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ABSTRACT 

The present disclosure provides systems and methods for 
accurate segmentation of pediatric tumors using MRI 
images to improve disease diagnosis, prognosis, patient 
treatment and surgical planning. Specifically, systems and 
method herein perform segmentation of pediatric tumor 
sub-compartments using a fully automated transfer learning 
approach that learns tumor-specific patterns from adult brain 
tumors and transfers the knowledge to the pediatric brain 
tumor domain. 
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SYSTEM AND METHOD FOR AUTOMATIC 
SEGMENTATION OF TUMOR 

SUB-COMPARTMENTS IN PEDIATRIC 
CANCER USING MULTIPARAMETRIC MRI 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT OF GOVERNMENT SUPPORT 
NIA 

BACKGROUND 

[0002] The present disclosure describes systems and 
methods for automated MRI image segmentation of brain 
tumor in pediatric MRI images based on transfer learning 
deep neural network of adult brain tumor MRI images 
[0003] Medulloblastoma (MB) is the most common 
malignant brain tumor in children, accounting for 20% of 
pediatric brain tumors. Current treatment strategies for older 
children require multimodal therapy inclusive of surgical 
resection, chemotherapy, and craniospinal irradiation.2·3 

While these tailored therapies have resulted in improving the 
treatment and survival outcomes in MB, they primarily rely 
on histopathological specimens obtained from surgical pro­
cedures. 4 This requires accurate delineation of the tumor 
habitat ( comprising enhancing tumor, necrotic corelnon­
enhancing tumor, and peritumoral edema sub-compart­
ments). 
[0004] Currently, there is a lack of automated approaches 
that could achieve this task in pediatric brain tumors. 
Manual delineation of the tumor boundaries suffers being 
time consuming, hard to perform in real-time during surgery, 
and prone to inter-rater variability.516 Hence a need for 
automated segmentation models that would allow for accu­
rate segmentation of the MB tumor sub-compartments. This 
would subsequently aid in developing effective treatment 
planning strategies6 and would also decrease the labor on the 
radiologists to guide the annotation process. 
[0005] Magnetic resonance imaging (MRI) has played a 
key role in the non-invasive diagnosis and prognosis of 
pediatric MB. While providing tumor spatial information, 
MRI modalities allow for conducting image-feature analysis 
that can be used to build radiomics and machine-learning­
based models for risk-stratification and for predicting treat­
ment response. Accurate identification of the tumor sub­
compartments is crucial to build these models and achieve 
effective tailored therapy and improved patient outcomes. In 
this context, deep learning approaches have emerged as 
powerful tools in image modeling, by training networks to 
understand higher to minute image features for classification 
and semantic segmentation tasks. 8 

[0006] Recently, in the context of adult brain tumors, 
many works have utilized the publicly available data sets, 
such as the Brain Tumor Segmentation challenge (BraTS) 
9

•
10

, to employ convolutional neural networks (CNN)-based 
architectures for brain tumor segmentation. Unfortunately, 
most of these available approaches have been developed on 
adult datasets, perhaps on account of having fewer number 
of children with brain tumors than adults. 11 Recently, the 
problem of pediatric brain tumor segmentation has gained 
attention, where a few deep-learning-based approaches were 
developed in this context12

, yet with a primary focus on 
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low-and high-grade gliomas. 13
-
16 While some of these 

approaches included pediatric MB studies in limited cohort 
sizes15

•
16

, they have reported average performance scores 
for pediatric MB tumor segmentation. Hence, there is a need 
to build automated segmentation models that primarily focus 
on pediatric MB tumors. 

SUMMARY 

[0007] The present disclosure addresses the above draw­
backs by providing systems and methods for analysis of 
pediatric MB tumor sub-compartments using a transfer 
learning approach that learns tumor-specific patterns from 
adult brain tumors, then transfers the knowledge to the 
pediatric brain tumor domain. The systems and methods 
may be fully automated and produce segmented images. 
Accurate segmentation of pediatric MB tumors on routine 
MRI scans plays an important role in disease diagnosis, 
prognosis, and patient treatment, including surgical and 
radiation planning. Thus, increased accuracy and informa­
tion yields improved patient outcomes. Furthermore, the 
systems and methods provided herein are able to increase 
efficiency and reduce radiologist and clinician time, thereby 
saving costs, including hours of treatment planning time. 
[0008] In one aspect of the present disclosure, a computer 
system for automatic segmentation of tumor sub-compart­
ments in pediatric magnetic resonance imaging (MRI) data 
is described, the computer system comprising a communi­
cations connection configured to receive MRI data of a 
pediatric patient and a parameter from the MRI data to select 
one of a plurality of age-specific atlases; a processor con­
figured to receive the MRI data and the parameter and 
configured to carry out steps comprising: pre-processing the 
MRI data to generate pre-processed MRI data, wherein the 
pre-processing includes registering the MRI data to the 
age-specific atlas; segmenting the pre-processed MRI data, 
wherein segmenting includes inputting the pre-processed 
MRI data into one or more deep-learning-based models 
trained on adult MRI data to generate segmentation of tumor 
sub-compartments in the MRI data of the pediatric patient; 
and a display configured to display the segmentation of 
tumor sub-compartments in the MRI data of the pediatric 
patient. 
[0009] In one aspect of the present disclosure, a method 
for automatic segmentation of tumor sub-compartments in 
pediatric magnetic resonance imaging (MRI) data is 
described, the method comprising using a computer proces­
sor, access MRI data of a pediatric patient; using the 
computer processor, receive a parameter from the MRI data 
to select one of a plurality of age-specific atlases; using the 
computer processor, pre-process on the MRI data to generate 
pre-processed MRI data, wherein the pre-processing 
includes registering the MRI data to the age-specific atlas; 
and using the computer processor, segment the pre-pro­
cessed MRI data, wherein segmentation includes inputting 
the pre-processed MRI data into one or more deep-learning­
based models and outputting a prediction of an area of one 
or more tumor sub-compartments in the pre-processed MRI 
data. 
[0010] The foregoing and other aspects and advantages of 
the present disclosure will appear from the following 
description. In the description, reference is made to the 
accompanying drawings that form a part hereof, and in 
which there is shown by way of illustration a preferred 
embodiment. This embodiment does not necessarily repre-
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sent the full scope of the invention, however, reference is 
thereof made to the claims and herein for interpreting the 
scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] FIG. 1 is a block diagram of an MRI system, 
according to aspects of the present disclosure. 
[0012] FIG. 2 is a block diagram of an RF system of an 
MRI system, according to aspects of the present disclosure. 
[0013] FIG. 3 is a flowchart of one, non-limiting example 
of a method of automatic segmentation of the pediatric 
tumor MRI data, according to aspects of the present disclo­
sure. 
[0014] FIG. 4 is a non-limiting example of a workflow of 
a deep-learning-based model and its transfer to pediatric 
tumor MRI images to automatically segment tumor sub­
compartments, according to aspects of the present disclo­
sure. 
[0015] FIG. SA is a barplot of average dice across 5-fold 
cross validation, for segmentation of the tumor habitat (TH), 
enhancing tumor (ET), edema (ED), and non-enhancing+ 
necrosis (NET +NEC) as performance metrics used to evalu­
ate the performance of the transfer-learning-based segmen­
tation model for the pediatric MB cases, according to aspects 
of the present disclosure. 
[0016] FIG. SB is a barplot of ajaccard score across 5-fold 
cross validation, for segmentation of the tumor habitat (TH), 
enhancing tumor (ET), edema (ED), and non-enhancing+ 
necrosis (NET +NEC) as performance metrics used to evalu­
ate the performance of the transfer-learning-based segmen­
tation model for the pediatric MB cases, according to aspects 
of the present disclosure. 
[0017] FIG. SC is a barplot of precision across 5-fold cross 
validation, for segmentation of the tumor habitat (TH), 
enhancing tumor (ET), edema (ED), and non-enhancing+ 
necrosis (NET +NEC) as performance metrics used to evalu­
ate the performance of the transfer-learning-based segmen­
tation model for the pediatric MB cases, according to aspects 
of the present disclosure. 
[0018] FIG. SD is a barplot of recall across 5-fold cross 
validation, for segmentation of the tumor habitat (TH), 
enhancing tumor (ET), edema (ED), and non-enhancing+ 
necrosis (NET +NEC) as performance metrics used to evalu­
ate the performance of the transfer-learning-based segmen­
tation model for the pediatric MB cases, according to aspects 
of the present disclosure. 

DETAILED DESCRIPTION 

[0019] The present disclosure provides systems and meth­
ods for accurate segmentation of pediatric medulloblastoma 
(MB) tumors on MRI scans to improve disease diagnosis, 
prognosis, patient treatment, including surgical planning. 
Specifically, the systems and method provided herein can be 
used to perform segmentation of pediatric MB tumor sub­
compartments using a transfer learning approach that learns 
tumor-specific patterns from adult brain tumors and transfers 
the knowledge to the pediatric brain tumor domain. The 
systems and methods can be fully automated. This transfer 
learning-based segmentation model can accurately automate 
delineation of the tumor sub-compartments, yielding more 
effective surgical and treatment planning in pediatric MB. 
Hence, the systems and methods provided herein can 
improve patient outcomes. 
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[0020] In the present disclosure, the systems and methods 
provided herein can be realized as any of a variety of 
commercial implementations. For example, in one aspect, 
the systems and methods may be used to generate computer 
aided diagnosis (CAD) system or an MRI segmentation tool. 
Regardless of the particular implementation, the systems 
and methods provided herein can take pediatric brain MR 
images and provide tissue segmentation to delineate regions 
related to tumor evaluation and treatment. These regions 
may include enhancing tumor, necrotic core/non-enhancing 
tumor, and peritumoral edema sub-compartments. The sys­
tems and methods may provide a trained model that is based 
on a transfer-learning approach that learned tumor-specific 
patterns from adult brain tumors, then transferred the knowl­
edge to delineate a pediatric patient-specific brain segmen­
tation for treatment planning. In a non-limiting example, a 
clinician may be presented with a segmented set of images 
that present discrete set of tumor related regions, review the 
automated segmentation, and make final revisions and 
adjustments for treatment planning. 

[0021] In one aspect of the present disclosure, a deep 
learning-based approach is described that segments the 
tumor habitat, comprising the enhancing tumor (ET), peri­
tumoral edema (ED), and non-enhancing+necrotic core 
(NET+ NEC) sub-compartments, on conventional MRI 
scans (Tl-weighted, T2-weighted, FLAIR). In the model, 
transfer learning can be utilized, which is defined by trans­
ferring the knowledge from a different domain. In a non­
limiting example, the approach takes advantage of the image 
primitives specific to the tumor sub-compartments that are 
learned from high-grade gliomas in the large dataset of 
BraTS for adult brains, and then transfers the knowledge 
over to the target task of segmenting the tumors of our 
smaller cohort of pediatric MB cases. This new application 
of transfer learning from adult brain tumors to pediatric 
brain tumors, contrary to conversion, successfully yielded 
pediatric MB segmentation. 

[0022] As used herein, "transfer learning" can refer to the 
machine learning application of applying the solution devel­
oped for one data set to a different but data set. "Deep­
learning" can refer to a class of machine learning algorithms 
that uses multiple layers to progressively extract higher­
level features from a raw input. An "atlas" can refer to a 
brain atlas composed of serial sections along different ana­
tomical planes of the brain. These atlases may include 
healthy or diseased brains. In a brain atlas, each relevant 
brain structure is assigned a number of coordinates to define 
its outline or volume. ( age-specific atlas). The "Dice index" 
represents a performance metric of the transfer-learning­
based model. The Dice index, which can also be called the 
Srensen-Dice coefficient, is a statistic that can be used to 
gauge the similarity of two samples. The "Jaccard index" 
can represent a performance metric of the transfer-learning­
based model. The Jaccard index, which can also be called 
Jaccard similarity coefficient, is a statistic for gauging the 
similarity and diversity of sample sets. As used herein, 
"precision" and "recall" can be performance metrics that 
apply to data retrieved from a set. Precision, which can also 
be called positive predictive value, is the fraction of relevant 
instances among the retrieved instances. Recall, also called 
sensitivity, is the fraction of relevant instances that were 
retrieved. As used herein, the "Recall index" represents a 
performance metric of the transfer-learning-based model. 
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[0023] Referring particularly now to FIG. 1, an example of 
a magnetic resonance imaging (MRI) system 100 is illus­
trated. The MRI system 100 includes an operator worksta­
tion 102, which will typically include a display 104, one or 
more input devices 106, such as a keyboard and mouse, and 
a processor 108. The processor 108 may include a commer­
cially available programmable machine running a commer­
cially available operating system. The operator workstation 
102 provides the operator interface that enables scan pre­
scriptions to be entered into the MRI system 100. In general, 
the operator workstation 102 may be coupled to four servers: 
a pulse sequence server 110; a data acquisition server 112; 
a data processing server 114; and a data store server 116. The 
operator workstation 102 and each server 110, 112, 114, and 
116 are connected to communicate with each other. For 
example, the servers 110, 112, 114, and 116 may be con­
nected via a communication system 117, which may include 
any suitable network connection, whether wired, wireless, or 
a combination of both. As an example, the communication 
system 117 may include both proprietary or dedicated net­
works, as well as open networks, such as the internet. 

[0024] The pulse sequence server 110 functions in 
response to instructions downloaded from the operator 
workstation 102 to operate a gradient system 118 and a 
radiofrequency ("RF") system 120. Gradient waveforms 
necessary to perform the prescribed scan are produced and 
applied to the gradient system 118, which excites gradient 
coils in an assembly 122 to produce the magnetic field 
gradients Gx, Gy, and G

2 
used for position encoding mag­

netic resonance signals. The gradient coil assembly 122 
forms part of a magnet assembly 124 that includes a polar­
izing magnet 126 and a whole-body RF coil 128. 

[0025] RF waveforms are applied by the RF system 120 to 
the RF coil 128 in order to perform the prescribed magnetic 
resonance pulse sequence. Responsive magnetic resonance 
signals detected by the RF coil 128 are received by the RF 
system 120, where they are amplified, demodulated, filtered, 
and digitized under direction of commands produced by the 
pulse sequence server 110. The RF system 120 includes an 
RF transmitter for producing a wide variety of RF pulses 
used in MRI pulse sequences. The RF transmitter is respon­
sive to the scan prescription and direction from the pulse 
sequence server 110 to produce RF pulses of the desired 
frequency, phase, and pulse amplitude waveform. The gen­
erated RF pulses may be applied to the whole-body RF coil 
128. 

[0026] The RF system 120 also includes one or more RF 
receiver channels. Each RF receiver channel includes an RF 
preamplifier that amplifies the magnetic resonance signal 
received by the coil 128 to which it is connected, and a 
detector that detects and digitizes the I and Q quadrature 
components of the received magnetic resonance signal. The 
magnitude of the received magnetic resonance signal may, 
therefore, be determined at any sampled point by the square 
root of the sum of the squares of the I and Q components: 
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and the phase of the received MR signal may also be 
determined: 

[0027] The pulse sequence server 110 also optionally 
receives patient data from a physiological acquisition con­
troller 130. By way of example, the physiological acquisi­
tion controller 130 may receive signals from a number of 
different sensors connected to the patient, such as electro­
cardiograph ("ECG") signals from electrodes, or respiratory 
signals from a respiratory bellows or other respiratory 
monitoring device. Such signals are typically used by the 
pulse sequence server 110 to synchronize, or "gate," the 
performance of the scan with the subject's heartbeat or 
respiration. 
[0028] The pulse sequence server 110 also connects to a 
scan room interface circuit 132 that receives signals from 
various sensors associated with the condition of the patient 
and the magnet system. It is also through the scan room 
interface circuit 132 that a patient positioning system 134 
receives commands to move the patient to desired positions 
during the scan. 
[0029] The digitized magnetic resonance signal samples 
produced by the RF system 120 are received by the data 
acquisition server 112. The data acquisition server 112 
operates in response to instructions downloaded from the 
operator workstation 102 to receive the real-time magnetic 
resonance data and provide buffer storage, such that no data 
is lost by data overrun. In some scans, the data acquisition 
server 112 does little more than pass the acquired magnetic 
resonance data to the data processor server 114. However, in 
scans that require information derived from acquired mag­
netic resonance data to control the further performance of 
the scan, the data acquisition server 112 is programmed to 
produce such information and convey it to the pulse 
sequence server 110. For example, during prescans, mag­
netic resonance data is acquired and used to calibrate the 
pulse sequence performed by the pulse sequence server 110. 
As another example, navigator signals may be acquired and 
used to adjust the operating parameters of the RF system 120 
or the gradient system 118, or to control the view order in 
which k-space is sampled. In still another example, the data 
acquisition server 112 may also be employed to process 
magnetic resonance signals used to detect the arrival of a 
contrast agent in a magnetic resonance angiography (MRA) 
scan. By way of example, the data acquisition server 112 
acquires magnetic resonance data and processes it in real­
time to produce information that is used to control the scan. 
[0030] The data processing server 114 receives magnetic 
resonance data from the data acquisition server 112 and 
processes it in accordance with instructions downloaded 
from the operator workstation 102. Such processing may, for 
example, include one or more of the following: reconstruct­
ing two-dimensional or three-dimensional images by per­
forming a Fourier transformation of raw k-space data; 
performing other image reconstruction algorithms, such as 
iterative or backprojection reconstruction algorithms; apply­
ing filters to raw k-space data or to reconstructed images; 
generating functional magnetic resonance images; calculat­
ing motion or flow images; and so on. 
[0031] Images reconstructed by the data processing server 
114 are conveyed back to the operator workstation 102 
where they are stored. Real-time images are stored in a data 
base memory cache (not shown in FIG. 1), from which they 
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may be output to operator display 112 or a display 136 that 
is located near the magnet assembly 124 for use by attending 
physicians. Batch mode images or selected real time images 
are stored in a host database on disc storage 138. When such 
images have been reconstructed and transferred to storage, 
the data processing server 114 notifies the data store server 
116 on the operator workstation 102. The operator worksta­
tion 102 may be used by an operator to archive the images, 
produce films, or send the images via a network to other 
facilities. 
[0032] The MRI system 100 may also include one or more 
networked workstations 142. By way of example, a net­
worked workstation 142 may include a display 144; one or 
more input devices 146, such as a keyboard and mouse; and 
a processor 148. The networked workstation 142 may be 
located within the same facility as the operator workstation 
102, or in a different facility, such as a different healthcare 
institution or clinic. 
[0033] The networked workstation 142, whether within 
the same facility or in a different facility as the operator 
workstation 102, may gain remote access to the data pro­
cessing server 114 or data store server 116 via the commu­
nication system 117. Accordingly, multiple networked work­
stations 142 may have access to the data processing server 
114 and the data store server 116. In this manner, magnetic 
resonance data, reconstructed images, or other data may 
exchanged between the data processing server 114 or the 
data store server 116 and the networked workstations 142, 
such that the data or images may be remotely processed by 
a networked workstation 142. This data may be exchanged 
in any suitable format, such as in accordance with the 
transmission control protocol (TCP), the internet protocol 
(IP), or other known or suitable protocols. 
[0034] With reference to FIG. 2, the RF system 120 of 
FIG. 1 will be further described. The RF system 120 
includes a transmission channel 202 that produces a pre­
scribed RF excitation field. The base, or carrier, frequency of 
this RF excitation field is produced under control of a 
frequency synthesizer 210 that receives a set of digital 
signals from the pulse sequence server 110. These digital 
signals indicate the frequency and phase of the RF carrier 
signal produced at an output 212. The RF carrier is applied 
to a modulator and up converter 214 where its amplitude is 
modulated in response to a signal, R (t), also received from 
the pulse sequence server 110. The signal, R (t), defines the 
envelope of the RF excitation pulse to be produced and is 
produced by sequentially reading out a series of stored 
digital values. These stored digital values may be changed to 
enable any desired RF pulse envelope to be produced. 
[0035] The magnitude of the RF excitation pulse produced 
at output 216 is attenuated by an exciter attenuator circuit 
218 that receives a digital command from the pulse sequence 
server 110. The attenuated RF excitation pulses are then 
applied to a power amplifier 220 that drives the RF trans­
mission coil 204. 
[0036] The MR signal produced by the subject is picked 
up by the RF receiver coil 208 and applied through a 
preamplifier 222 to the input of a receiver attenuator 224. 
The receiver attenuator 224 further amplifies the signal by 
an amount determined by a digital attenuation signal 
received from the pulse sequence server 110. The received 
signal is at or around the Larmor frequency, and this high 
frequency signal is down converted in a two step process by 
a down converter 226. The down converter 226 first mixes 
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the MR signal with the carrier signal on line 212 and then 
mixes the resulting difference signal with a reference signal 
on line 228 that is produced by a reference frequency 
generator 230. The down converted MR signal is applied to 
the input of an analog-to-digital ("ND") converter 232 that 
samples and digitizes the analog signal. The sampled and 
digitized signal is then applied to a digital detector and 
signal processor 234 that produces 16-bit in-phase (I) values 
and 16-bit quadrature (Q) values corresponding to the 
received signal. The resulting stream of digitized I and Q 
values of the received signal are output to the data acquisi­
tion server 112. In addition to generating the reference signal 
on line 228, the reference frequency generator 230 also 
generates a sampling signal on line 236 that is applied to the 
ND converter 232. 
[0037] With reference to FIG. 3, an example of a non­
limiting workflow 300 is illustrated that can include the step 
of acquiring pediatric tumor MRI data at step 302. The MRI 
data may be any convention MRI scan type, such as 
Tl-weighted, T2-weighted, and fluid attenuated inversion 
recovery (FLAIR). The data may be obtained using an MRI 
system as that shown in FIG. 1. Alternatively, the data may 
be previously acquired and accessed from storage, memory, 
or a network. The MRI data may include any tumor type, 
such as medulloblastoma or glioblastoma. 
[0038] At step 304, the pediatric tumor MRI data under­
goes pre-processing which may include registering the data 
to an age-specific atlas (step 306), performing skull stripping 
to remove the outline of the skull in the data (step 308), and 
correcting intensity inhomogeneities (step 310). In a non­
limiting example all three pre-processing steps 306-308 may 
be performed. Alternatively, any combination of pre-pro­
cessing steps 306-308 may be performed. 
[0039] Registration of the MRI data to an age-specific 
atlas may be determined by a parameter in the MRI data, 
such as brain volumetric measurement, cortical thickness 
estimation, or developmental stage estimation. Alterna­
tively, the age of the subject associated with the pediatric 
tumor MRI data is determines the appropriate age-specific 
atlas to utilize in the registration. The age-specific atlas may 
define individual ages (e.g., 0 years, 1, year, 2 years, etc.) or 
may define a range of ages (e.g., 0-2 years, 3-5 years, 6-10 
years, etc.). In a non-limiting example, the age range for 
pediatric MRI data spans from 0-18 years. 
[0040] In a non-limiting example, skull stripping is per­
formed during pre-processing to remove extra-cranial or 
non-brain tissue is performed to increase the efficiency of 
segmenting MRI data. Skull stripping may be performed 
following any one of mathematical morphology-based 
methods, intensity-based methods, deformable surface­
based methods, atlas-based methods, and hybrid methods. 
[0041] Non-uniformity in the RF coil can cause intensity 
inhomogeneity distortion, and if not corrected can lead to 
reduced performance of downstream image processing, and 
thereby a less effective diagnosis of the imaged structure. In 
a non-limiting example, the nonparametric nonuniform 
intensity normalization (N3) algorithm may be applied. In a 
preferred embodiment, N4ITK bias correction is used. 
[0042] Other pre-processing functions may also be per­
formed such as brain volumetric measurements, tissue clas­
sification, cortical surface reconstruction, cortical thickness 
estimation, and monitoring the development of the brain. 
[0043] Steps 312-316 describe the development of a deep­
learning-based model for use on the pre-processed pediatric 



US 2024/0338828 Al 

tumor MRI data. These steps are shown as optional, because, 
in a clinical setting, steps 312-316 have already been per­
formed and, thus, these steps are not repeated. Rather, the 
result of steps 312-316 (i.e., a trained deep-learning-based 
model) is utilized to carry out the clinical process. That is, 
at step 312, adult tumor MRI data is acquired. The MRI data 
may be any conventional MRI scan type, such as 
Tl-weighted, T2-weighted, and fluid attenuated inversion 
recovery (FLAIR). The data may be obtained using an MRI 
system as that shown in FIG. 1. Alternatively, the data may 
be previously acquired and accessed from storage, memory, 
database, or network. The MRI data may include any tumor 
type, such as medulloblastoma or glioblastoma. 
[0044] In one non-limiting example, a deep-learning­
based segmentation approach is applied to the adult tumor 
MRI data at step 314. At step 316, the deep-learning based 
segmentation approach is applied to the entire tumor habitat 
(ITH) and tumor sub-compartments. In a non-limiting 
example, the tumor sub-compartments may include enhanc­
ing tumor (IEH), peritumoral edema CIEn), and the non­
enhancing+necrotic core (INET+NEc) sub-compartments 
using an nnU-net framework. This results in four pre-trained 
segmentation models based on each tumor sub-compart­
ment. Thus, the results of steps 312-316 is a trained deep­
learning-based model that was trained using adult tumor 
MRI data. 
[0045] Returning to the clinical workflow, in a non-limit­
ing example, at step 318, the trained deep-learning-based 
model is applied, in an implementation of transfer learning, 
to the prep-processed pediatric tumor MRI data obtained in 
step 304. Thereafter, the tumor sub-compartments are seg­
mented in the pre-processed pediatric tumor MRI data, at 
step 320. 
[0046] Referring to FIG. 4, a non-limiting workflow is 
illustrated based on the steps of FIG. 3 described above. In 
a first stage 400, adult brain tumor MIR scans, including 
Tl-weighted, T2-weighted, and FLAIR scans are accessed 
from the Brain Tumor Segmentation (BraTS) challenge 
database and used to multiple deep-learning models using an 
nn-Unet framework. The deep-learning models are specific 
to predetermined tumor sub-compartments representing 
enhancing tumor, edema, and non-enhancing tumor and 
necrosis in adults. 
[0047] In a second stage 402, the deep-learning models are 
applied to in a transfer learning approach 404 to adapt 
models using pediatric tumor MRI scans. Fewer pediatric 
tumor scans are available than adult tumor scans. The 
pediatric tumor MRI scans (Tl-weighted, T2-weighted, and 
FLAIR) are pre-processed via registration using age-specific 
atlases, skull-stripping, and N4ITK bias correction. 
[0048] An example auto-segmentation of pediatric tumor 
MRI data according to aspect of the present disclosure are 
described below: 

EXAMPLE 

Materials and Methods 

Notation 

[0049] We define an image scene I as I=(C, f), where/is a 
spatial grid C of voxels c E C, in a three-dimensional (3D) 
space, IRL Each voxel, c E C, is associated with an intensity 
value f ( c ). I En I En, and INET+NEc correspond to the enhanc­
ing tumor, peritumoral edema, and the non-enhancing 
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tumor+necrotic core sub-compartments within every I, 
respectively, such that IEn I En, INET+NEc c I. ITH is the 
tumor habitat that comprises all the tumor sub-compart­
ments, representing IET+IEn+INET+NEc-

Workflow 

[0050] In the first stage of our model, three MRI protocols 
(Gd-Tl w, T2w, FLAIR) are employed to conduct a deep­
learning-based segmentation approach on the BraTS dataset 
involving adult brain tumors. The model is then applied on 
the three tumor sub-compartments IEn IEn, INET+NEo sepa­
rately, as well as on ITH (tumor habitat) using nnU-net 
framework18

, to get four pretrained segmentation models. In 
the second stage, preprocessing is conducted on our pedi­
atric MB cohort. This includes registration to age-appropri­
ate atlases, skull stripping, bias correction, and intensity 
matching. Then, we use the pretrained segmentation models 
form stage 1 to apply transfer learning on the pre-processed 
pediatric MB MR scans and segment the tumor sub-com­
partments of each scan. FIG. 1 shows the pipeline for our 
proposed segmentation model. 

Data Curation 

[0051] Our cohort consisted of 484 adult brain tumor 
studies (high-grade and low-grade) from BraTS dataset as 
well as 49 MB studies that were retrospectively collected 
and ranged between 2 to 18 years in age. The MRI scans of 
the MB cases were obtained from 2 different institutions: 
Children's Hospital of Los Angeles (CHLA) (N=19) and 
Cincinnati Children's Hospital Medical Center (CCHMC) 
(N=30). The inclusion criteria used for our dataset were: (a) 
availability of Gd-Tl w, T2w, and FLAIR axial view MRI 
scans; (b) patients with only MB tumors; and (c) acceptable 
diagnostic quality of the MRI scans, as identified by the 
collaborating radiologists. Patients with any of poor-quality 
MRI protocols were excluded. Table 1 shows the demo­
graphics of our participating cohorts. 

Annotations 

[0052] The labeling of the tumor habitat, especially in 
pediatric MRI scans, is often challenging due to the homo­
geneity of the intensities, as compared to those of adult 
scans. In our work, ground truth labels were carefully and 
rigorously generated by 2 experts for Irr, primarily based on 
Gd-T 1 w scans, and using T2w and FLAIR scans for bound­
ary separation between the tumor and the normal region. The 
tumor region was annotated manually in each 2D slice of the 
MRI scans using 3D Slicer19 by two experienced radiolo­
gists (Expert 1 (A.N) with 8 years of experience and Expert 
2 (D.M) with 7 years of radiology experience). IET was 
defined as the hyperintense region appearing on Gd-Tl w 
image while IED was defined to be bright on T2w and FLAIR 
scans. INET+NEc was stipulated to be gray/dark on Gd-Tl w 
and FLAIR scans, with the only difference being the necrotic 
sub-compartment (INEc) to be hyperintense on T2w scans. 
Finally, ITH was defined as the union of the three tumor 
sub-compartments Irr+ I En+ INET+NEc· 

Preprocessing 

[0053] The first step involved performing registration of 
our MB scans to atlases. Specifically, age-specific atlases 
were used to account for anatomical differences across the 
different age groups due to brain development in pediatric 
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patients, where a total of 4 age-specific atlases (0-2, 2-5, 
5-10, 10-18 years) were used.20 We first registered the 
Gd-Tlw images to the age-specific atlases using 3D 
Slicer19

, and then registered the corresponding T2w and 
FLAIR scans to the Gd-Tl w atlas-registered scan using 3D 
Slicer. 19 This was done for the purpose of aligning all MRI 
protocols (Gd-Tl w, T2, FLAIR) in the same reference 
space. This process was followed by skull stripping using 
Brain Extraction Tool (BET) in FSL.21 Finally, correction 
for intensity inhomogeneities was conducted using N4ITK 
bias correction in 3D Slicer19

, followed by applying an 
intensity matching approach.22 

Segmentation of MB Tumors Using nnU-Net and 
Transfer Leaming 

[0054] Due to the limited sample size, we employed a 
transfer-learning-based approach to perform segmentations 
of our MB cases. Specifically, we used nnU-Net frame­
work18 for building our deep-learning-based model. Ini­
tially, the model was trained on adult brain tumors (BraTS 
2018) consisting of 387 patients with three MRI modalities 
(Gd-Tlw, T2, and FLAIR) 17

, and was validated on 97 
patients, for Irr, IEn, INET+NEc as well as ITH of the adult 
brains. Further, transfer learning was incorporated within the 
nnU-Net framework, using Models Genesis for code 
changes.23 This transfer learning method made every layer 
trainable to perform fine-tuning on our MB cohort. 

Experimental Design 

Model Architecture and Training 

[ 0055] Our nnU-Net segmentation model 18 was trained on 
BraTS dataset for adult brains using an initial learning rate 
of 0.01, Stochastic Gradient Descent as optimizer, and a 
combination of dice and cross-entropy as the loss function. 
Transfer learning model with Models Genesis was applied23 

to further fine tune every layer on the MB dataset across 
fivefold cross validation. 

Segmentation of the MB Tumor Habitat and the 
Tumor Sub-compartments Using Transfer Learning 

[0056] In this experiment, we developed a transfer learn­
ing model on the entire tumor habitat ITH, comprising Irr, 
I En, and INET+NEc of the adult brain tumors. Specifically, we 
first trained a deep learning model on the adult BraTS 
dataset. After evaluating this model, we performed transfer 
learning on the tumor habitat of the pediatric MB cohort, 
which comprises IEn IEn, INET+NEc sub-compartments of 
the pediatric MB cases. 
[0057] Additionally, to segment the individual sub-com­
partments of the tumor, we used the Bra TS dataset with three 
MRI modalities (Gd-Tlw, T2w, FLAIR) to develop a sepa­
rate model for each of the three tumor sub-compartments, 
namely, Irr, IEn, INET+NEc· The performance of each of 
those models was evaluated using fivefold cross validation. 
Specifically, all the cases from Bra TS dataset (for high-grade 
and low-grade glioma cases) were used to train three sepa­
rate deep learning models for the three sub-compartments. 
Those models were then employed to perform transfer 
learning using nnU-net, on the target task of interest, i.e., the 
tumor sub-compartments of the pediatric MB cases. 
[0058] Additionally, for comparison, we trained the deep 
learning segmentation model directly on the pediatric MB 
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tumors, to compare its performance against that of the 
transfer-learning-based model. 

RESULTS 

Experiment 1: Segmentation of the MB Tumor 
Habitat and the Tumor Sub-compartments Using 

Transfer Learning 

[0059] When training the deep learning model on BraTS 
dataset of adult brains, we obtained dice scores of0.9±0.005 
for ITH Then, when employing this model in our transfer­
leaming-based model for pediatric MB cases, we obtained a 
dice score of 0.88±0.03 across fivefold validation runs, for 
segmenting ITH of MB cases. When we ran the model on an 
independent test set, we got mean dice score of 0.80 for 
segmenting ITH 

[0060] The three separate deep learning models that were 
devised for the tumor sub-compartments using the BraTS 
dataset on adult data resulted in dice scores of 0.78±0.02, 
0.81±0.1, and 0.62±0.007 for IEn IEn, and INET+NEo respec­
tively. Additionally, when those models were employed to 
do transfer learning using nn-Unet on our MB cohort, this 
yielded mean dice scores of0.83±0.04 forlrr, 0.75±0.05 for 
IEn, and 0.55±0.10 for INET+NEo across fivefold cross­
validation runs. When running these models on the inde­
pendent test set, we got mean dice scores of 0.67±0.20 for 
IEn 0.54±0.26 for IEn, and 0.28±0.30 for INET+NEc· 

[0061] In Table 2 and FIG. 5, we show the results from the 
performance metrics we used to assess the performance of 
our transfer-learning-based segmentation model. Namely, 
we use the following metrics: Dice coefficient (FIG. SA), 
Jaccard Index (FIG. SB), precision (FIG. SC) and recall 
(FIG. SD) to evaluate the efficacy of our segmentation 
model. 
[0062] FIGS. 2, 3, and 4 show samples of our segmenta­
tion model results on the pediatric MB cases. In FIG. 2, we 
show example results where the model was successful in 
predicting the different tumor labels. Additionally, in FIGS. 
3 and 4, we show example results where the model was 
partially successful in the segmentation task, by either 
over-segmenting the tumor labels due to their minimal 
presence in the scans (FIG. 3-a, FIG. 4-b ), or under-seg­
menting them due to different reasons, such as the discrete 
presence of the label itself (FIG. 3-b, FIG. 4-a), the subtle 
intensity changes between the different tumor sub-compart­
ments (FIG. 3-c), and the dotted (discontinued) presence of 
the tumor label on the MRI scans (FIG. 4-c). 

DISCUSSION 

[0063] Accurate segmentation of pediatric brain tumors 
plays a major role in treatment and surgical planning, yet is 
still understudied. We present one of the first works that 
addresses automatic pediatric brain tumor segmentation, and 
the first to solely focus on pediatric medulloblastoma (MB) 
segmentation. In our work, we utilized transfer learning 
along with BraTS (adult brain tumors) dataset, while taking 
advantage of the image primitives, then transferred the 
knowledge over for the target task of segmenting pediatric 
MB tumors. Specifically, segmentations for the entire tumor 
habitat as well as the tumor sub-compartments including 
enhancing tumor, edema, non-enhancing+necrosis, were 
conducted. This transfer learning approach enabled our 
model to learn features specific to tumors while training on 
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the larger adult dataset, followed by tuning our model 
specifically for our smaller cohort of pediatric MB cases. 
Our transfer-learning model yielded mean dice-scores of 
0.88±0.03 for the MB tumor habitat, 0.83±0.04 for enhanc­
ing tumor, 0.75±0.04 for edema, and 0.56±0.09 for necrotic 
core+non-enhancing segmentation, across cross-validation 
runs. On the test set, our model yielded mean dice scores of 
0.80±0.10 for the MB tumor habitat, 0.67±0.20 for enhanc­
ing tumor, 0.54±0.26 for edema, and 0.28±0.30 for necrotic 
core+non-enhancing tumor segmentation. 

[0064] There have been a few studies that explored seg­
mentation of pediatric tumors, primarily gliomas, 13

-
16 but 

none were specifically devised for MB. Further, studies have 
focused on either deep learning or Bayesian approaches, 14

•
15 

but to the best of our knowledge, none has employed transfer 
learning from adult brain tumors to pediatric tumors suc­
cessfully. For the previous pediatric brain tumor segmenta­
tion approaches that considered MB cases, the reported dice 
scores from non-enhancing tumor, necrosis, and edema 
sub-compartments, have been average, underlining the chal­
lenges faced in pediatric brain tumor segmentation. Specifi­
cally, Peng et al. developed a deep-learning network to 
automatically segment the tumors of high-grade gliomas, 
MB, and other leptomeningeal diseases in pediatric patients, 
on Tl contrast-enhanced and T2/FLAIR images16

. Simi­
larly, the work in15 employed a CNN-based model to seg­
ment the sub-compartments of multiple pediatric brain 
tumors, primarily gliomas, and included a limited cohort of 
MB cases (n=24) in their work. The model processed images 
at multiple scales simultaneously using a dual pathway. The 
first pathway kept the images at their normal resolution, 
while the second pathway down-sampled them. While the 
model was able to differentiate between the enhancing and 
non-enhancing tumor compartments of MB tumors, the 
reported dice scores were relatively low (0.62 for enhancing 
tumor, 0.18 for edema, and 0.26 for non-enhancing tumor), 
indicating that the model has under-segmented the tumor 
sub-compartments. In contrast, our model (0.83, 0.67 for 
enhancing tumor, 0.75, 0.54 for edema, and 0.56, 0.28 for 
necrotic core+non-enhancing tumor) consistently yielded 
high values for most sub-compartments, both on our training 
and test sets, respectively. Though our model did fairly well 
in segmenting the MB tumor sub-compartments, we had 
faced some challenges in our work that we outline below. 

[0065] We dealt with the problem of class imbalance, as 
all the three tumor sub-compartments were present in only 
70% of the patients. In the remaining 30% of the cohort, 
some of the sub-compartments were missing. For instance, 
we found the edema sub-compartment to be rarely present in 
MB around the tumor core ( e.g., in FIG. 3-b ), as reported in 
literature.26 For the purpose of increasing class representa­
tion of edema to improve the model's performance, we 
labeled edema around the ventricles, since the ventricular 
edema also has similar features as the peritumoral edema. 
Additionally, the necrosis sub-compartment has been 
reported in previous works to be in 40-50% of pediatric 
MB27

, whereas it was found scarcely in our cohort and had 
similar visual appearance to the non-enhancing tumor on 
Gd-Tl wand FLAIR scans (FIGS. 3-c, 4-c ). For this reason, 
we combined both these classes, resulting in improved pixel 
representation, which has been previously employed in 
BraTS dataset as well 17

. Also, in some instances, distin­
guishing between enhancing and non-enhancing tumor in 
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our cohort was difficult when the intensity features looked 
even (FIG. 3-c). We decided to make use of the center of the 
caudate nucleus region in the Gd-Tl w post contrast MRI 
scans, as an intensity threshold, in determining whether the 
sub-compartment is enhancing or non-enhancing tumor. If 
the intensity of region of the tumor core was above the 
defined threshold, it was labeled as an enhancing tumor 
region. All regions with intensity values below that thresh­
old were labeled as non-enhancing regions. 

[0066] Another challenge was the ground truth labeling of 
the tumor sub-compartments in pediatric tumors, which was 
found to be difficult as compared to labeling of adult tumors. 
This is well known in literature, due to many reasons 
including the rapidly developing brain of children, the 
average diagnostic quality of MRI scans, and the promi­
nence of MRI motion artifacts as well as anatomic differ­
ences.28 Perhaps on account of these factors, we were also 
unable to get a perfect registration aligmnent between 
Gd-Tlw, T2w, and FLAIR modalities. We have also inter­
rogated the patients that gave poor match between the 
ground truth annotations and our segmentation model 
results. One of the reasons for poor match was the dotted and 
the discontinuous labeling of the tumor sub-compartments in 
some of the patients. However, our transfer-learning-based 
learning model was able to find those areas where the dotted 
or discontinued areas were present (FIG. 4-c). Skull strip­
ping was also a major concern in our pediatric MB cohort, 
where there were some cases with portions of the brain 
tissue itself being removed during the skull stripping pro­
cess. This could be due to the subtle intensity differences 
between the skull and the brain tissues in pediatric brain 
scans, which makes it challenging to accurately remove the 
sknll from the images using automated approaches. Further, 
some of the tumors were found to be heterogenous, e.g., mix 
of enhancing-tumor, non-enhancing, and necrosis, with ill­
defined contours that made ground truth labeling to be 
arduous, and thereby prone to errors. 

[0067] There were some merits in our approach. First, we 
have employed data from two institutions, which allowed 
our model to be generalizable. Another advantage of our 
study is utilizing the adult BraTS dataset to learn tumor­
specific patterns, and then applying transfer learning on the 
pediatric tumors, instead of training a model directly on 
pediatric tumors, which is a very difficult task. 

Conclusions and Future Work 

[0068] This work presented one of the first approaches to 
segment pediatric medulloblastoma cases. We employed a 
transfer learning model that learns tumor-specific patterns 
from adult brain tumors, then transfers the knowledge to the 
pediatric brain tumor domain. Our results suggest that the 
proposed automated segmentation model holds promise for 
improved surgical/radiation treatment via precise tumor 
delineation and for building robust diagnosis and prognosis 
tools, for improved patient outcomes. In our future work, we 
plan to expand on our analysis on a bigger cohort that 
includes datasets from multiple institutions. This will greatly 
aid in decreasing the effect of site variability in our model. 
We also plan to add other types of tumors such as high-grade 
and low-grade pediatric gliomas. 
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TABLE 1 

Data distribution across training cohorts. Patient demographics 
(age and survival information) as well as scanner information 

Data Distribution 

CHLA CCHMC CHOP 

Data Train Train Test 
Total cases 18 28 32 
Mean age(years) 5.4 3.85 8.8 
Mean OS (days) 2230.67 923.28 2220 
Scan type Tl FFE axial Tl FFE axial Tl FFE axial 

post-contrast post-contrast post-contrast 
MR acquisition 2D 2D 2D 
type 
Scanning Gradient Gradient Spin Echo (SE) 
sequence recalled (GR) recalled (GR) 
Sequence Steady state Steady state Segmented k-
variant (SS) (SS) space/Spoiled/ 

Oversampling 
phase (SK/SP/OSP) 

Pixel spacing 0.46-1 0.46-1 2 
(nnn) 
Slice thickness 1-5.8 1-5.8 2-5 
(nnn) 

TABLE 2 
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3. The computer system of claim 1, wherein the pre­
processing further includes at least one of skull stripping and 
correcting for intensity inhomogeneity bias. 

4. The computer system of claim 1, wherein the tumor 
sub-compartments are at least one of an enhancing tumor 
(ET), peritumoral edema (ED), and non-enhancing/necrotic 
core sub-compartments (NET +NEC). 

5. The computer system of claim 1, wherein the MRI data 
include at least one of Tl-weighted MRI data, T2-weighted 
MRI data, and FLAIR MRI data. 

6. The computer system of claim 1, wherein the one or 
more deep-learning-based models is trained using adult 
tumor MRI data to identify tumor sub-compartments in 
adults. 

7. The computer system of claim 6, wherein the one or 
more deep-learning-based models corresponds to each of the 
tumor sub-compartments. 

8. The computer system of claim 7, wherein the tumor 
sub-compartments include at least one of an entire tumor 
habitat (TH), enhancing tumor (ET), peritumoral edema 
(ED), and non-enhancing/necrotic core sub-compartments 
(NET+NEC). 

Performance metrics used to evaluate the performance of the proposed transfer­
leaming-based segmentation model for the pediatric MB cases. 

Tumor habitat Enhancing Edema NET + Necrosis 

Metrics Training Test Training Test Training Test Training Test 

Dice 0.88 ± 0.02 0.80 ± 0.10 0.83 ± 0.04 0.67 ± 0.20 0.75 ± 0.05 0.54 ± 0.26 .55 ± .10 0.28 ± 0.3 
Hausdorff 2.34 ± 0.06 2.79 ± 0.51 2.4 ± 0.14 2.99 ± 0.5 2.19 ± 0.12 2.49 ± 0.48 2.75 ± 0.18 3.28 ± 0.93 
distance 
Frechet 2.47 ± 0.06 2.92 ± 0.52 2.55 ± 0.13 3.15 ± 0.5 2.26 ± 0.12 2.55 ± 0.49 2.9 ± 0.2 3.36 ± 0.92 
distance 
Jaccard 0.78 ± 0.03 0.69 ± 0.13 0.73 ± 0.06 0.53 ± 0.21 0.61 ± 0.05 0.40 ± 0.21 .41 ± .09 0.20 ± 0.24 
Precision 0.90 ± 0.01 0.81 ± 0.14 0.85 ± 0.06 0.82 ± 0.228 0.80 ± 0.04 0.60 ± 0.31 .64 ± .13 0.31 ± 0.33 
Recall 0.86 ± 0.04 0.82 ± 0.12 0.84 ± 0.05 0.62 ± 0.23 0.71 ± 0.06 0.63 ± 0.2 .55 ± .09 0.63 ± 0.31 

1. A computer system for automatic segmentation of 
tumor sub-compartments in pediatric magnetic resonance 
imaging (MRI) data, the computer system comprising: 

a communications connection configured to receive MRI 
data of a pediatric patient and a parameter from the 
MRI data to select one of a plurality of age-specific 
atlases; 

a processor configured to receive the MRI data and the 
parameter and configured to carry out steps comprising: 

pre-processing the MRI data to generate pre-processed 
MRI data, wherein the pre-processing includes reg­
istering the MRI data to the age-specific atlas; 

segmenting the pre-processed MRI data, wherein seg­
menting includes inputting the pre-processed MRI 
data into one or more deep-learning-based models 
trained on adult MRI data to generate segmentation 
of tumor sub-compartments in the MRI data of the 
pediatric patient; and 

a display configured to display the segmentation of tumor 
sub-compartments in the MRI data of the pediatric 
patient. 

2. The computer system of claim 1, where the plurality of 
age-specific atlases each define a range of ages. 

9. The computer system of claim 6, wherein the adult 
tumor MRI data include at least one of Tl-weighted MRI 
data, T2-weighted MRI data, and FLAIR MRI data. 

10. The computer system of claim 1, wherein the param­
eter includes at least one of size, age, developmental stage, 
brain volumetric measurement, cortical thickness estima­
tion. 

11. A method for automatic segmentation of tumor sub­
compartments in pediatric magnetic resonance imaging 
(MRI) data, the method comprising: 

using a computer processor, access MRI data of a pedi­
atric patient; 

using the computer processor, receive a parameter from 
the MRI data to select one of a plurality of age-specific 
atlases; 

using the computer processor, pre-process on the MRI 
data to generate pre-processed MRI data, wherein the 
pre-processing includes registering the MRI data to the 
age-specific atlas; and 

using the computer processor, segment the pre-processed 
MRI data, wherein segmentation includes inputting the 
pre-processed MRI data into one or more deep-learn­
ing-based models and outputting a prediction of an area 
of one or more tumor sub-compartments in the pre­
processed MRI data. 
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12. The method of claim 11, where the plurality of 
age-specific atlases each define a range of ages. 

13. The method of claim 11, wherein the pre-processing 
further includes at least one of skull stripping and correcting 
for intensity inhomogeneity bias. 

14. The method of claim 11, wherein the tumor sub­
compartments are at least one of an enhancing tumor (ET), 
peritumoral edema (ED), and non-enhancing/necrotic core 
sub-compartments (NET+ NEC). 

15. The method of claim 11, wherein the MRI data include 
at least one of Tl-weighted MRI data, T2-weighted MRI 
data, and FLAIR MRI data. 

16. The method of claim 11, wherein the one or more 
deep-learning-based models is trained using adult tumor 
MRI data to identify tumor sub-compartments. 

17. The method of claim 16, wherein the one or more 
deep-learning-based models corresponds to each of the 
tumor-subcompartments. 

18. The method of claim 17, wherein the tumor sub­
compartments include at least one of an entire tumor habitat 
(TH), enhancing tumor (ET), peritumoral edema (ED), and 
non-enhancing/necrotic core sub-compartments (NET+ 
NEC). 

19. The method of claim 16, wherein the adult tumor MRI 
data include at least one of Tl-weighted MRI data, 
T2-weighted MRI data, and FLAIR MRI data. 

20. The method of claim 11, where in the parameter 
includes at least one of size, age, developmental stage, brain 
volumetric measurement, cortical thickness estimation. 

* * * * * 
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