that can be achieved for off-sensor data transmission and 
in-sensor storage. 

Histogram Compressive Compression 
Tensor Histograms Ratios 

Off-sensor N B·K N/(B ·K) 
Data 
Transmission 
In-sensor N (K· B) + N/(K • (B + M)) 
Storage (K· M)-

K· (B+M) 

[0186] Compression Ratios for Full Coding Tensors: FIG. 
25 shows the expected compression ratios for different 
histogram tensor and coding tensor sizes. In FIG. 25, each 
heatmap shows the compression ratio for a fixed K for 
different histogram tensor sizes (B) and number of compres­
sive histograms (B) that are used. The compression ratios for 
in-sensor storage (left column) and data transfer (right 
colunm) are computed using the equations in Table 1. 
[0187] As the number of compressive histograms are 
reduced to represent the histogram tensor, the size of the 
coding tensors will increase and consequently lower in­
sensor compression is achieved. Since the coding tensors do 
not need to be transferred off-sensor, the data rate compres­
sion ratio continues to increase as the number of compres­
sive histograms are reduced because the overall size of the 
compressive representation does decrease when K is fixed. 
Overall, a good balance between reducing in-sensor memory 
and data transmission seems to be achieved when using 
10,000-100,000 compressive histograms to represent a his­
togram tensor with le9 element (e.g., a 1 megapixel SPAD 
array with 1000 bins per pixel). In this case, the size of a 
single coding tensor (M) should range between 10,000-100, 
000 for 64sKs512. Some of the coding tensors with K;;,;64 
that were evaluated in this paper approximately match this 
size range, e.g., M=16,384 for 1024x4x4 or for 256x8x8. 
[0188] Compression Ratios for Separable Coding Tensors: 
FIG. 26 shows the expected compression ratios for different 
histogram tensor and coding tensor sizes for a separable 
coding tensor that is 16x smaller than a full coding tensor. 
In FIG. 26, each heatmap shows the compression ratio for a 
fixed K for different histogram tensor sizes (B) and number 
of compressive histograms (B) that are used. It is assumed 
that a separable coding tensor is 16x smaller than a full 
coding tensor, which is consistent with the separable coding 
tensors used in the Detailed Description. The compression 
ratios for in-sensor storage and data transfer are computed 
using the equations in Table 1 replacing M with M/16. 
[0189] A separable coding tensor that is -16x smaller is 
consistent with the separable coding tensors used in the main 
paper. For instance, a 256x4x4 Ck is -16x smaller if its 
temporal and spatial dimensions are separable. In this sce­
nario, a good balance between in-sensor storage and data 
transmission compression can be achieved when using 
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1,000-100,000 compressive histograms to represent a his­
togram tensor with le9 elements. In this case, the size of a 
single separable coding tensor should range between 625-
62,500 for 64sKs512. Some of the separable coding tensors 
with K;;,;64 that were evaluated in this paper approximately 
match this size range: M=272 (256x4x4), M=1040 (1024x 
4x4). 
[0190] Parameter-efficient coding tensors can reduce the 
in-sensor memory overhead that compressive histograms 
introduce. In this section, it was shown that the local 
block-based separable coding tensor designs explored in this 
paper are able to reduce the memory overhead for histogram 
tensors of size N;;,;le7 Additional lightweight C designs can 
rely on other factorization techniques such as low-rank 
approximations. In some examples, weight quantization can 
be an effective technique in further compressing C. Finally, 
designs with parameters that can be computed on the fly, 
such as Fourier-based (Sec. A2) or Gray codes, are a 
practical design when multiple C need to be stored across the 
SPAD array. Ultimately, a practical coding tensor represen­
tation can be determined by the hardware constraints of a 
given SPAD camera. 

Further Examples Having a Variety of Features: 

[0191] Implementation examples are described in the fol­
lowing numbered claims. 
[0192] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For 
example, in some embodiments, computer readable media 
can be transitory or non-transitory. For example, non-tran­
sitory computer readable media can include media such as 
magnetic media (such as hard disks, floppy disks, etc.), 
optical media (such as compact discs, digital video discs, 
Blu-ray discs, etc.), semiconductor media (such as RAM, 
Flash memory, electrically programmable read only memory 
(EPROM), electrically erasable programmable read only 
memory (EEPROM), etc.), any suitable media that is not 
fleeting or devoid of any semblance of permanence during 
transmission, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 
[0193] It should be noted that, as used herein, the term 
mechanism can encompass hardware, software, firmware, or 
any suitable combination thereof. 
[0194] It should be understood that the above described 
steps of the process of FIG. 6 can be executed or performed 
in any order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the processes of FIG. 6 can be executed 
or performed substantially simultaneously where appropri­
ate or in parallel to reduce latency and processing times. 
[0195] Although the invention has been described and 
illustrated in the foregoing illustrative embodiments, it is 
understood that the present disclosure has been made only 
by way of example, and that numerous changes in the details 
of implementation of the invention can be made without 
departing from the spirit and scope of the invention, which 
is limited only by the claims that follow. Features of the 
disclosed embodiments can be combined and rearranged in 
various ways. 
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What is claimed is: 
1. A system for determining a depth in a scene, compris­

ing: 
a light source; 
an array comprising a plurality of detectors configured to 

detect arrival of individual photons; 
at least one processor that is programmed to: 

(a) detect, based on a signal from a detector of the 
plurality of detectors, a photon arrival, 
wherein the detector of the plurality of detectors has 

a position p'; 
(b) determine a time bin i associated with the photon 

arrival, wherein the time bin is in a range from 1 to 
N, where N, is a total number of time bins; 

( c) update a compressed histogram comprising K stored 
values representing bins of the compressed histo­
gram based on K values in a code word calculated 
based on the time bin i and the position p' and K 
coding tensors, 
wherein each coding tensor of the K coding tensors 

is different than each other coding tensor; and 
( d) perform an imaging task based on the K values of 

the compressed histogram. 
2. The system of claim 1, wherein each of the plurality of 

detectors comprises a single photon avalanche diode 
(SPAD). 

3. The system of claim 1, wherein each of the coding 
tensors has a size M,xMrxMc, and wherein the at least one 
processor is further programmed to: 

estimate depth values for MrxMc detectors using the K 
values of the compressed histogram. 

4. The system of claim 1, wherein (a) to ( c) are performed 
by circuitry that is implemented on a same chip as the 
plurality of detectors. 

5. The system of claim 4, wherein ( d) is performed by 
circuitry that is implemented on a different chip than the 
plurality of detectors. 

6. The system of claim 1, wherein the at least one 
processor is further programmed to: 

perform a dot product operation between a one-hot matrix 
and the K coding tensors, 
wherein the one-hot matrix has a 1 at a position 

corresponding to position i,p' within a block b of 
positions having a size M,xMrxMc, where i is the 
time bin i and p' is a position; 

transfer the K values of the compressed histogram from a 
chip on which the plurality of detectors are imple­
mented to a second chip; and 

perform an unfiltered backprojection of the K values of 
the compressed histogram using the K coding tensors, 
thereby generating an M,xMrxMc matrix of values, 

wherein to perform the imaging task, the at least one 
processor is programmed to: 
estimate a depth value for the detector based on the 

MrxMc matrix of values. 
7. The system of claim 1, wherein the K coding tensors 

change over time based on the scene. 
8. The system of claim 6, wherein to perform the convo­

lution between the one-hot matrix and the K coding tensors, 
the at least one processor is programmed to: perform a 
lookup based on each dot product of the convolution, 
wherein the one-hot matrix comprises a single element 
having a 1. 
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9. The system of claim 6, wherein the at least one 
processor is further programmed to: 

estimate the depth value for the detector based on the 
M,xMrxMc matrix of values using a convolutional 
neural network (CNN), 
wherein a first layer of the CNN comprises the convo­

lution between the one-hot matrix and the K coding 
tensors, and other layers of the CNN are trained to 
determine depth values from an N,xNrxNc matrix of 
values, 
wherein N,xNrxNc comprises a plurality of matrices 

each having a size of M,xMrxMc. 
10. The system of claim 9, wherein at least some of the 

weights of the K coding tensors were trained using a CNN 
training process. 

11. The system of claim 1, wherein the at least one 
processor is further programmed to: 

perform (a) to (d) for each of the plurality of detectors. 
12. The system of claim 1, wherein M, is less than or equal 

to N,. 
13. The system of claim 1, wherein each of the K coding 

tensors is expressible as an outer product of two tensors 
c/emporal, and C/patial, where c/emporal is a M,xlxl tensor, 
and C/patial is a 1 xMrxMc tensor. 

14. A method for determining a depth in a scene, com­
prising: 

(a) detecting, based on a signal from a detector of a 
plurality of detectors, a photon arrival, 
wherein the detector of the plurality of detectors has a 

position p'; 
(b) determining a time bin i associated with the photon 

arrival, wherein the time bin is in a range from 1 to N, 
where N, is a total number of time bins; 

( c) updating a compressed histogram comprising K stored 
values representing bins of the compressed histogram 
based on K values in a code word calculated based on 
the time bin i and the position p' and K coding tensors, 
wherein each coding tensor of the K coding tensors is 

different than each other coding tensor; and 
( d) performing an imaging task based on the K values of 

the compressed histogram. 
15. The method of claim 14, wherein each of the plurality 

of detectors comprises a single photon avalanche diode 
(SPAD). 

16. The method of claim 14, wherein each of the coding 
tensors has a size M,xMrxMc, the method further compris­
ing: 

estimating depth values for MrxMc detectors using the K 
values of the compressed histogram. 

17. The method of claim 14, further comprising: 
performing a convolution between a one-hot matrix and 

the K coding tensors, 
wherein the one-hot matrix has a 1 at a position 

corresponding to position i,p' within a block b of 
positions having a size M,xMrxMc, where i is the 
time bin i and p' is a position; 

transferring the K values of the compressed histogram 
from a chip on which the plurality of detectors are 
implemented to a second chip; 

performing, using a processor implemented on the second 
chip, an unfiltered backprojection of the K values of the 
compressed histogram using the K coding tensors, 
thereby generating an M,xMrxMc matrix of values; and 
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estimating the depth value for the detector based on the 
M,xMrxMc matrix of values. 

18. The method of claim 14, wherein each of the K coding 
tensors is expressible as an outer product of two tensors 
c/emporal, and C/patial, where c/emporal is a M,xl xl tensor, 
and C/patial is a 1 xMrxMc tensor. 

19. A system for generating compressed single-photon 
histograms, comprising: 

a light source; 
an array comprising a plurality of detectors configured to 

detect arrival of individual photons; 
at least one processor that is programmed to: 

(a) detect, based on a signal from a detector of the 
plurality of detectors, a photon arrival, 
wherein the detector of the plurality of detectors has 

a position p'; 
(b) determine a time bin i associated with the photon 

arrival, wherein the time bin is in a range from 1 to 
N, where N, is a total number of time bins; 

( c) update a compressed histogram comprising K stored 
values representing bins of the compressed histo­
gram based on K values in a code word calculated 
based on the time bin i and the position p' and K 
coding tensors, 
wherein each coding tensor of the K coding tensors 

is different than each other coding tensor; and 
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( d) output the compressed histogram to another pro­
cessor. 

20. The system of claim 18, wherein each of the coding 
tensors has a size M,xMrxMc, and wherein the at least one 
processor is further programmed to perform at least one of 
the following: 

estimate depth values for MrxMc detectors using the K 
values of the compressed histogram; 

perform a 3D object detection for an object of a scene 
represented in the signal from the plurality of detectors; 

perform a 3D image segmentation operation for an image 
of the scene represented in the signal from the plurality 
of detectors; or 

perform a 3D object tracking for the object of the scene 
represented in the signal from the plurality of detectors. 

21. The system of claim 18, wherein the at least one 
processor is further programmed to: 

perform a convolution between a one-hot matrix and the 
K coding tensors, 
wherein the one-hot matrix has a 1 at a position 

corresponding to position i,p' within a block b of 
positions having a size M,xMrxMc, where i is the 
time bin i and p' is a position. 

* * * * * 




