
1111111111111111 IIIIII IIIII 111111111111111 111111111111111 1111111111 111111111111111 11111111
US 20240320158Al

c19) United States
c12) Patent Application Publication

Dalmia et al.
c10) Pub. No.: US 2024/0320158 Al
(43) Pub. Date: Sep. 26, 2024

(54) CACHE SYNCHRONIZATION FOR CHIPLET
ACCELERATORS

Publication Classification

(51) Int. Cl.

(71)

(72)

(21)

(22)

Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

Inventors: Preyesh Dalmia, Madison, WI (US);
Rajesh Shashi Kumar, Madison, WI
(US); Matthew D. Sinclair, Middleton,
WI (US)

Appl. No.: 18/188,209

Filed: Mar. 22, 2023

G06F 1210891 (2006.01)
G06F 1210815 (2006.01)

(52) U.S. Cl.
CPC G06F 1210891 (2013.01); G06F 1210815

(2013.01)

(57) ABSTRACT
A chiplet-based architecture provides for a reduction in
cache synchronization operations by tracking a relationship
between chiplet execution kernels and array operands to
elide synchronization when particular arrays are not in use
in the caches of other chiplets or when the current target
chiplet already has the array operand. Further efficiency is
promoted in some embodiments by assigning chiplets for
reuse based on previously received arrays.

50
NEW COMMAND

IDENTIFY ARRAY SUBARRAY

ELIDE FLUSH
ELIDE ACQUISITION

68
FLUSH L2

ACQUIRE ARRAY

LAUNCH KERNEL
81

ELIDE FLUSH
ACQUIRE ARRAY

64

Patent Application Publication Sep. 26, 2024 Sheet 1 of 3 US 2024/0320158 Al

16

22 21

1/3

20
I 10

' ')

21e

21d 14

-,✓• -,,
-, --~

/,
,- I

I
I

FIG. 1

30
,..... ,.....-_-_-------. ---,

/ COMPUTE
,/ UNIT

/

,/·
/ L1

40

42
/ ,·

/, ·' 14 10
.,· /, ,·')

.....---_ ______,.___ _ _____,..____ __ _____
30 12f

12e
/

□□□□ 36

32 I LOCAL CPI 32'
34 I L2 I GLOBAL CP

1~2c
35

39 24
HBM 33

12b 12b

□□□□ □□□□ 28

I LOCAL CPI I LOCAL CPI

I L2 I I L2 I 38

FIG. 2

Patent Application Publication Sep. 26, 2024 Sheet 2 of 3

(
51

52 54

CHIPLET
TYPE

54t A B C D

1 1

1

2 /3

FIG. 3

56
~

E \

US 2024/0320158 Al

2

3

4

5

1 4 1 FIG. 4
1

1 \

ARRAY RANGE R /W Cl C2 C3 C4

A OXO- R 10 00 00 11 OXFFF 3 3
A OX3FFF R/W 00 01 01 00 _) OX4FFF

B OXO- R 01 01 01 01 OXFFFF

FIG. 5

- r, -
~ r
55 57

\)
59

Patent Application Publication Sep. 26, 2024 Sheet 3 of 3 US 2024/0320158 Al

50
NEW COMMAND

IDENTIFY ARRAY SUBARRAY

.-------'-------'----,68 .-----------.............. 80 .------------.............. 64
ELIDE FLUSH FLUSH L2 ELIDE FLUSH

ELIDE ACQUISITION ACQUIRE ARRAY ACQUIRE ARRAY

LAUNCH KERNEL
81

FIG. 6

US 2024/0320158 Al

CACHE SYNCHRONIZATION FOR CHIPLET
ACCELERATORS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0001]

[0002]

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

[0003] The present invention relates generally to computer
architectures employing assemblies of "chiplet" integrated
circuits and, in particular, to an improved caching system for
such architectures.
[0004] As computer architectures gain complexity,
reflected in the number of transistors required to implement
the designs, there is interest in moving away from a single,
monolithic integrated circuit substrate to designs in which
the functional blocks of the architecture are separately
fabricated on different substrates termed "chiplets." The
chiplets are then assembled together on an "interposer"
which electrically interconnects those substrates into a con
ventional package. The resulting integrated circuit package
may be electrically connected with other components that
are acceptably further removed from the interposer than the
chiplets are separated from each other.
[0005] The benefits of assembling a device from chiplets
include the higher fabrication yields associate with smaller
area integrated circuits, the ability to change or upgrade the
architecture by changing a subset of the chiplets on the
interposer with reduced design and integration costs, and the
potential for constructing architectures using chiplets from
different manufacturers or process technologies.
[0006] This latter the possibility, of using components
from different manufacturers, has promoted interest in
developing a uniform chiplet interface to allow these dif
ferent chiplets to be readily interconnected using a common
protocol and bus structure on the interposer. The proposed
universal interfaces necessarily make a trade-off between
universality (accommodating chiplets having a range of
different functions and manufacturers) and communication
speed, the latter of which tends to be reduced by the interface
mechanics. This reduction in communication speed can
cause a bottleneck in data flow limiting the benefits of
chiplet design.

SUMMARY OF THE INVENTION

[0007] The present inventors have recognized that a sig
nificant portion of communication delay in universal chip let
interface designs comes from an additional layer of memory
memory hierarchy ecessary in the chiplet interfaces. Such
caches create a bottleneck in dataflow by requiring multiple
levels of cache flushing at the phase boundaries between
chiplet kernel executions.
[0008] To address this problem, the present invention
provides an intelligent cache monitoring system that elides
cache synchronization operations that can be determined to
be unnecessary when there is a sufficiently complete knowl
edge of the cache usage. Eliding these operations frees
bandwidth in the inter-chiplet communication paths improv
ing data flow.

1
Sep.26,2024

[0009] More specifically, in one embodiment, the inven
tion provides a computer architecture having a set of com
putational chiplets providing integrated circuitry on physi
cally separated substrates, each computational chiplet
providing a cache. An interposer provides a communication
pathway between the chiplets on a substrate physically
separate from the substrates of the chiplets. The computer
architecture further provides a command processor for
receiving commands from a host processor external to the
interposer, the command indicating a given computational
chiplet type, a given computational chiplet kernel providing
instructions to be executed by a given computational chiplet
type, and a given operand array for the given kernel. In this
regard, the command processor includes a chiplet coherency
table linking previously executed kernels to associated oper
and arrays and responds to the receipt of a command from
the host processor operating to: (1) direct the kernel to a
given chiplet;
[0010] (2) determine whether any chiplets, other than the
given chiplet, have copies of the given operand array; and
(3) elide a flushing of the caches of the other chiplets when
there are no copies of the given operand array.
[0011] It is thus a feature of at least one embodiment of the
invention to offset the delays caused by an increase in cache
levels in chiplet systems by intelligently eliding cache
operations at kernel phase boundaries such as may consume
interposer bandwidth.
[0012] The command processor may further elide a flush
ing of the caches of the chiplets when the given chiplet
already has a valid copy of the given operand array in cache
from a previously executed kernel.
[0013] It is thus a feature of at least one embodiment of the
invention to allow intelligent reuse of cache data to further
reduce unnecessary cache refresh operations.
[0014] The command processor may further assign the
given kernel to a target computational chiplet when the
target computational chi pl et already has a valid copy of the
given operand array in cache from a previously executed
kernel.
[0015] It is thus a feature of at least one embodiment of the
invention to steer kernels to chip lets that already have access
to updated copies of the necessary array to eliminate both
unnecessary flushing and reading of array data.
[0016] The chiplet coherency table may further indicate a
cache state for the caches of the chiplets and further elides
a flushing of the caches of the chiplets when there are copies
of the given operand array in caches but they are read only.
[0017] It is thus a feature of at least one embodiment of the
invention to track the read/write status of the arrays used by
the chiplets to elide cache flushing when there is no danger
that an array has been modified (e.g., is dirty) because it is
read-only.
[0018] The chiplet coherency table may further indicate a
cache state for the caches of the chiplets and further elides
a flushing of the caches of the chiplets when there are copies
of the given operand array in the caches but the copies are
not dirty.
[0019] It is thus a feature of at least one embodiment of the
invention to provide a high-resolution understanding of the
cache state to eliminate cache flushing at phase boundaries
for caches that are not dirty.
[0020] The chiplets may include multiple computation
elements each associated with an Ll cache and communi
cating with an L2 cache on the computational chiplet.

US 2024/0320158 Al

[0021] It is thus a feature ofat least one embodiment of the
invention to improve the operation of architectures having
multiple levels of cache.
[0022] The command processor may include a portion on
each computational chiplet tracking and reporting the cache
state of the cache and a portion on a command processor
chiplet receiving the commands.
[0023] It is thus a feature ofat least one embodiment of the
invention to provide both a high degree of local cache
information and a global perspective on cache usage for
effective elision.
[0024] These particular objects and advantages may apply
to only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] FIG. 1 is a simplified perspective view of a chiplet
architecture showing multiple chiplets on an interposer
attached to a carrier of an integrated circuit package;
[0026] FIG. 2 is a block diagram of the components of the
chiplet system of FIG. 1 showing multiple chiplets each
holding multiple computational units each having an L1
cache as collected together on the chiplet with an L2 cache
and a local command processor and in communication via
an interposer with each other, a memory providing an L3
cache, and a global command processor;
[0027] FIG. 3 is a representation of a command received
by the chiplet architecture of FIG. 1 from a host processor
providing the chiplet type and a kernel identification;
[0028] FIG. 4 is a logical representation of an array
prediction table associating a kernel of the command of FIG.
3 with an array.
[0029] FIG. 5 is a logical representation of a chiplet
coherency table identifying the state of arrays currently
cached by the chiplet architecture; and
[0030] FIG. 6 is a flow chart of the steps implemented by
the global command processor aided by the local command
processor of FIG. 2 in implementing a cache elision accord
ing to the chiplet coherency table of FIG. 4.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

[0031] Referring now to FIG. 1, a chiplet integrated circuit
10 may provide for a set of chip lets 12a-12/ each manufac
tured using standard integrated circuit techniques on a
separate monolithic substrates, for example, of silicon with
circuitry created through conventional techniques of doping,
etching, and metallization.
[0032] The chiplets 12 may be attached to an interposer 14
providing interconnection wiring (not shown) between the
chiplets 12 and, for example, constructed of a ceramic
material or the like. The chiplets 12 electrically communi
cate with the interposer 14 by means of metallic bridges 16,
for example, solder bumps, positioned between the parallel
plates of the substrates of the chip lets 12 and the interposer
14.
[0033] The interposer 14 further communicates with a
package substrate 18 providing together with a package
housing 20 an encapsulation protecting the integrated chip
lets 12 and interposer 14 from the environment. A set of
metallic bridges 21 may connect the interposer to the
package substrate 18, the latter of which provides for
standard electrical connections 22 to attach the chiplet

2
Sep.26,2024

integrated circuit 10 to other circuitry using conventional
output termination such as a pin-grid array.
[0034] In one example embodiment, each of the chiplets
12a, 12b, 12d and 12e may provide for multiple compute
units 30, for example, graphic processor general processing
cores. Each of the chiplets 12a, 12b, 12d and 12e may also
provide a local command processor 32 (as will be described
below) and an L2 cache 34. The L2 cache 34 will not use a
write-through or write-no-allocate policy but typically a
write-back policy to eliminate performance degradation.
[0035] Referring still to FIG. 2, each of the individual
units of the compute units 30 in a chiplet 12 may provide for
a processing core 40 (for example, specializing in some
accelerated computations such as graphics processing) and
an Ll cache 42. The Ll caches may use a write-through or
write-no-allocate cache management policy upon each
change of kernel.
[0036] Chiplets 12c may provide for various other func
tions including, for example, a high-bandwidth memory
(HBM) such as a 3-D stacked synchronous dynamic random
access memory (SDRAM). The HBM chiplet 12c may
implement an L3 cache.
[0037] Chiplet 12/may further include a global command
processor 32' which may provide one or more processors 35
communicating with a memory 37, the latter holding repro
grammable firmware 39, an array prediction table 41, a
chiplet coherency table 33, and a chiplet function table 24,
all as will be discussed further below.
[0038] Generally, the local command processors 32 will
communicate with the global command processor 32' to
provide a fine-scale monitoring of the L2 caches in the
chiplets 12 to update the chiplet coherency table 33. In
addition, if a kernel uses irregular, indirect, or pointer-based
accesses, the local command processors 32 can communi
cate the accesses to the global command processor 32'.
[0039] The global command processor 32' in turn, receives
commands from the host processor and schedules work
across the chiplets 12 and across particular compute units
30. By referring to the chiplet coherency table 33, the global
command processor 32' has a complete picture of what data
may still be in the chiplets' L2 caches and the status of that
data. In addition, the global command processor 32' may
perform synchronization, enforce memory consistency, copy
or move memory between the host and a chiplet integrated
circuit 10, perform error handling, manage the current power
settings (e.g., via Dynamic Frequency and Voltage Scaling,
or DVFS), and partition or virtualize the chiplet integrated
circuit 10 resources.
[0040] Chiplet 12/, in this example, may also provide a
direct memory controller 28, a host interface 36 for receiv
ing commands from the host processor, and in the case
where the chiplet integrated circuit 10 is a graphic accel
erator, an inter-GPU interface 38 for communicating with
other portions of the GPU implemented by other chiplet
integrated circuits 10.
[0041] Referring momentarily to FIG. 3, during operation
of the chiplet integrated circuit 10, the host processor may
provide a command 51 identifying a kernel 54 to be
executed by the chiplet integrated circuit 10 and the type 52
of chiplet 12 needed for that execution. This command 51
will be received by the global command processor 32' which
will schedule the kernel execution with a particular chiplet
12 and will handle updating and flushing the L2 cache 34 as
will now be described.

US 2024/0320158 Al

[0042] Referring to FIG. 4, for these tasks, the global
command processor 32' will make use of an array prediction
table 41 associating kernels with the data (arrays) they
operate on, and a chiplet coherency table 33 helping to
manage cache updating.
[0043] The array prediction table 41 holds a limited his
tory of execution of previous commands 51 as monitored by
the local command processors 32 which may track the data
used by the kernels 54 to associate each kernel 54 (by
identifier) with a particular operand array on which the
kernel 54 operates. The arrays 56 may be labeled with a
short label represented by a small number of bits by the host
processor to conserve memory space on the chiplet inte
grated circuit 10. In some embodiments, the array prediction
table 41 may also hold a subset of the operand array, for
example expressed as a range of virtual addresses, termed
herein a sub array 55, again based on this limited history.
[0044] In this regard, the array prediction table 41 may
provide a set of logical rows each associated with the kernel
54 and a set of logical colunms each associated with a
different array 56 and optionally different sub arrays 55.
[0045] The present inventors have determined empirically
that a compact array prediction table 41 can be effectively
used to implement the present invention with a size com
patible with a technically practical memory of the global
command processor 32'. Specifically, tracking as few as five
different kernels can be effective for implementation of the
invention and that a number of arrays may be limited to eight
in the case of the chiplet-implemented graphic processor
unit. More generally, the above described rows and colunms
for kernels and arrays can be less than 1 00xl 00 and less than
1 0xl 0 with the data in each cell limited to 16 bits or less than
eight bits. It will be appreciated that these limitations may
still allow additional arrays to be effectively handled by
defining the array labels coarsely to include more data.
Limitations of the size of the chiplet coherency table 33 are
enforced by allowing ejection of entries by flushing the
caches recorded by those entries and will be described
below.
[0046] Referring now to FIG. 5, the local command pro
cessors 32 and global command processor 32' may also
monitor operation of the chiplets 12 to develop a chiplet
coherency table 33 tracking the status of the L2 caches 34 of
each chiplet 12 with respect to the particular array 56 and
optionally sub array 55. The chiplet coherency table 33
provides a logical row for each array 56, and a read/write
colunm 57 indicating whether the array 56 and particular sub
array 55 has been accessed as read or read/write, and L2
status colunms 59 indicating caching of the array in the L2
caches of the different chiplets 12, here labeled Cl-C4 and
referring to the caches of chiplets 12a, 12b, 12d, and 12e,
respectively,
[0047] The indicated status may, for example, be as pro
vided below in Table I and stored in two bits of memory

00
01
10
11

TABLE I

Not present
Valid
Dirty
Stale

[0048] The "not present" state indicates that the array 56
is not available in the respective L2 cache while the "valid
state" indicates that the array 56 is present and contains valid

3
Sep.26,2024

data that properly reflects the main memory. The dirty state
indicates that the array 56 is in the cache but has been
changed by the chiplet 12 so that it is not consistent with the
main memory of the host processor and needs to be written
back to the main memory for cache synchronization. The
"stale" state indicates that the array may have been altered
by another chiplet 12 but has not yet been evicted-thus if
this chip let wants to access this data again, it must invalidate
it and get a new copy before accessing it again.
[0049] Referring to FIG. 2, in cases where the chiplets 12
of the chiplet integrated circuit 10 are heterogeneous (for
example, having different functions in contrast to identical
functions implementing an accelerator such as a GPU), the
chiplets 12 and their different functions may be enrolled in
the chiplet function table 24 as follows matching each
chiplet to a particular function:

Cl
C2
C3
C4

TABLE II

function ID
function ID
function ID
function ID

[0050] Referring now to FIG. 6, the command processor
32 executing the firmware 39, and as indicated by process
block 50, may receive a new command from the host
processor, for example, related to an accelerator function
implemented by the chiplet integrated circuit 10. The receipt
of this command indicates the occurrence of a new execu
tion phase (a phase boundary) which would normally
involve a flushing of all of the L2 caches 34 on the chip lets
12 by invalidating the cache entries and writing back any
dirty cache entries (that is, entries that were modified by the
chiplet 12). In the present invention, in many cases, this
flushing may be skipped or elided as will be described.
[0051] At process block 70, upon receipt of the command
51, the identified kernel 54 (and optionally an identified sub
range 55) is used to access the array prediction table 41 to
anticipate which array 56 will be used by the kernel 54 based
on historical usage patterns.
[0052] The global command processor 32 next reviews the
chiplet coherency table 33 at decision block 71 to match the
array 56 to L2 caches of the chiplets 12 to determine whether
any chiplets 12 currently have that array 56 in their L2
caches 34. If the array 56 is not currently present in any L2
cache, indicated by the "not present" tag in each of the
chiplets 12 associated with that array 56, then the flushing of
the L2 caches 34 may be elided (as indicated by process
block 64) and, this time instead used simply to flush and load
the necessary array 56 into the L2 cache 34 of the particular
chiplet 12 that will be executing the kernel 54 of the
command 51 as designated by the global command proces
sor 32'.
[0053] With an exception discussed below, this allocation
of kernels 54 to chiplets 12 may be according to standard
allocation procedures, for example, intended to distribute the
work among chiplets 12 to manage power consumption, etc.
[0054] If at decision block 71, an existing L2 cache does
contain the array 56, at decision block 72, the function of the
particular chip let 12 holding the array 56 (obtained from
Table II above) is compared to the chi pl et type 52 of the
command 51. If there is a match, and the identified L2 cache
has a cache state of "valid" or "dirty," the global command
processor 32' allocates the kernel 54 to that chiplet 12 which

US 2024/0320158 Al

already has a copy of the array 56, again indicating that a
flushing of the L2 caches is not required per process block
68 but further that the array refresh from a memory may be
elided.
[0055] In the situation where the relevant chiplet 12 indi
cates that the cache state is "stale" or if there is no other
chiplet 12 satisfying the above conditions, the program 39
proceeds to decision block 74 to determine if the array 56
that is present in one of the chiplets 12 was designated "read
only." If so, the global command processor 32 simply
changes the status of the L2 cache in that chiplet 12 to "not
present" in the chiplet coherency table 33 and again elides
the flushing of the cache at process block 64.
[0056] If at decision block 74 the relevant array 56 was
marked as read/write, then at decision block 76, the chiplet
coherency table 33 is investigated to determine whether the
relevant cache entry is "dirty" (as opposed to "valid" or
"stale"). If the cache entry is in these latter states, then again
flushing of the cache can be elided at process blocks 71.
Otherwise a flushing of the identified L2 cache occurs at
process block 80 and the L2 cache of the chiplet 12, to which
the kernel of 54 will be allocated, is loaded with the
necessary array 56. In cases where the array 56 is in one of
the L2 caches outside of the chiplet 12 that will be handling
execution of the command 51, only that L2 cache as may be
selectively flushed. In cases where the array 56 and a given
sub array 55 is in one of the L2 cache is outside of the chip let
12 that will be handling execution of the command 51, only
a portion of that L2 cache may be flushed matching the given
sub array 55.
[005 7] For other aspects of management of the L2 caches
34, the program 39 may employ a procedure consistent with
the HMG cache protocol described in Xiaowei Ren, Daniel
Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste Villa, and
David Nellans. HMG: Extending Cache Coherence Proto
cols Across Modem Hierarchical Multi-GPU Systems. In
26th IEEE International Symposium on High Performance
Computer Architecture, HPCA, pages 582-595, 2020,
hereby incorporated by reference. Generally the invention
will enforce a sequential consistency for heterogeneous
race-free memory model (SC-for-HRF), and for this reason
simultaneously executing kernels 54 will not be writing to
the same array 56 without explicit synchronization.
[0058] Subsequent to process blocks 80 and 71, the array
prediction table 41 and chiplet coherency table 33 may be
updated and the kernel 54 described and the received
command 51 may be launched per process block 81.
[0059] The term "cache" as used herein is intended to
cover cache-like local memory structures distributed among
the chip lets that maintain coherence across devices, meaning
that valid data values in the structures having the same
address are identical.
[0060] Certain terminology is used herein for purposes of
reference only, and thus is not intended to be limiting. For
example, terms such as "upper", "lower", "above", and
"below" refer to directions in the drawings to which refer
ence is made. Terms such as "front", "back", "rear", "bot
tom" and "side", describe the orientation of portions of the
component within a consistent but arbitrary frame of refer
ence which is made clear by reference to the text and the
associated drawings describing the component under dis
cussion. Such terminology may include the words specifi
cally mentioned above, derivatives thereof, and words of
similar import. Similarly, the terms "first", "second" and

4
Sep.26,2024

other such numerical terms referring to structures do not
imply a sequence or order unless clearly indicated by the
context.
[0061] When introducing elements or features of the pres
ent disclosure and the exemplary embodiments, the articles
"a", "an", "the" and "said" are intended to mean that there
are one or more of such elements or features. The terms
"comprising", "including" and "having" are intended to be
inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.
[0062] References to "a microprocessor" and "a proces
sor" or "the microprocessor" and "the processor," can be
understood to include one or more microprocessors that can
communicate in a stand-alone and/or a distributed environ
ment(s), and can thus be configured to communicate via
wired or wireless communications with other processors,
where such one or more processor can be configured to
operate on one or more processor-controlled devices that can
be similar or different devices. Furthermore, references to
memory, unless otherwise specified, can include one or more
processor-readable and accessible memory elements and/or
components that can be internal to the processor-controlled
device, external to the processor-controlled device, and can
be accessed via a wired or wireless network.
[0063] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con
tained herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties
[0064] To aid the Patent Office and any readers of any
patent issued on this application in interpreting the claims
appended hereto, applicants wish to note that they do not
intend any of the appended claims or claim elements to
invoke 35 U.S.C. 112(f) unless the words "means for" or
"step for" are explicitly used in the particular claim.

What we claim is:
1. A computer architecture comprising:
a set of computational chiplets providing integrated cir

cuitry on physically separated substrates, each compu
tational chiplet providing a cache;

an interposer providing a communication pathway
between the chiplets on a substrate physically separate
from the substrates of the chiplets;

a command processor for receiving commands from a
host processor external to the interposer indicating a
given computational chiplet type, a given computa
tional chiplet kernel providing instructions to be
executed by a given computational chiplet type, and a
given operand array for the given kernel; the command
processor including a chiplet coherency table linking
previously executed kernels to associated operand
arrays, the command processor responding to a receipt
of a command from the host processor operating to:

US 2024/0320158 Al

(1) direct the kernel to a given chip let;
(2) determine whether any chiplets other than the given

chiplet have copies of the given operand array; and
(3) elide a flushing of the caches of the other chiplets

when there are no copies of the given operand array in
the other chiplets.

2. The computer architecture of claim 1 wherein the
command processor further elides a flushing of the caches of
the chiplets when the given chiplet already has a valid copy
of the given operand array in cache from a previously
executed kernel.

3. The computer architecture of claim 1 wherein the
command processor further assigns the given kernel to a
target computational chiplet when the target computational
chip let already has a valid copy of the given operand array
in cache from a previously executed kernel.

4. The computer architecture of claim 1 wherein the
chiplet coherency table links previously executed kernels to
associated operand arrays and subranges of virtual addresses
within the associated operand arrays, the command proces
sor responding to a receipt of a command from the host
processor operating to:

(1) determine whether any chip lets other than the given
chiplet has copies of the given operand array and a
given subrange within the given operand array; and

(2) when there are copies of the given operand array and
the given subrange, elide a flushing of the caches of the
other chiplets outside of portions of the caches of the
other chiplets holding the given operand array and the
given sub range.

5. The computer architecture of claim 1 wherein the
chiplet coherency table further indicates a cache state for
each of the caches of the chiplets and further elides a
flushing of the caches of the chip lets when there are copies
of the given operand array in caches but they are read only.

6. The computer architecture of claim 1 wherein the
chip let coherency table further indicates a cache state for the
caches of the chiplets and further elides a flushing of the
caches of the chiplets when there are copies of the given
operand array in the caches but the copies are not dirty.

7. The computer architecture of claim 1 wherein the
chiplets include multiple computation elements each asso
ciated with an Ll cache and communicating with an L2
cache on the computational chiplet.

8. The computer architecture of claim 1 wherein the
command processor includes a portion on each computa
tional chiplet tracking and reporting the cache state of the
cache on a respective chiplet and a portion on a command
processor chiplet receiving the commands.

9. The computer architecture of claim 1 wherein the
chiplets are connected to the interposer by metallic bridges
positioned between substrates of the chiplets and the inter
poser in adjacent parallel planes.

10. The computer architecture of claim 1 wherein the
computer architecture further includes a high-bandwidth
memory chip let providing a stacked set of integrated circuit
substrates attached to the interposer.

5
Sep.26,2024

11. The computer architecture of claim 1 wherein the
computational chiplets are graphic accelerators.

12. A method of operating a computer architecture hav
ing:

a set of computational chiplets providing integrated cir
cuitry on physically separated substrates, each compu
tational chiplet providing a cache;

an interposer providing a communication pathway
between the chiplets on a substrate physically separate
from the substrates of the chiplets;

a command processor for receiving commands from a
host processor external to the interposer indicating a
given computational chiplet type, a given computa
tional chiplet kernel providing instructions to be
executed by a given computational chiplet type, and a
given operand array for the given kernel; the command
processor including a chiplet coherency table linking
previously executed kernels to associated operand
arrays, the method operating to:

(1) direct the kernel to a given chiplet;
(2) determine whether any chiplets other than the given

chiplet have copies of the given operand array; and
(3) elide a flushing of the caches of the other chiplets

when there are no copies of the given operand array.
13. The method of claim 10 further eliding a flushing of

the caches of the chiplets when the given chiplet when the
given chi pl et already has a valid copy of the given operand
array in cache from a previously executed kernel.

14. The method of claim 10 further assigning the given
kernel to a target computational chiplet when the target
computational chi pl et already has a valid copy of the given
operand array in cache from a previously executed kernel.

15. The method of claim 10 wherein the chiplet coherency
table links previously executed kernels to associated oper
and arrays and subranges of virtual addresses within the
associated operand arrays, the method further operating to:

(1) determine whether any chiplets other than the given
chiplet has copies of the given operand array and a
given subrange within the given operand array; and

(2) when there are copies of the given operand array and
the given subrange, elide a flushing of the caches of the
other chiplets outside of portions of the caches of the
other chiplets holding the given operand array and the
given sub range.

16. The method of claim 1 wherein the chiplet coherency
table further indicates a cache state for each of the caches of
the chiplets and wherein the method further elides a flushing
of the caches of the chiplets when there are copies of the
given operand array in caches but they are read only.

17. The method of claim 1 wherein the chip let coherency
table further indicates a cache state for the caches of the
chiplets and wherein the method further elides a flushing of
the caches of the chiplets when there are copies of the given
operand array in the caches but the copies are not dirty.

* * * * *

