
1111111111111111 IIIIII IIIII 111111111111111 111111111111111 lllll lllll 111111111111111 11111111
US 20240370191Al

c19) United States
c12) Patent Application Publication

Sohi et al.
c10) Pub. No.: US 2024/0370191 Al
(43) Pub. Date: Nov. 7, 2024

(54) COMPUTER SYSTEM WITH INSTRUCTION
PRE-SENDING

(71) Applicant: Wisconsin Alumni Research
Foundation, Madison, WI (US)

(72) Inventors: Gurindar Sohi, Madison, WI (US);
Shyam Murthy, Madison, WI (US)

(21) Appl. No.: 18/311,589

(22) Filed:

(51) Int. Cl.

May 3, 2023

Publication Classification

G06F 3/06 (2006.01)

14

19
'-22 r

26

(52) U.S. Cl.
CPC G06F 3/064 (2013.01); G06F 3/0604

(2013.01); G06F 3/0673 (2013.01)

(57) ABSTRACT

A computer architecture provides a pre-sending of memory
blocks from a lower level memory hierarchy component to
a higher level memory hierarchy component using a table
linking a set of memory blocks holding instructions that are
executed in different fragments of a program. The table is
used to pre-send memory blocks to the higher level memory
hierarchy component in anticipation of their use by a pro
cessor executing the program.

12

32

PFFQ (Tiill}--44

22

Patent Application Publication Nov. 7, 2024 Sheet 1 of 4 US 2024/0370191 Al

14

19

22

22

~
52a

FIG. 2

'-22 r

26

PFFQ ~ 44

FIG. 1

50b

Fl()

50a {
FRAG 1

{ IF ()
{
Y:F2()

IFRAG 21
}

Z:F3{)
IFRAG 31

56a_,/

/10

12 ----------,

32

F2() 50c

{
IFRAG 41
RETURN

56b

}

F3() 50d

{
IFRAG 5 I 56c
RETURN
}

58

~
.---_____,,..,...i1 FRAG 4 FRAG 2

FRAG 1
._______. FRAG 5 FRAG 3 ~ FRAG 6

60 62 64 66 68 70 72 74a 74b

\ I \ I \ I \ I \
29

~
FRAGMENT BLOCKS INDEX INST. COUNT OVERFLOW

INDEX CALL RETURN CALL RETURN CALL RETURN CALL RETURN

PC 1 ADDR, ADDR, CALL PC CALL PC - - - -
SIZE SIZE /RETURN /RETURN

PC 2 - - - - - - - -
... -----

FIG. 4

FIG. 3

74c 74d

I \
MULTIPLE

CALL RETURN

- -

--~
_.,

""O
~
('D

=

t
"e -.... (')
~
0 =
""O = O" -.... (')
~
0 =
z
0
~

~-....J
N
0
N
.i;...

rJJ =('D
('D
N
0
.i;...

c
rJJ
N
0
N
.i;...

---0
~
-....J
0
1,0
>

Patent Application Publication Nov. 7, 2024 Sheet 3 of 4 US 2024/0370191 Al

60 62 64 66

29

/

31~

70 74a I X l<BlO, l>I

\

52a

22
29~ \ \ \ \ \ I \ INDEX CALL RETURN CALL RET. COUNT I - BLOCK BLOCK INDEX INDEX

X:Fl() .
~ X <Bl, 2> - y - 12 1 0 0 0 Bl FRAG 29

1 B2 \.. BIO
52b

56b

52c

Y:F2{) - X <Bl, 2> y 12 1 0 0 0
FRAG B14 J;

y i<B14,2> RET 11 0 0 0 0
4 Bl5

RET 64~ 68~72~
FRAG \.. B26

2 827
X <Bl, 2> y 12 1 0 0 0

FRAG Z:F3() ~ Y 1< Bl4,2 >< 826,2::: RET z 11 7 0 0 0 0 -5 ----

FIG. 5

80 82
33 l

52a

52c

~ 29 xlz 2121

~x
64~ X:Fl() \ r74c

FRAG Bl <Bl, 2> y - 12 1 0 '1 0
1 B2

810 y i<Bl4,2> <826,2::: RET z 11 7 0 0 0 0

- FRAG Z:F3() z ---
5

;::::::--

-

FIG. 6

Patent Application Publication Nov. 7, 2024 Sheet 4 of 4 US 2024/0370191 Al

CURRENT FRAGMENT 90

92

94

POP IPU STACK

ACCESS FT PUSH
RETURN FRAGMENT INFO 98

ADD BLOCKS TO U BAQ 104

PRE-SEND

UPDATE CURRENT
FRAGMENT

123

128
FIG. 8

106

100

TERMINATE PATH

RESET START UP
FRAGMENT

96

FIG. 7

102--~-------L UPDATE UFQ
~ I

120

CHECK UFQ WITH PFFQ

UPDATE INSTRUCTION
ADVANCE

US 2024/0370191 Al

COMPUTER SYSTEM WITH INSTRUCTION
PRE-SENDING

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

CROSS REFERENCE TO RELATED
APPLICATION

BACKGROUND OF THE INVENTION

[0001] The present invention relates to computer architec
tures employing a memory hierarchy and, in particular, to a
system for pre-sending blocks of memory from the lower
levels of the memory hierarchy to the higher levels of the
memory hierarchy in such architectures.
[0002] Modem computer systems may employ a hierar
chical memory having at a lowest level a disk drive and then
a large main memory, typically comprised of many giga
bytes to terabytes of dynamic random access memory
(DRAM), and at higher levels, successively smaller cache
memories, for example, having kilobytes to megabytes of
static random access memory (SRAM). The smallest and
fastest cache, closest to the processor, is normally designated
Ll and there may be multiple lower-level caches of increas
ing size and typically decreasing speed (e.g., L2, L3) leading
to the main memory. There may also be storage buffers to
hold blocks of memory separate from the caches.
[0003] The smaller caches are more closely integrated
with the processor to provide increasingly faster processor
access. Smaller caches, however, also require more frequent
"fetching" of blocks of memory from lower-level caches.
[0004] The timely fetching of instructions by a processor
is critical to a processor's performance and energy efficiency
and for this reason a variety of systems have been proposed
to prefetch blocks of memory, ("memory blocks,") from
lower levels of a memory hierarchy into the higher levels of
the memory hierarchy. For example, memory blocks of the
size of cache blocks holding program instructions are
prefetched from a L2 cache into a Ll instruction cache in
anticipation of use by a processor. Basic forms of prefetch
ing may simply fetch the next address-sequential block of
program instructions, while more sophisticated prefetching
systems may attempt to track a likely path of program
execution and thereby identify future relevant memory
blocks.
[0005] Currently proposed sophisticated prefetching tech
niques require intimate knowledge of processor microarchi
tecture events (e.g., branch prediction, return address stack
activity, instruction cache misses, or the number or timing of
these events) and thus can be difficult or costly to implement
and can also be less efficient.

SUMMARY

[0006] The present invention provides a system for pre
sending memory blocks to the higher levels of the memory
hierarchy without the need for accurate and time-precise
knowledge of processor micro-architectural events. Instead
a high-level representation of memory block usage of a
program is constructed and used to identify and pre-send
memory blocks likely to be needed by the processor in the
future based on memory blocks that are currently accessed.
Preliminary studies suggest that this approach significantly
decreases latencies in comparison to more tightly coupled
prefetching approaches of greater complexity.

1
Nov. 7, 2024

[0007] More specifically, in one embodiment the invention
provides a computer architecture having a processor and a
memory hierarchy providing a lower level component and a
higher level component providing faster access by the
processor than the lower level component, the lower level
component holding a portion of a program in defined
memory blocks. An instruction pre-sending unit communi
cates with the processor and the lower level component and
operates during execution of a program by the processor to:
(1) maintain a table linking a first instruction of the program
to a first set of memory blocks and to a second instruction
of the program, the second instruction linked to a second set
of memory blocks and succeeding the first instruction in an
execution of the program; and (2) use the table to pre-send
a memory block from the first set of memory blocks and
from the second set of memory blocks from a lower level
component of the memory hierarchy to a higher level
component of the memory hierarchy.
[0008] It is thus a feature of at least one embodiment of the
invention to permit a pre-sending of memory blocks arbi
trarily ahead of the processor's sequencing through the
program and thus potentially much faster than pre-fetching.
The pre-sending is guided by a table providing a coarse
model of the program requiring only sufficient detail to
identify memory blocks for pre-sending. In this regard, the
present inventors have determined improved processing
speed can be obtained with relatively compact and achiev
able table sizes.
[0009] The memory blocks in the first set of memory
blocks and second set of memory blocks may be cache
blocks.
[001 OJ It is thus a feature of at least one embodiment of the
invention to provide a system useful for the important case
of cache updating.
[0011] The first and second sets of memory blocks may be
defined by corresponding portions of the program delineated
by call instructions or return instructions of the program.
[0012] It is thus a feature of at least one embodiment of the
invention to provide a simple and compact representation of
program flow described by calls and returns.
[0013] In some cases, the table may link a given first
instruction and first set of memory blocks to two or more
second instructions and second sets of memory blocks.
[0014] It is thus a feature of at least one embodiment of the
invention to accommodate multiple paths of program execu
tion in the table.
[0015] The table may assign path aging bits to each of the
two or more second instructions and second sets of memory
blocks and the pre-sending unit may operate to pre-send a
memory block from a given second set of memory blocks
based upon the value of the path aging bits.
[0016] It is thus a feature of at least one embodiment of the
invention to select among multiple paths yet unresolved by
the processor, for the purpose of pre-sending, by favoring
recently used paths.
[0017] Alternatively or in addition, the instruction pre
sending unit may operate to pre-send a memory block from
each of the corresponding two or more second sets of
memory blocks from the lower level component to the
higher level component.
[0018] It is thus a feature of at least one embodiment of the
invention to permit pre-sending along two different alterna
tive paths to accommodate path uncertainty.

US 2024/0370191 Al

[0019] The instruction pre-sending unit may determine
whether a memory block from the
[0020] given set of memory blocks is currently in the
higher level component and pre-send the memory block to
the higher level component based on that determination.
[0021] It is thus a feature ofat least one embodiment of the
invention to improve the efficiency of pre-sending by deter
mining in advance that the data may already have been sent.
[0022] The instruction pre-sending unit may further repeat
the pre-sending process of (2) with the first instruction
associated with the first set of memory blocks in a given
repetition being the second instruction associated with the
second set of memory blocks of the previous repetition.
[0023] It is thus a feature ofat least one embodiment of the
invention to allow the pre-sending to extend arbitrarily
ahead of current execution by repetition.
[0024] The instruction pre-sending unit may perform at
least two repetitions without communication with the pro
cessor.
[0025] It is thus a feature ofat least one embodiment of the
invention to provide a method of anticipating memory block
need that is largely decoupled from the processor, simpli
fying the architecture, reducing processor burden, and per
mitting pre-sending much in advance of processor execu
tion.
[0026] In some cases, the instruction pre-sending unit may
periodically receive from the processor an identifier of
currently executing memory blocks to control the number of
repetitions.
[0027] It is thus a feature ofat least one embodiment of the
invention to permit limiting advanced pre-sending to man
age pre-sending errors that can increase as the pre-sending
moves further ahead from current processing
[0028] The instruction pre-sending unit may maintain the
table by monitoring historical execution cycles of the pro
gram.
[0029] It is thus a feature ofat least one embodiment of the
invention to allow the table to be automatically developed
during program execution.
[0030] The first instruction of the program and second
instruction of the program in the table may be identified by
a compressed representation of the program counter values
of the first instruction of the program and of the second
instruction of the program.
[0031] It is thus a feature ofat least one embodiment of the
invention to provide a simple method of indexing the table,
through the use of instruction program counter values, while
minimizing the table size.
[0032] These particular objects and advantages may apply
to only some embodiments falling within the claims and thus
do not define the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1 is a block diagram of a computer architec
ture incorporating the instruction pre-sending unit of the
present invention;
[0034] FIG. 2 is a graphical representation of a sample
program used to describe the present invention having
multiple call and return instructions defining program frag
ments;
[0035] FIG. 3 is a logical representation of a graph of the
order of execution of the program fragments of the program
of FIG. 2;

2
Nov. 7, 2024

[0036] FIG. 4 is a logical representation of a portion of a
fragment table used and maintained by the instruction pre
sending unit of FIG. 1;
[0037] FIG. 5 is sequence diagram showing construction
of a portion of the fragment table of FIG. 4 (also including
an ancillary overflow region table and a dual target table) as
populated from the sample program of FIG. 2; per one
embodiment of the invention;
[0038] FIG. 6 is a sequence diagram showing further
inputting to the fragment table of FIG. 4 from a later
execution of the sample program of FIG. 2 following a
different program path;
[0039] FIG. 7 is a flow chart of the operation steps
performed by the instruction pre-sending unit of FIG. 1 in
using the fragment table of FIG. 4; and
[0040] FIG. 8 is a flowchart of a synchronization process
synchronizing the instruction pre-sending unit with the
processor of FIG. 1.

DETAILED DESCRIPTION

[0041] Referring now to FIG. 1, a computer architecture
10 constructed according to the teachings of the present
invention may provide a processor 12, for example, capable
of out-of-order, speculative execution and prefetching and
communicating with a memory hierarchy 14. In this non
limiting example, the memory hierarchy 14 includes an L1
cache 16, an L2 cache 18, and L3 cache 19, and a main
memory 20.
[0042] As discussed above, the L1 cache 16 will be closely
coupled to the processor 12 for high-speed access, for
example, using static random access memory (SRAM) and
will be smaller than the L2 cache 18 which may communi
cate indirectly with the processor 12 through the L1 cache 16
and will also typically be SRAM. The L2 cache 18 may
communicate either directly or through additional cache
layers like the L3 cache 19 with the much larger main
memory 20, for example, the latter typically constructed of
dynamic random access memory and being on the order of
more than 1000 times larger than the L2 cache 16. The main
memory 20 will hold an executable program 22 portions of
which may be replicated as cache blocks 24 (more generally
memory blocks) in the other caches or in other storage
elements in the memory hierarchy.
[0043] One embodiment described below describes the
pre-sending of memory blocks holding instructions from a
L2 cache 18 to an L1 cache 16, in anticipation of need by the
processor 12, however the invention contemplates use, more
generally, in sending memory blocks from an arbitrary
lower-level components to higher-level components of a
memory hierarchy.
[0044] The processor 12 and the L2 cache 18 may further
communicate with an instruction pre-sending unit (IPU 26)
which operates to anticipate memory blocks holding instruc
tions required by the processor 12 and to preemptively move
those memory blocks from the L2 cache 18 to the Ll cache
16 in a pre-send operation. Generally, the IPU 26 will
include a logic unit 28 performing a set of steps as will be
described below, making use of a number of data structures
including: a fragment table (FT 30), a shadow cache 32, a
block temperature table (BTT 34), multiple IPU stacks (IPU
stacks 36), a pre-send block queue (PBQ 38), an upcoming
block address queue (UBAQ 40), an upcoming fragments
queue (UFQ 42), and a processor fragment fetched queue
(PFFQ 44), the latter communicating with the processor 12.

US 2024/0370191 Al

The FT 30, for reasons of storage efficiency, may include a
main table 29 and a smaller overflow region table (ORT 31)
and a dual target table (DTT 33). Each of these data
structures and their use will be described below in more
detail.
[0045] Referring now to FIG. 2, an example program 22
may provide for a set of program snippets 50a-50d inter
connected by call instructions 52 and return instructions 56.
[0046] In this example, the first snippet 50a may provide
for a call instruction 52a X:Fl() where X indicates a
program counter value of the call instruction 52a and Fl()
is a function call for function Fl at that program counter
value. This function call is followed by a program fragment
(fragment 6) being a set of program instructions that are
processed when the program control returns from processing
function F 1.
[0047] Snippet 50b is the function Fl () and includes a first
fragment (fragment 1) followed by a conditional branch 54
if (), the latter conditional branch 54 which includes a
second function call instruction 52b Y:F2() followed by a
second fragment (fragment 2). The snippet 50b then con
tinues with a third function call instruction 52c Z:F3()
followed by a third fragment (fragment 3) and terminated
with a return instruction 56a causing a return of the program
execution to fragment 6, which is the program fragment
following the function call instruction 52a in snippet 50a.
[0048] Snippet 50c is the function F2() and includes a
fragment (fragment 4) and a return instruction 56b. Likewise
snippet 50d is the function F3() and includes a fragment
(fragment 5) followed by a return instruction 56c.
[0049] Referring now to FIG. 3, this program can be
expressed in a graph 58 form where each of the fragments
form a graph node interconnected by directed edges indi
cating program execution order. In this graph 58, fragment
1 may be followed by fragment 4 or fragment 5 depending
on the result of the conditional branch 54. Fragment 4 is
always followed by fragment 2, fragment 2 is always
followed by fragment 5, fragment 5 is always followed by
fragment 3, and fragment 3 is always followed by fragment
6.
[0050] Referring now to FIG. 4, the example program 22
of FIG. 2 is captured in a main table 29 of a fragment table
(FT) 30 which may identify the fragments (fragment I-frag
ment 6) by means of a program counter value of the
processor 12 at a call instruction 52 and stored in colunm 60
of the main table 29 of the FT 30. For each identifier 60, the
FT 30 maintains information for a call (call) fragment, and
a return (return) fragment. The call fragment is the fragment
that is executed as a result of the call instruction 52 at the
program counter value associated with the identifier 60. For
example, the call fragment for the call instruction 52a X:F 1 (
) at program counter value X, is fragment 1. The return
(return) fragment is the fragment that will be executed when
the program execution returns after the execution of the call
instruction 52 associated with the identifier 60. For example,
the return fragment for the call instruction 52a X:Fl() at
program counter value X, is fragment 6.
[0051] A call fragment is linked to the memory blocks
holding the instructions of that fragment, these memory
blocks are recorded in colunm 62. More specifically colunm
62 of the main table 29 will hold the block address of a first
memory block for that fragment and a number of contiguous
memory blocks thereafter. For example, column 62 may
hold <B12,2> indicating an initial memory block B12 and a

3
Nov. 7, 2024

total of two memory blocks to also include memory block
B13, a structure intended to reduce the size of the FT 30 in
a common case where memory blocks of a fragment are
contiguous. The next colunm 64 of the main table 29 holds
memory blocks associated with the return fragment also
using the same format.
[0052] The next two colunms 66 and 68 of the main table
29 identify the next fragment where the program execution
will proceed after the current call and return fragments,
respectively. If the current fragment is terminated by a call
instruction, the next fragment is identified by the program
counter value of the call instruction 52. If the current
fragment is terminated by a return instruction 56, the next
fragment is simply identified as a return (return), as the
identifier of the fragment that will be executed next is not
known without further information processing.
[0053] Colunms 70 and 72 of the main table 29 provide
instruction counts for the call fragment and the return
fragments, respectively, and will be used to determine how
far in advance the pre-sending process of the IPU 26 should
proceed ahead of the current execution of the processor 12
as will be discussed.
[0054] The final four colunms 74a-74b of the main table
29 maintain information (which may be a single bit for each
colunm) that will refer to other tables (the ORT 31 and DTT
33) of the FT 30 which are used to supplement the colunms
described above when the memory blocks of a particular
fragment are not contiguous or where there are multiple
possible next fragments and as such serve simply to reduce
the storage requirements of the FT 30.
[0055] Referring momentarily to FIG. 1, the logic unit 28
of the IPU 26 operates to both maintain the FT 30 to build
a logical graph representation of the historical operation of
the program 22 and to use the FT 30 to pre-send memory
blocks from the L2 cache to the Ll cache. Operation of the
logic unit 28 to maintain the FT 30 will now be described in
reference to the program 22 of FIGS. 2 and 3 and with
reference to FIG. 5. Generally, this updating creates a record
of the use of memory blocks by the processor 12 and thus
require some communication from the processor 12 indicat
ing its current execution. However, an entry in the FT 30
may not need to be updated often once it has been created.
[0056] Referring specifically to FIGS. 2 and 5, when the
processor 12 encounters a first call instruction 52, which
starts a given fragment, it records the program counter value
of the first call instruction and starts to track the memory
blocks that hold the instructions that it processes. The
processor 12 also counts the number of instructions that it is
processing since the first call instruction. When the proces
sor 12 encounters a second call instruction 52 or a return
instruction 56, which end the given fragment, it recognizes
a fragment. It then sends to the IPU 26 the program counter
value of the first call instruction, which serves as the
identifier of the given fragment, the set of memory blocks in
the given fragment, and the identifier of the instruction that
ended the given fragment which then serves as the identifier
of the next fragment that will be executed after the given
fragment. If the given fragment was ended by a second call
instruction, it sends the program counter value of the second
call instruction as its identifier. If the given fragment was
ended by a return instruction, it sends a value indicating a
return instruction.
[0057] For example, when the call instruction 52a is the
first call instruction encountered, the processor 12 will count

US 2024/0370191 Al

the number of instructions until it reaches the second call
instruction 52b (assuming that the conditional branch 54 is
true) upon which it recognizes fragment 1. The processor 12
then sends to the IPU 26 the program counter value X (based
on the program counter value of the first call instruction 52a
identifying fragment 1) and the set of memory blocks (Bl,
B2, BIO) comprising the fragment 1, as well as the program
counter value Y of the instruction that ended fragment 1 (e.g.
call instruction 52b).
[0058] In response, the IPU 26 will create an entry in the
main table 29 of the FT 30 for a call fragment corresponding
to the fragment identifier X. The FT 30 may be treated as a
cache, as is ordinarily understood in the art. Some bits of the
fragment identifier X may be used as an index into the FT
30, and some bits may be used to represent the identifier in
colunm 60.
[0059] The IPU 26 may also record the memory blocks
accessed in the fragment 1, being Bl and B2, in column 62
of the main table 29 in a compressed form as <Bl,2>
indicating that two consecutive blocks starting with Bl were
accessed. In this case, because the blocks used by fragment
1 are not contiguous (e.g., Bl, B2, and BIO) they all cannot
be stored in the compressed form of colunm 62 of the main
table 29 which requires contiguous blocks, and thus block
BIO is stored in the ORT 31. This expanded storage is
indicated by a set bit in the overflow colunm for the current
call fragment at colunm 74a of the main table 29 and
indicates the existence of an entry in ORT 31 indexed with
program counter value X recording the additional noncon
tiguous block BIO.
[0060] As assumed above, when the conditional branch
instruction 54 of fragment 1 (If() is true, and the call
instruction 52b, Y:F2() at program counter value Y is
encountered, it is this call instruction 52b that has terminated
fragment 1, and Y is the identifier of the next fragment that
will be processed after fragment 1. Accordingly, Y is
recorded in colunm 66 of the FT 30 entry. Further, the total
number of instructions of fragment 1, a value of 12 in this
example, may be recorded at colunm 70.
[0061] At this time, the memory blocks of colunm 64 for
the return (return) fragment, fragment 6 in this example, are
not yet known nor its instruction count nor its next fragment.
These items will be populated later as will be discussed.
[0062] When the processor 12 reports the return instruc
tion 56b representing the end of fragment 4, the main table
29 of the FT 30 may be updated by entering a new row for
fragment 4 indexed by the program counter value Y of the
call instruction 52b Y:F2() which terminated the previous
fragment (fragment 1) and started the new fragment (frag
ment 4). The row in the main table 29 may be updated
providing it blocks <B14,2> (indicating blocks B14 and
B15) in colunm 64, and indicating that this fragment 4 was
terminated by a return (placing RET in colunm 66) and a
count of the number of instructions (11) in colunm 70. The
IPU 26 may then use the value RET to determine the precise
identifier of the next fragment as will be discussed. The
blocks for this fragment are contiguous and hence an entry
in ORT 31 is not required, leaving the bit in colunm 74a
unset.
[0063] After the processing of the return instruction 56b,
which matches the call instruction 52b Y:F2() the processor
12 may then begin to execute fragment 2, which is the return
(return) fragment of the call instruction 52b. When the
processor 12 reaches call instruction 52c Z:F3() indicating

4
Nov. 7, 2024

the end of fragment 2 and the start of fragment 5, the
processor 12 conveys information for fragment 2 to the IPU
26. The IPU 26 may update the entry for the return fragment
(indexed at Y) in the main table 29 of FT 30 with the
memory block addresses for the return fragment (fragment
2) at colunm 64 (<B26,2>), with the identifier for next
fragment 5 (Z) at colunm 68, and the number of instructions
in fragment 2 (7) at column 72. The row in the main table
29 of FT 30 for fragment identifier X remains incomplete at
this time because there has been no return from the call
instruction 52a, and thus the return fragment for that row has
not been identified. But ultimately this table row is com
pleted when return instruction 56a is processed and frag
ment 6 is encountered and identified, as was the case when
fragment 2 was identified as the return fragment for identi
fier Y above.
[0064] Referring now to FIG. 6, at a subsequent execution
cycle of the program 22, fragment 1 may again be executed
but the program 22 may not take the conditional branch 54
leading to call instruction 52b of program counter value Y.
In this case, the program 22 proceeds to call instruction 52c.
Referring briefly to FIG. 3, this is the transition from
fragment 1 to fragment 5 as opposed to the previous tran
sition from fragment 1 to fragment 4 and then to fragment
2 and to fragment 5 and indicates that there are two potential
subsequent fragments to fragment 1. As will be discussed,
the processor 12 communicates to the IPU 26 the call
instructions 52 and return instructions 56 that it is executing
via the PFFQ 44. The IPU 26 may compare the sequence of
call and return instructions from the processor 12 in the
PFFQ 44 with its own sequence in the UFQ 42 to recognize
a difference indicating a new path in the execution of the
program and also to learn the identifier of the next fragment
on this new path of execution.
[0065] Referring to FIGS. 2 and 3, when the processor 12
is proceeding from fragment 1 to fragment 4, it will convey
the sequence of call instruction 52a followed by call instruc
tion 52b and then return instruction 56b to the IPU 26 via the
PFFQ 44. If instead the IPU 26 observes a sequence of call
instruction 52a followed by call instruction 52c in the PFFQ
44, it recognizes a different path of execution following
fragment 1 and the next fragment on this new path is
identified by the program counter value Z of the call
instruction 52c which followed the call instruction 52a in the
PFFQ 44.
[0066] Returning to FIG. 6, this new path of execution is
recorded in the FT 30 for row X to show that there are two
different paths that are possible from fragment 1, one to
fragment 4 (identified by the identifier Y) and the other to
fragment 5 (identified by the identifier Z). As colunm 66 of
the main table 29 is already occupied with identifier of
fragment 4 (Y), a DTT 33 is used to record this new
succeeding fragment 5 as flagged by a bit in colunm 74c of
the main table 29. The DTT 33 provides an entry having an
index X linking it to the entry of the main table 29 and
records the program counter value Z serving as an identifier
for fragment 2 already contained in the main table 29 of the
FT 30. The entry of the DTT 33 may also include a pair of
path aging bits 80 and 82 whose values reflect a likelihood
of each of the two different paths possible from fragment 1
(fragment 4 or fragment 5) and will be used later in some
embodiments of the invention. It will be appreciated that the
DTT 33 can be expanded to provide for multiple alternative
next fragments for a particular fragment corresponding to

US 2024/0370191 Al

multiple different paths possible from the given fragment.
Generally both DTT 33 and ORT 31 are simply logical
extensions of the main table 29 of the FT 30 serving to save
table space because not every entry will require this addi
tional data.
[0067] The above process may be repeated to provide a
full mapping of the graph 58 of FIG. 3 over time.
[0068] The processor 12 may communicate to the IPU 26
the memory blocks that it has accessed to maintain the FT
30 only if one of those memory blocks experienced a miss
in the L1 cache 16. In this manner, the communication from
the processor 12 to the IPU 26 to maintain entries in the FT
30 may be reduced as the entries in the FT 30 need not be
updated in the frequent case of hits in the L1 cache 16.
[0069] As noted above, the logic unit 28 of the IPU 26
operates not only to maintain the FT 30 as described, but
also to use the FT 30 to pre-send memory blocks from the
L2 cache 18 to the L1 cache 16. Referring now to FIG. 7, as
indicated by process block 90, a current fragment may be
identified by the IPU 26 for processing, for example, by
communication of a starting fragment from the processor 12
via the PFFQ 44 indicating a current program counter value.
At later times during operation of the IPU 26 this current
fragment may be a fragment that is the next fragment
identified in a FT 30 entry as will be discussed.
[0070] The IPU 26 may operate much in advance of the
processor execution, for example, to be more than one
fragment ahead of the fragment currently being executed by
the processor 12. How far ahead the IPU 26 is in execution
with respect to the processor 12 is assessed at decision block
92, which compares a current tally of the instructions of
colunms 70 and 72 of memory blocks that have been
pre-sent by the IPU 26 to the L1 cache 16 to the last
reporting by the processor 12 of its program counter value.
Desirably, the IPU 26 operates within a range ahead of the
processor 12 that ensures the Ll cache 16 is timely loaded
but not so far ahead as to cause the loading of memory
blocks of successive fragments to displace other memory
blocks in the Ll cache 16 that will be used sooner or to incur
significant errors in this process. It will be appreciated that
this instruction count value may be alternatively a time
value. If the IPU 26 is sufficiently ahead of the processor, it
simply loops at decision block 92 until the next reporting of
a program counter value from the processor 12 indicates that
additional pre-sending is needed.
[0071] Ifat decision block 92 the IPU 26 is not sufficiently
far ahead of the processor 12, and if the current fragment
identifier of process block 90 is not that of a return (return),
the fragment identifier is used to index the FT 30 to access
the information for the call fragment for that identifier.
Further, the information for the return fragment for that
identifier accessed from the FT 30 may be pushed on an IPU
stack 36 per process block 98.
[0072] If the current fragment identifier is a return (return),
the information for the fragment is not accessed from the FT
30. Rather this information popped from the IPU stack 36 as
indicated by process block 96, where it was pushed as per
process block 98 during the processing of a preceding
fragment by the IPU 26.
[0073] At process block 102, the UFQ 42 is updated with
the current fragment identifier and will be used by the IPU
26 to synchronize with the processor 12 as will be discussed.
[0074] At process block 104 IPU 26 uses the information
for the current fragment, obtained from either the FT 30 or

5
Nov. 7, 2024

the IPU stack 36 as above, to obtain the necessary addresses
of the memory blocks in the set of memory blocks in the
fragment and put them into the UBAQ queue 40. At this
time, the UBAQ 40 may also be examined to see if it is
likely that the enrolled memory blocks may already be in the
Ll cache 16. This may be done by referring to a shadow
cache 32 maintained by the IPU 26 which may be updated
by monitoring the UBAQ 40 (which indicates the addresses
of memory blocks sent from the L2 cache 18 to the Ll cache
16) thus eliminating the need to actively poll the L1 cache
16.
[0075] At process block 104, the entries of the UBAQ 40
may also be examined to see if it is likely that the repre
sented memory blocks are "cold," that is, touched by the
processor 12 at some point but rarely used after that. This
aspect may be tracked using the temperature bits in a BTT
34, for example, in one embodiment, having three bits for
each block address in the L2 cache 18. The block addresses
may be compressed, for example, by truncation or by
hashing or by another method to better manage the size of
the BTT 34. Such a compression may result in an aliasing of
the block addresses with a plurality of block addresses
associated with the same BTT 34 entry.
[0076] The bits of an entry in the BTT 34 may be set to a
high-value (e.g., seven) when a memory block correspond
ing to the BTT entry is sent to the L1 cache 16. The L1 cache
16 may be then equipped with an access bit which is reset
when the Ll cache 16 receives the memory block and set if
that memory block is accessed before being evicted from the
L1 cache 16. If a block is evicted from the L1 cache 16 with
its access bit reset, the temperature bit in the corresponding
BTT 34 may be decremented. Only memory blocks in the
UBAQ 40 with a predetermined threshold of temperature
may be sent to the Ll cache 16 in one embodiment.
[0077] At process block 106, those elected blocks from
UBAQ 40 are loaded into the PBQ 38 from the L2 cache 18
and scheduled to be sent to the Ll cache 16.
[0078] Referring still to FIG. 7, the next fragment identi
fier of the current fragment is then used to update the current
fragment identifier, per process block 100, and the IPU 26
returns to process block 90 to continue the process of
pre-sending memory blocks. In this way the IPU 26 can
repeatedly pre-send memory blocks with the current frag
ment identifier of a given repetition being the next fragment
identifier of the previous repetition
[0079] Referring now to FIG. 6, a fragment may have
more than one next fragment. In this case, the IPU 26 needs
to make a decision on which next fragment to use as the
fragment to continue the pre-sending process. In one
embodiment multiple, different IPU stacks 36 may be used
to continue the process along multiple paths. Each path may
be given its own IPU stack 36, and the process of FIG. 7 is
performed for each path. Experimental results suggest that
proceeding down multiple paths may be advantageous in
some cases.
[0080] In one embodiment memory blocks from both
paths (for example, fragment 4 and fragment 5 of graph 58
of FIG. 3 when the starting fragment is fragment 1) may be
sent from the L2 cache 18 to the L1 cache 16 with the
knowledge that blocks from one path may not be used by the
processor 12. In another embodiment, the path aging bits 80
and 82 discussed above may be employed to select between
the two possible (or multiple possible) paths, by comparing
the values of the path aging bits 80 and 82 and selecting the

US 2024/0370191 Al

path associated with a larger value and send memory blocks
from the L2 cache 18 to the Ll cache 16 only for the selected
path. In another embodiment, memory blocks from a given
path may be sent from the L2 cache 18 to the L1 cache 16
if the value of its path aging bits exceeds a threshold. The
updating of the path aging bits 80 and 82 for this purpose
will be described below.

Synchronization

[0081] Referring now to FIG. 8, the processor 12 com
municating with the IPU 26 populates a PFFQ 44 by
periodically reporting call instructions and return instruc
tions which define fragments being executed. At block 120
executed by the IPU 26, the entries in the PFFQ 44 are
compared to the entries in the UFQ 42. At decision block
122 if the fragment at the head of the PFFQ 44 is found in
the UFQ 42, the indication is that the IPU 26 is proceeding
on the same path at the processor 12 and the cumulative
instruction count of the succeeding blocks in the UFQ 42
may be used in process block 126 to update how far ahead
of the processor the IPU 26 is and to provide input to the
decision block 92 of FIG. 7. If on the other hand, the latest
value of the PFFQ 44 is not found in the UFQ 42, a
divergence between the path being pursued by the processor
12 and the IPU 26 is detected, and the IPU 26 terminates
proceeding down the path for which there is a mismatch, as
per process block 123. The IPU 26 then uses the value at the
head of the PFFQ 44 as the identifier of a starting fragment
at process block 90 of FIG. 7 to restart the pre-sending
process per process block 128. Additionally, in process
block 123, the IPU stack 36 may be adjusted (for example
by updating the stack pointers) and the number of instruc
tions used at decision block 92 may be reset to zero.
[0082] At process block 123, this comparison process may
also be used to terminate any multiple paths being processed
using the multiple IPU stacks 36 (related to multiple next
fragments recorded in the FT 30) by resolving which of the
multiple paths is actually being executed. At the same time
the value of the path aging bits 80 and 82 may be adjusted
positively for the correct path and negatively for an incorrect
path.

Fragment Table Set Associativity

[0083] The FT 30 may be organized as a set associative
table. In this case, when a row is first created in FT 30, the
FT 30 is accessed set associatively to determine an entry in
the FT 30 for the fragment. The associativity helps to reduce
the number of conflicts among different fragments. How
ever, when the IPU 26 accesses the FT 30, it uses the next
fragment identifier of colunm 68, not some arbitrary frag
ment identifier, to access the FT 30. If the next fragment
identifier in an FT 30 entry is maintained as an index into the
FT 30, most of the accesses of the FT 30 by the IPU 26 can
be direct and need not be done in a set associative manner.
This can increase the speed and reduce the energy of the
access of the FT 30 by the IPU 26. Likewise, accesses to the
DTT 33 and ORT 31 can also be made directly rather than
set associatively, as they merely maintain additional infor
mation for a fragment in the FT.

Indirect Calls With Multiple Targets

[0084] For direct calls in the program 22, there is a unique
fragment associated with the call, and thus the program

6
Nov. 7, 2024

counter value of the call instruction is an adequate fragment
identifier for colunm 60 of the FT 30. However, for indirect
calls, there could be multiple targets of the call instruction.
To distinguish between the different targets/fragments, a
hash of the program counter value of the call instruction and
the program counter value of the target instruction may be
used as a fragment identifier.

Loops and Recursion

[0085] Loops and recursion are program constructs where
the same set of fragments are executed repeatedly, and
eventually execution proceeds to the fragment at the con
tinuation of the loop or the recursive call. The IPU 26 need
not send the memory blocks of fragments with the loop/
recursion repeatedly as they will likely already be in the L1
cache 16 after the first time they are sent. After the loop/
recursion exit, the IPU 26 should be sufficiently ahead of the
processor 12 to avoid misses on the continuation path. To
achieve this, at a loop/recursion the IPU 26 may proceed
along two paths, one along the looping/recursion path which
can be of an indeterminate length, and the other along the
continuation path following the loop or recursion. Along the
former path the IPU 26 may do little after the initial sending
of the memory blocks of the fragments on that path other
than monitoring the fragment identifiers along this path sent
via the PFFQ 44. Along the latter path, it may attempt to stay
a certain distance ahead of the processor, as normal. Even
tually when the IPU 26 sees a fragment identifier from the
latter path in the PFFQ 44, it terminates the former path.
[0086] In the embodiment described above, the IPU 26 is
pre-sending memory blocks from the L2 cache 18 to the L1
cache 16. In a similar fashion, other embodiments could
pre-send memory blocks from a lower level component of a
memory hierarchy to a higher level component of the
memory hierarchy where memory blocks may be accessed
by the processor 12 in a faster manner. One embodiment
may operate to pre-send memory blocks from a L3 cache 19
to an Ll cache 16 via a L2 cache 18. Another embodiment
may operate to pre-send memory blocks from a L3 cache 19
directly to an L1 cache 16 bypassing a L2 cache 18. Another
embodiment may operate to pre-send memory blocks from
a L3 cache 19 to a storage buffer separate from an Ll cache
16 from where it may be accessed advantageously by the
processor 12. Another embodiment may operate to pre-send
memory blocks from a L2 cache 19 to a micro-operation
cache separate from an Ll cache. In other embodiments,
memory blocks that are different from memory blocks such
as memory blocks that are smaller than or larger than
memory blocks may be pre-sent from a lower level of a
memory hierarchy to a higher level of the memory hierarchy.
More generally, the pre-sending described in this application
is not limited to direct transfers of memory blocks (for
example from the L2 cache to the Ll cache) but may include
indirect transfers of memory blocks using intervening stor
age structures as part of the desired transfer.
[0087] In the embodiment described above, the IPU 26
operated both to create and use the FT 30. In other embodi
ments the creation of a FT 30 could be done separately from
its use for pre-sending memory blocks. In one embodiment,
a FT 30 could be constructed in software or by a dynamic
compiler. In other embodiments a FT 30 could be con
structed with a mix of hardware and software components.
Similarly, in one embodiment the operation of the IPU 26 to
pre-send memory blocks could be carried out in software

US 2024/0370191 Al

running on a separate processor from the processor running
the program or on a separate thread running on the same
processor.
[0088] The inventors contemplate that the pre-sending
mechanism described above may also be used for pre
sending information blocks to structures outside of the
memory hierarchy as is typically defined including, for
example, pre-sending information blocks to branch target
buffers (BTBs), instruction translation lookaside buffers
(ITLBs) and even branch predictors that may be used by a
processor for faster instruction processing. Such structures
may have a smaller upper level table for fast access by a
processor and a lower level table with larger capacity. Such
a system would employ a pre-sending unit communicating
with the processor and a lower level table, for example a
lower level table of a branch target buffer, to pre-send
information from the lower level table to an upper level
table, for example the upper level table of a branch target
buffer. Such a system would operate during execution of a
program by the processor to: (1) maintain a first table linking
a first instruction of the program to a first set of information
blocks and to a second instruction of the program, the
second instruction linked to a second set of information
blocks and succeeding the first instruction in an execution of
the program; and (2) use the first table to pre-send an
information block from a second lower level table to a third
upper level table.
[0089] When introducing elements or features of the pres
ent disclosure and the exemplary embodiments, the articles
"a", "an", "the" and "said" are intended to mean that there
are one or more of such elements or features. The terms
"comprising", "including" and "having" are intended to be
inclusive and mean that there may be additional elements or
features other than those specifically noted. It is further to be
understood that the method steps, processes, and operations
described herein are not to be construed as necessarily
requiring their performance in the particular order discussed
or illustrated, unless specifically identified as an order of
performance. It is also to be understood that additional or
alternative steps may be employed.
[0090] It is specifically intended that the present invention
not be limited to the embodiments and illustrations con
tained herein and the claims should be understood to include
modified forms of those embodiments including portions of
the embodiments and combinations of elements of different
embodiments as come within the scope of the following
claims. All of the publications described herein, including
patents and non-patent publications, are hereby incorporated
herein by reference in their entireties.
[0091] To aid the Patent Office and any readers of any
patent issued on this application in interpreting the claims
appended hereto, applicants wish to note that they do not
intend any of the appended claims or claim elements to
invoke 35 U.S.C. 112 (f) unless the words "means for" or
"step for" are explicitly used in the particular claim.

What we claim is:
1. A computer architecture comprising:
a processor;
a memory hierarchy providing a lower level component

and a higher level component providing faster access
by the processor than the lower level component, the
lower level component holding a portion of a program
in defined memory blocks; and

7
Nov. 7, 2024

an instruction pre-sending unit communicating with the
processor and the lower level component and operating
during execution of a program by the processor to:

(1) maintain a table linking a first instruction of the
program to a first set of memory blocks and to a second
instruction of the program, the second instruction
linked to a second set of memory blocks and succeed
ing the first instruction in an execution of the program;
and

(2) use the table to pre-send a memory block from the first
set of memory blocks and from the second set of
memory blocks from a lower level component of the
memory hierarchy to a higher level component of the
memory hierarchy.

2. The computer architecture of claim 1 wherein the
memory block in the first set of memory blocks and the
memory block in the second set of memory blocks is a cache
block.

3. The computer architecture of claim 1 wherein the first
and second sets of memory blocks are defined by corre
sponding portions of the program delineated by call instruc
tions or return instructions of the program.

4. The computer architecture of claim 1 wherein the table
provides a logical graph of the program having sets of
memory blocks as nodes linked by directed edges indicating
execution order.

5. The computer architecture of claim 1 wherein the table
links a given first instruction and first set of memory blocks
to two or more second instructions and second sets of
memory blocks.

6. The computer architecture of claim 5 wherein the table
assigns path aging bits to each of the two or more second
instructions and second sets of memory blocks and the
pre-sending unit operates to pre-send a memory block from
a given second set of memory blocks based upon the value
of its path aging bits.

7. The computer architecture of claim 5 wherein the
instruction pre-sending unit operates to pre-send a memory
block from each of the corresponding two or more second
sets of memory blocks.

8. The computer architecture of claim 1 wherein at (2), the
instruction pre-sending unit determines whether a memory
block from the given set of memory blocks is currently in the
higher level component and pre-sends the memory block to
the higher level component based on that determination.

9. The computer architecture of claim 1 wherein the
instruction pre-sending unit further operates during execu
tion of the program by the processor to:

(3) repeat (2) with the first instruction associated with the
first set of memory blocks in a given repetition being
the second instruction associated with the second set of
memory blocks of the previous repetition.

10. The computer architecture of claim 9 wherein the
instruction pre-sending unit performs at least two repetitions
without communication with the processor.

11. The computer architecture of claim 9 wherein the
instruction pre-sending unit periodically receives from the
processor an identifier of proximately executing memory
blocks to control the number of repetitions.

12. The computer architecture of claim 9 wherein the
instruction pre-sending unit maintains the table by monitor
ing execution of the program.

13. The computer architecture of claim 1 wherein the first
instruction of the program and second instruction of the

US 2024/0370191 Al

program in the table are identified by a compressed repre
sentation of the program counter values of the first instruc
tion of the program and of the second instruction of the
program.

14. The computer architecture of claim 1 wherein the
table is set associative.

15. A method of managing memory blocks in a computer
architecture having a processor and a memory hierarchy
providing a lower level component and a higher level
component providing faster access by the processor than the
lower level component, the lower level component holding
a portion of a program in defined memory blocks; the
method comprising:

(1) maintaining a table linking a first instruction of the
program to a first set of memory blocks and to a second
instruction of the program, the second instruction
linked to a second set of memory blocks and succeed
ing the first instruction in an execution of the program;
and

(2) using the table to pre-send a memory block from the
first set of memory blocks and from the second set of
memory blocks from a lower level component of the
memory hierarchy to a higher level component of the
memory hierarchy.

16. The method of claim 15 wherein the memory block in
the first set of memory blocks and the memory block in the
second set of memory blocks is a cache block.

17. The method of claim 15 wherein the first and second
sets of memory blocks are defined by corresponding por
tions of the program delineated by call instructions or return
instructions of the program.

18. The method of claim 15 wherein the table provides a
logical graph of the program having sets of memory blocks
as nodes linked by directed edges indicating historical
execution order.

8
Nov. 7, 2024

19. The method of claim 15 wherein the table links a
given first instruction and first set of memory blocks to two
or more second instructions and second sets of memory
blocks.

20. The method of claim 19 wherein the table assigns path
aging bits to each of the two or more second instructions and
second sets of memory blocks and the pre-sending unit
operates to pre-send a memory block from a given second
set of memory blocks based upon the value of its path aging
bits.

21. The method of claim 19 further including pre-sending
a memory block from each of the corresponding two or more
second sets of memory blocks.

22. The method of claim 15 wherein at (2), further
including determining whether a memory block from the
given set of memory blocks is currently in the higher level
component and pre-sending the memory block to the higher
level component based on that determination.

23. The method of claim 15 further including repeating
(2) with the first instruction associated with the first set of
memory blocks in a given repetition being the second
instruction associated with the second set of memory blocks
of the previous repetition.

24. The method of claim 23 including identifying a
proximately executing memory block to control the number
of repetitions.

25. The computer architecture of claim 15 where in the
table is maintained by monitoring execution cycles of the
program.

26. The method of claim 15 wherein the first instruction
of the program and second instruction of the program in the
table are identified by a compressed representation of the
program counter values of the first instruction of the pro
gram and of the second instruction of the program.

27. The method of claim 15 wherein the table is set
associative.

* * * * *

	Front Page
	Drawings
	Specification
	Claims

