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(57) ABSTRACT 
In accordance with some embodiments, systems, methods, 
and media for Eulerian single-photon computer vision are 
provided. In some embodiments, the system comprises: an 
image sensor comprising detectors configured to detect 
arrival of individual photons, and arranged in an array; a 
processor programmed to: cause the image sensor to gen­
erate a sequence of images representing a scene, each of the 
images comprising a plurality of pixels; perform, for each of 
a plurality of three dimensional filters, a convolution 
between the three dimensional filter and a plurality of 
frames, wherein each of the plurality of frames is based on 
one or more of the images of the sequence of images; 
generate, for each of the plurality of frames, a plurality of 
filter bank responses each corresponding to a three dimen­
sional filter of the plurality of three dimensional filters; and 
perform a computer vision process based on the plurality of 
filter responses. 
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SYSTEMS, METHODS, AND MEDIA FOR 
EULERIAN SINGLE-PHOTON COMPUTER 

VISION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] NIA 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0002] NIA 

BACKGROUND 

[0003] Conventional digital camera image sensors typi­
cally capture hundreds to thousands of photons per pixel to 
create an image. Recently, single-photon avalanche diodes 
(SPADs) that can detect individual photons, and precisely 
measure the time-of-arrival, have become more prevalent. 
SPADs are driving the development of new devices with 
novel functionalities due to the sensitivity and picosecond 
time resolution that can be achieved, such as imaging at very 
high frame rates (e.g., in excess of a billion frames per 
second), non-line-of-sight (NLOS) imaging, and micro­
scopic imaging of nano time-scale bio-phenomena. 
[0004] However, these new SPAD-based imaging tech­
niques are typically active, where the SPAD is used in 
precise temporal synchronization with an active light source 
(e.g., a pulsed laser). This includes applications such as 
NLOS imaging, LiDAR, and microscopy. Due to the output 
of a SPAD (e.g., a detection of a single photon at a precise 
time), SPADs are not as well suited to more conventional 
imaging tasks, such as capturing images of a scene under 
passive, uncontrolled illumination ( e.g., sunlight, moon­
light). While passive SPAD-based imaging systems could 
potentially expand the scope of SPADs to a considerably 
larger set of applications, including machine vision, data 
generated from passive SPAD-based data has so far been of 
relatively low quality compared to images captured using 
conventional image sensors. 
[0005] Accordingly, new systems, methods, and media for 
Eulerian single-photon computer vision are desirable. 

SUMMARY 

[0006] In accordance with some embodiments of the dis­
closed subject matter, systems, methods, and media for 
Eulerian single-photon computer vision are provided. 
[0007] In accordance with some embodiments of the dis­
closed subject matter, a system for facilitating single-photon 
computer vision tasks is provided, the system comprising: 
an image sensor comprising a plurality of detectors config­
ured to detect arrival of individual photons, the plurality of 
detectors arranged in an array; at least one processor that is 
programmed to: cause the image sensor to generate a 
sequence of images representing a scene, each of the images 
comprising a plurality of pixels; perform, for each of a 
plurality of three dimensional filters, a convolution between 
the three dimensional filter and a plurality of frames, 
wherein each of the plurality of frames is based on one or 
more of the images of the sequence of images; generate, for 
each of the plurality of frames, a plurality of filter bank 
responses each corresponding to a three dimensional filter of 
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the plurality of three dimensional filters; and perform a 
computer vision process based on the plurality of filter 
responses. 
[0008] In some embodiments, each of the plurality of 
detectors comprises a single photon avalanche diode 
(SPAD). 
[0009] In some embodiments, each image of the sequence 
of images comprises a binary image that represents photons 
detected by the image sensor during an exposure time -i:. 

[001 OJ In some embodiments, each of the plurality of three 
dimensional filters comprises a velocity tuned filter, and 
wherein a first subset of the plurality of three dimensional 
filters are tuned to a three dimensional frequency k: =(~, ky, 
k,), where ~ and kY represent spatial patterns, and k, repre­
sents a pattern in time, each of the three dimensional filters 
of the first subset having a different scale. 
[0011] In some embodiments, the at least one processor 
that is further programmed to: determine a z-score for each 
of the plurality of filter bank responses; map each z-score to 
a weight associated with the respective filter bank for which 
the z-score was determined; and utilize the weighted filter 
bank responses to perform the computer vision process 
based on the plurality of filter responses. 
[0012] In some embodiments, the at least one processor 
that is further programmed to: estimate a variance value 
Var(Rk[p]) using a relationship Vk[p]: =V(c[p]) ~qlhk[q]l 2

, 

where Rk[P] is a filter bank response generated by applying 
a filter hk[ q] to the plurality of frames B[p ], V(c[p]) is a 
variance of an estimated local average flux over B[p], and 
~qlhk[q]l 2 is a sum of the filter hk[q] over q<p; and determine 
the z-score using a relationship zk[p]: =IRk[p]l/yVk[p]. 
[0013] In some embodiments, the at least one processor 
that is further programmed to: map each z-score to a weight 
associated with the respective filter bank for which the 
z-score was determined using a relationship w(z): =1-exp 
(-max(0, z-z0)), where z0 comprises a threshold z-score. 
[0014] In some embodiments, the computer vision process 
is an edge detection process, and wherein at least one 
processor that is further programmed to: perform the com­
puter vision process based on a phase congruency associated 
with each of the plurality of filter responses. 
[0015] In some embodiments, at least one processor that is 
further programmed to: detect one or more corners based on 
the phase congruency associated with each of the plurality of 
filter responses. 
[0016] In some embodiments, the computer vision process 
is a motion estimation process, and wherein at least one 
processor that is further programmed to: perform the com­
puter vision process for each of the pluralit_y of pixeJs base_d 
on a phase constancy relationship vx cos 8+vy sin 8=cot <P,1 

where (vx, vy) is a velocity at the respective pixel, vn=cot cp 
is a component velocity of a respective three dimensional 
filter kin a spatial direction 8, and k: =s·(sin ~cos 8, sin ~sin 
~' cos ~), where (8,~) is a spatio-temporal direction of k. 
[0017] In accordance with some embodiments of the dis­
closed subject matter, a method for facilitating single-photon 
computer vision tasks is provided, the method comprising: 
causing an image sensor to generate a sequence of images 
representing a scene, each of the images comprising a 
plurality of pixels, wherein the image sensor comprises a 
plurality of detectors configured to detect arrival of indi­
vidual photons, the plurality of detectors arranged in an 
array; performing, for each of a plurality of three dimen­
sional filters, a convolution between the three dimensional 
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filter and a plurality of frames, wherein each of the plurality 
of frames is based on one or more of the images of the 
sequence of images; generating, for each of the plurality of 
frames, a plurality of filter bank responses each correspond­
ing to a three dimensional filter of the plurality of three 
dimensional filters; and performing a computer vision pro­
cess based on the plurality of filter responses. 
[0018] In accordance with some embodiments of the dis­
closed subject matter, a non-transitory computer readable 
medium containing computer executable instructions that, 
when executed by a processor, cause the processor to 
perform a method for facilitating single-photon computer 
vision tasks is provided, the method comprising: causing an 
image sensor to generate a sequence of images representing 
a scene, each of the images comprising a plurality of pixels, 
wherein the image sensor comprises a plurality of detectors 
configured to detect arrival of individual photons, the plu­
rality of detectors arranged in an array; performing, for each 
of a plurality of three dimensional filters, a convolution 
between the three dimensional filter and a plurality of 
frames, wherein each of the plurality of frames is based on 
one or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality of 
filter bank responses each corresponding to a three dimen­
sional filter of the plurality of three dimensional filters; and 
performing a computer vision process based on the plurality 
of filter responses. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0019] The patent or application file contains at least one 
drawing executed in color. Copies of this patent or patent 
application publication with color drawing(s) will be pro­
vided by the Office upon request and payment of the 
necessary fee. 
[0020] Various objects, features, and advantages of the 
disclosed subject matter can be more fully appreciated with 
reference to the following detailed description of the dis­
closed subject matter when considered in connection with 
the following drawings, in which like reference numerals 
identify like elements. 
[0021] FIG. lA shows an example of a computer vision 
result generated from an image of a scene obtained by 
averaging a series of binary frames. 
[0022] FIG. 1B shows an example of computer vision 
results generated from images of the same scene obtained 
using a quanta burst imaging technique. 
[0023] FIG. lC shows an example of a flow for Eulerian 
single-photon computer vision in accordance with some 
embodiments of the disclosed subject matter. 
[0024] FIG. 2 shows an example of a system for Eulerian 
single-photon computer vision in accordance with some 
embodiments of the disclosed subject matter. 
[0025] FIG. 3 shows examples of two-dimensional signals 
and corresponding two-dimensional velocity-tuned filters 
corresponding to the velocity. 
[0026] FIG. 4 shows an example of a weight function that 
can be used to determine a z-score for a response in 
accordance with some embodiments of the disclosed subject 
matter. 
[0027] FIG. 5 shows an example of a process for Eulerian 
single-photon vision in accordance with some embodiments 
of the disclosed subject matter. 
[0028] FIG. 6 shows examples of binary frames of two 
scenes, and edge detection results generated using various 
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techniques, including techniques described herein for Eul­
erian single-photon computer vision. 
[0029] FIG. 7 shows examples of edge detection results 
generated using techniques described herein for Eulerian 
single-photon computer vision for various levels of frame 
averaging and various levels of scene flux in accordance 
with some embodiments of the disclosed subject matter. 
[0030] FIG. 8 shows examples of a binary frame of a scene 
at two flux levels, and edge detection results generated using 
techniques described herein for Eulerian single-photon com­
puter vision using various numbers and coarseness of scal­
ing in the filters in accordance with some embodiments of 
the disclosed subject matter. 
[0031] FIG. 9 shows examples ofbinary frames ofa scene, 
and motion estimates generated using various techniques, 
including techniques described herein for Eulerian single­
photon computer vision. 
[0032] FIG. 10 shows examples of a binary frame of two 
scenes, and motion estimates generated using techniques 
described herein for Eulerian single-photon computer vision 
using various coarseness of scaling in the filters in accor­
dance with some embodiments of the disclosed subject 
matter. 

DETAILED DESCRIPTION 

[0033] In accordance with various embodiments, mecha­
nisms (which can, for example, include systems, methods, 
and media) for Eulerian single-photon vision are provided. 
[0034] Single-photon sensors, such as SPADs, can mea­
sure light signals at the finest possible resolution, individual 
photons. Such sensors introduce two major challenges in the 
form of strong Poisson noise and extremely large data 
acquisition rates, which are also inherited by downstream 
computer vision tasks. Previous work has largely focused on 
solving the image reconstruction problem first and then 
using off-the-shelf techniques for downstream tasks. How­
ever, the most general solutions that account for motion are 
typically computationally costly and not scalable to large 
data volumes produced by single-photon sensors. 
[0035] In some embodiments, mechanisms described 
herein can facilitate performing computer vision tasks using 
data from a single-photon imager without performing 
explicit image reconstruction from the data. For example, as 
described herein, computationally light-weight phase-based 
techniques for computer vision tasks ( e.g., of edge detection 
and motion estimation) can be used to perform computer 
vision tasks that directly process raw single-photon data as 
a 3D volume (e.g., using velocity-tuned filtering), applying 
3D convolution kernels to the incoming photon stream. As 
described below in connection with FIGS. 6-10, experiments 
that demonstrate results of using techniques described herein 
on both edge detection and motion estimation tasks were 
conducted, achieving more than two orders of magnitude 
speed-ups compared to explicit reconstruction-based tech­
niques. 
[0036] In general, digital image sensors record light on 
discrete sensing elements (often referred to as pixels). The 
spatio-temporal density of these measurements has continu­
ally increased over time, and recent developments have 
results in single-photon quanta sensors, such as single­
photon avalanche diodes (SPADs) and jots (e.g., as 
described in Fossum et al., "The Quanta Image Sensor: 
Every Photon Counts," Sensors, 16, 1260 (2016)). Such 
single-photon sensors can be configured to record measure-
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ments at the granularity of individual photons, and can be 
facilitaet an exciting array of applications, such as photog­
raphy in challenging conditions ( e.g., low-light, fast-motion, 
and/or high dynamic range), high-speed tracking, and 3D 
imaging. 
[0037] Such single-photon sensors open up new opportu­
nities by providing access to individual photon arrival times. 
A challenge presented by such sensors is the amount of raw 
data captured by these sensors ( e.g., leading to difficulties 
moving the data off the image sensor), that such raw data is 
heavily quantized ( e.g., going down to a single bit per pixel), 
and that such raw data is generally noisy ( e.g., due to 
Poisson statistics of photons). Additionally, computational 
(and therefore power) costs to analyze such raw data is 
generally high, as treating individual photons independently 
instead of aggregating them (like conventional sensors) 
increases the amount of storage, computational, and com­
munication costs associated with capturing and using such 
data. These challenges are precluding the large-scale prac­
tical adoption of this otherwise exciting technology. 
[0038] In some embodiments, mechanisms described 
herein can be used to implement relatively light-weight 
(e.g., using relatively fewer computing resources, such as 
memory, processing resources, and communication 
resources) computer vision techniques for single-photon 
imagers that capture binary single-photon frames (and/or 
multi-bit single-photon frames) at relatively high speeds. 
The most widely studied problem in single-photon imaging 
has been image reconstruction, under the assumption that 
recovering a high-quality image from single-photon data is 
critical for downstream inference. However, strong noise 
and heavy quantization make reconstructing images from 
binary frames (particularly from single binary frames) a 
difficult problem, often needing strong priors and computa­
tionally intensive techniques to reconstruct an image. In 
some embodiments, mechanisms described herein 
[0039] FIG. lA shows an example of a computer vision 
result generated from an image of a scene obtained by 
averaging a series of binary frames. 
[0040] As shown in FIG. lA, as radiance in a scene 
changes over time, a SPAD array (or other suitable single­
photon image sensor) can capture a high-speed sequence of 
binary frames. As shown in FIG. lA, a single frame is 
extremely noisy and quantized, and naively averaging 
frames over time increases the signal, but loses motion 
information. 
[0041] An intuitive technique to mitigate the noise and 
quantization of the data is to aggregate information over 
many frames. However, this approach is prone to potentially 
severe motion blur. For example, as shown in FIG. lA, the 
falling ball gets completely blurred when binary frames are 
naively averaged. 
[0042] FIG. 1B shows an example of computer vision 
results generated from images of the same scene obtained 
using a quanta burst imaging technique. The technique 
shown in FIG. 1B can be described as a Lagrangian vision 
pipeline based on frame-by-frame reconstruction as an inter­
mediate step. Quanta burst imaging techniques are described 
in Ma et al., U.S. Pat. No. 11,170,549, which is hereby 
incorporated by reference herein in its entirety. As shown in 
FIG. 1B, quanta burst imaging can include: an alignment 
phase in which motion is estimated at a patch-level, which 
can be followed by a robust merging (sum) of the frames 
after compensating for the estimated motion (robustness can 
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mitigate inaccurate motion estimates under shot noise). 
While high-quality frames can be obtained using quanta 
burst imaging techniques, these techniques generally incur 
heavy computational and memory/bandwidth costs. 
[0043] FIG. lC shows an example of a flow for Eulerian 
single-photon computer vision in accordance with some 
embodiments of the disclosed subject matter. 
[0044] As shown in FIG. lC, in some embodiments, 
mechanisms described herein can be used to implement an 
Eulerian vision pipeline. For example, a recorded photon 
stream can be processed in a single shot with a bank of 
velocity-tuned three-dimensional filters, followed by local 
pixel-wise computation to extract low-level information, 
such as edges and motion vectors. Such a single-pass 
technique can lead to less computation overall, and less data 
movement, than the pipeline shown in FIG. 1B for a fixed 
output frame rate. 
[0045] In many computer vision tasks, a full image of the 
scene being analyzed is not necessary, and such computer 
visions tasks are therefore not necessarily tied to the same 
cost-versus-quality trade-off as image reconstruction. In 
some embodiments, mechanisms described herein can be 
used to perform signal phase recovery as a proxy for 
recovering information that can be recovered from image 
reconstruction, and which can be addressed without recon­
structing the entire signal (image). Phase is an important 
feature both in visual perception and in vision tasks. In the 
context of video, local phase from oriented 3D filters can 
directly encode information about scene motion ( e.g., as 
described below in connection with FIG. 5). In some 
embodiments, a family of3D velocity-tuned filter banks can 
be used to extract phase information from single-photon 
sensor data. Multiple computer vision techniques are 
described herein that can be used to extract scene informa­
tion ( e.g., edges, motion) from recovered phase information. 
Such phase-based techniques can involve only linear filter­
ing and pixel-wise operations, leading to extremely fast 
execution relative to image reconstruction-based 
approaches. As described below in connection with FIGS. 
6-10, results using implementations of mechanisms 
described herein demonstrate computational speedups of 
more than two orders of magnitude as compared to an 
explicit burst vision approach with comparable quality (see, 
e.g., FIGS. 6-10). 
[0046] In some embodiments, large differences in speed 
between explicit burst vision techniques (and other image 
reconstruction-based techniques) and mechanisms described 
herein can follow from the different perspectives the tech­
niques take. For example, burst reconstruction can be con­
sidered a form of search: given a patch, the task is to find 
similar patches across the other frames of the video. Search­
ing over long sequences incurs a high cost, exacerbated 
when repeating the search for every patch. The general idea 
of tracking the trajectory of a patch through the exposure 
volume can be analogized to a Lagrangian specification in 
fluid mechanics, that describes the motion of individual 
particles in a flow field. In contrast, mechanisms described 
herein can be analogized to Eulerian approaches in fluid 
mechanics, where properties of the flow (such as rate) are 
described at each point in space and time, without the notion 
of a particle. 
[0047] As single-photon sensors become more widely 
used and specialized processor architectures have been 
developed for such sensors, the simplicity of a Eulerian 
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approach can make it an attractive candidate for on-chip 
implementation, which can be advantageous in practical 
single-photon imaging due to the reduction in cost of data 
movement (e.g., if the data can be analyzed on the image 
sensor chip, transmission of the raw photon data from the 
image sensor chip can be omitted. In some embodiments, 
Eulerian single-photon vision techniques described hereine 
can be used to provide a general strategy for designing 
lightweight algorithms for extremely fast vision tasks, 
directly from raw single-photon data. 
[0048] FIG. lC shows a SPAD array observing a scene 
capturing a sequence of frames (e.g., binary frames) over 
time. The average incident flux at a pixel can be denoted by 
f[p] (in photons/second), where p:=(i, j, n) represents the 
spatial location (i, j) and temporal frame index n of the pixel. 
The number of incident photons can be modeled as a Poisson 
random variable, with mean f[p]. In some embodiments, 
during each frame exposure, a pixel can be limited to 
detecting at most one photon. Note that in some SPAD 
arrays, a single frame can be captured in which multiple 
photon detections are permitted, which can be used to 
generate multi-bit frames (e.g., with a number of detections 
within the frame capture time being recorded up to an upper 
limit). Additionally or alternatively, data from multiple 
frames (e.g., multiple binary frames, multiple multi-bit 
frames) can be combined (e.g., by summing the number of 
photon detections). Hence, the pixel measurements B[p] can 
be binary-valued and follow a Bernoulli distribution, which 
can be represented using the following relationships: 

Pr(B[p] = 0) = e-("flvl+d)r 

Pr(B[p] = l) = 1 - e-("flvl+d)T 

(1) 

where the exposure time of each frame is t seconds, TlE (0,1] 
is the quantum efficiency of the single-photon detectors, and 
d is the dark count rate (DCR) representing spurious detec­
tions unrelated to incident photons. It can be assumed that 
distinct quanta samples B[p] and B[p'] are statistically 
independent of each other. 
[0049] In some embodiments, mechanisms described 
herein can be used to extract information from photon cube 
data captured by an array of single-photon detectors (e.g., a 
SPAD array). Since individual frames are extremely noisy 
and quantized (binary), in general, information must aggre­
gated over sequences of multiple single-photon frames. 
However, simply summing frames over time results in 
potentially severe motion blur (e.g., depending on the com­
position of the scene), which makes it challenging to extract 
meaningful scene information from photon cubes. As 
described above, it is possible to explicitly compensate for 
motion via search-based burst photography-like techniques 
to reconstruct high-quality images from the photon cube, but 
such techniques are computationally- and bandwidth-inten­
sive, and not amenable to real-time processing with current 
technology. 
[0050] In some embodiments, mechanisms described 
herein can extract scene information directly from the pho­
ton cube, without an intermediate step of image reconstruc­
tion. In some embodiments, mechanisms described herein 
can be based on an analysis of motion as spatio-temporal 
orientation of intensity or phase iso-surfaces when viewing 
videos as 3D volumes. Motion information can be extracted 
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through 3D oriented filters used. Such filters can be referred 
to as velocity-tuned filters, because filters at a given orien­
tation in the 3D frequency domain only respond to move­
ment at a particular range of velocities. In FIG. lC, the hue 
shown in the depiction of velocity-tuned filters and the 
filter-bank response represents the phase of a complex 
valued number (e.g., having two values per pixel). As 
shown, the phase of the filters and responses can be undu­
lating based on the wavelet shape of the impulse response 
function. 

[0051] In some embodiments, a benefit of using velocity­
tuned filters for single-photon video is that compared to 
frame-by-frame processing, 3D filters can aggregate infor­
mation about the scene (including fine details and motion) 
over a large spatio-temporal support, leading to a large 
reduction in noise. Although it is still challenging to recon­
struct the entire flux signal from the filter responses, the 
phase information is preserved sufficiently well in them to be 
used directly by downstream algorithms, despite strong 
noise and quantization in the raw photon cube. Note that it 
can be proved that for single-tone sinusoids the Fourier 
coefficient phases are unbiased under the imaging model 
described above in connection with EQ. (1) for almost all 
frequencies. Further, simulations described in Appendix A 
show that the variance of the Fourier coefficient phase is 
close to the Cramer-Rao lower bound on unbiased estima­
tors. Both the proof and the simulation results are included 
in Appendix A, which is hereby incorporated by reference 
herein in its entirety. While velocity-tuned filters are not 
pure sinusoids, it can be expected that extracting the phase 
of such filters directly to be close to optimal (maximum­
likelihood) estimation, given the resemblance of the filters to 
sinusoids. The particular cases of the low-level vision tasks 
of edge detection and motion estimation are described below 
in connection with FIGS. 5-10, for which velocity-tuned 
filter banks (as applied to single-photon data) were designed 
and analyzed. 
[0052] FIG. 2 shows an example 200 of a system for 
Eulerian single-photon computer vision in accordance with 
some embodiments of the disclosed subject matter. 

[0053] As shown, system 200 can include an image sensor 
204 (e.g., an area sensor that includes an array of single 
photon detectors); optics 206 (which can include, for 
example, one or more lenses, one or more attenuation 
elements such as a filter, a diaphragm, and/or any other 
suitable optical elements such as a beam splitter, etc.); a 
processor 208 that can be configured to control operations of 
system 200 which can include any suitable hardware pro­
cessor (which can be a central processing unit (CPU), a 
digital signal processor (DSP), a microcontroller (MCU), a 
graphics processing unit (GPU), an accelerated processing 
unit (APU), etc.) or combination of hardware processors; an 
input device 210 (such as a shutter button, a menu button, a 
microphone, a touchscreen, a motion sensor, a liquid crystal 
display, a light emitting diode display, etc., or any suitable 
combination thereof); memory 212; a signal generator 214 
that can be configured to generate one or more signals to 
control operation of image sensor 204; a communication 
system or systems 216 that can be configured to facilitate 
communication between system 200 and other devices, such 
as a smartphone, a wearable computer, a tablet computer, a 
laptop computer, a personal computer, a server, an embed­
ded computer (e.g., for controlling an autonomous vehicle, 
robot, etc.), etc., via a communication link; and/or a display 
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218 that can be configured to present information (e.g., 
images, user interfaces, etc.) for consumption by a user. In 
some embodiments, memory 212 can store image data, 
and/or any other suitable data. Memory 212 can include a 
storage device (e.g., a hard disk, a Blu-ray disc, a Digital 
Video Disk, random access memory (RAM), read-only 
memory (ROM), electronically erasable read-only memory 
(EEPROM), etc.) for storing a computer program for con­
trolling processor 208. In some embodiments, memory 212 
can include instructions for causing processor 208 to execute 
processes associated with the mechanisms described herein, 
such as processes described below in connection with FIG. 
5. 
[0054] In some embodiments, image sensor 204 can be an 
image sensor that is implemented at least in part using an 
array of SPAD detectors (which can sometimes be referred 
to as a Geiger-mode avalanche diode) and/or one or more 
other detectors that are configured to detect the arrival time 
of individual photons. In some embodiments, one or more 
elements of image sensor 204 can be configured to generate 
data indicative of the arrival time of photons from the scene 
via optics 206. For example, in some embodiments, image 
sensor 204 can be an array of multiple SPAD detectors. As 
yet another example, image sensor 204 can be a hybrid array 
including SPAD detectors and one or more conventional 
light detectors (e.g., CMOS-based pixels). As still another 
example, image sensor 204 can be multiple image sensors, 
such as a first image sensor that includes an array of SPAD 
detectors that can be used to generate information about the 
brightness of the scene and a second image sensor that 
includes one or more conventional pixels that can be used to 
generate information about the colors in the scene. In such 
an example, optics can be included in optics 206 (e.g., 
multiple lenses, a beam splitter, etc.) to direct a portion of 
incoming light toward the SPAD-based image sensor and 
another portion toward the conventional image sensor. In 
some embodiments, image sensor 204 can have an imaging 
plane upon which optics 206 can focus light from the scene. 
[0055] In some embodiments, system 200 can include 
additional optics. For example, although optics 206 is shown 
as a single lens, it can be implemented as a compound lens 
or combination of lenses. Note that although the mecha­
nisms described herein are generally described as using 
SPAD-based detectors, this is merely an example of a single 
photon detector. As described above, other single photon 
detectors can be used, such as jot-based image sensors. 
[0056] In some embodiments, signal generator 214 can be 
one or more signal generators that can generate signals to 
control image sensor 204. For example, in some embodi­
ments, signal generator 214 can supply signals to enable 
and/or disable one or more pixels of image sensor 204 ( e.g., 
by controlling a gating signal of a SPAD used to implement 
the pixel). As another example, signal generator 214 can 
supply signals to control readout of image signals from 
image sensor 208 ( e.g., to memory 212, to processor 208, to 
a cache memory associated with image sensor 204, etc.). 
[0057] In some embodiments, system 200 can communi­
cate with a remote device over a network using communi­
cation system(s) 216 and a communication link. Addition­
ally or alternatively, system 200 can be included as part of 
another device, such as a smartphone, a tablet computer, a 
laptop computer, an autonomous vehicle, a robot, etc. Parts 
of system 200 can be shared with a device within which 
system 200 is integrated. For example, if system 200 is 
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integrated with an autonomous vehicle, processor 208 can 
be a processor of the autonomous vehicle and can be used to 
control operation of system 200. 

[0058] In some embodiments, system 200 can communi­
cate with any other suitable device, where the other device 
can be one of a general purpose device such as a computer 
or a special purpose device such as a client, a server, etc. Any 
of these general or special purpose devices can include any 
suitable components such as a hardware processor (which 
can be a microprocessor, digital signal processor, a control­
ler, etc.), memory, communication interfaces, display con­
trollers, input devices, etc. For example, the other device can 
be implemented as a digital camera, security camera, out­
door monitoring system, a smartphone, a wearable com­
puter, a tablet computer, a personal data assistant (PDA), a 
personal computer, a laptop computer, a multimedia termi­
nal, a game console, a peripheral for a game counsel ( or any 
of the above devices), a special purpose device, etc. 

[0059] Communications by communication system 216 
via a communication link can be carried out using any 
suitable computer network, or any suitable combination of 
networks, including the Internet, an intranet, a wide-area 
network (WAN), a local-area network (LAN), a wireless 
network, a digital subscriber line (DSL) network, a frame 
relay network, an asynchronous transfer mode (ATM) net­
work, a virtual private network (VPN). The communications 
link can include any communication links suitable for com­
municating data between system 200 and another device, 
such as a network link, a dial-up link, a wireless link, a 
hard-wired link, any other suitable communication link, or 
any suitable combination of such links. 

[0060] In some embodiments, display 218 can be used to 
present images and/or video generated by system 200, to 
present a user interface, etc. In some embodiments, display 
218 can be implemented using any suitable device or 
combination of devices, and can include one or more inputs, 
such as a touchscreen. 

[0061] It should also be noted that data received through 
the communication link or any other communication link(s) 
can be received from any suitable source. In some embodi­
ments, processor 208 can send and receive data through the 
communication link or any other communication link(s) 
using, for example, a transmitter, receiver, transmitter/re­
ceiver, transceiver, or any other suitable communication 
device. 

[0062] FIG. 3 shows examples of two-dimensional signals 
and corresponding two-dimensional velocity-tuned filters 
corresponding to the velocity. 

[0063] As shown in FIG. 3, velocity-tuning principles can 
be demonstrated using a ID box-shaped signal imaged over 
time (vertical) at two speeds: in panel (a) v=0, and in panel 
(b) v=l pixel/frame. In both cases, the 2D (x-t) spectrum 
lies along a line given by k,=-v·kx. EQ. (3), described below, 
extends this to moving 2D signals (video) in the 3D fre­
quency domain. 

[0064] FIG. 4 shows an example of a weight function that 
can be used to determine a z-score for a response in 
accordance with some embodiments of the disclosed subject 
matter. 
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[0065] Consider three-dimensional complex linear filters 
hk applied to an input video stream of quanta samples B[p]: 

(2) 

where hk is band-pass, tuned around the 3D frequency k: 
=(kx, k,,, k,). Su(h) denotes the spatio-temporal support of h, 
p represents a possible data point location of possible data 
point locations and time (e.g., frame) instants, and Rk[p] is 
the filter bank response generated by applying the filter to 
the samples from the stream of quanta samples B[p], where 
kin Rk[P] represents one of the filters in the filter bank, tuned 
to a particular frequency (which can also be denoted using 
k). Note that h can represent a size of the filter, which can 
be in any suitable range. For example, h can be in a range 
of 2 pixels to 100 pixels in space, and in a range of 2 frames 
to a range of 5000 frames in time. As another example, h can 
be in a range of 3 pixels to 75 pixels in space, and in a range 
of 3 frames to a range of 2500 frames in time. As yet another 
example, h can be in a range of 3-50 pixels in space, and in 
a range of 3-2000 frames in time. As still another example, 
h can be in a range of about 3-5 pixels in space, and in a 
range of about 3-5 frames in time. As a further example, h 
can be in a range of about 30-50 pixels in space, and in a 
range of about 1000-3000 frames in time. In the context of 
video, 3D filters can be interpreted as being velocity-tuned, 
such that hk above can respond maximally to spatial patterns 
of frequency (kx, k,,) moving along the unit vector 

at a speed 

(kx, ky) 

~ 

-k, 
Vnarmal = ✓ k2 + k 2 

X y 

(velocity - tuning) 
(3) 

[0066] FIG. 3 shows a simplified 2D example that can 
demonstrate this relation through the example of a moving 
one-dimensional signal (2D overall). 
[0067] For computational efficiency, in some embodi­
ments, log-Gabor filters (e.g., as described in Field, "Rela­
tions between the statistics of natural images and the 
response properties of cortical cells," International Journal 
of Computer Vision, 5(1):77-104 (1990), and Kovesi," 
Image Features from Phase Congruency," Videre: Journal of 
Computer Vision Research, 1(3) (1999)) that are space-time 
separable. 
[0068] For example, in some embodiments, spatial filters 
used in connection with mechanisms described herein can be 
polar-separable in the frequency domain (e.g., similar in 
shape to steerable filter-banks). Such filters can be tuned at 
equally-spaced orientations (e.g., in a range of 2-12 orien­
tations, in a more particular example the filters can be 
equally-spaced at six different orientations, at two orienta­
tions, at three orientations, at four orientations, at five 
orientations, at seven orientations, at eight orientations, at 
nine orientations, at ten orientations, at eleven orientations, 
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at twelve orientations, etc), and constructed at multiple 
scales (e.g., in a range of 2-6 scales, in a more particular 
example at two scales, at three scales, at four scales, at five 
scales, at six scales, etc.). Note that the scale and/or number 
of scales can be different along the spatial dimensions (e.g., 
along x,y), and along the temporal dimensions (e.g., t), 
which can be treated separately/independently because the 
relation can vary with the video contgent, through the 
velocity-tuning formula. For example, the filter design can 
be any suitable combination of spatial and temporal scale 
(e.g., coarse spatial and temporal scales, coarse spatial scale 
and fine/fast temporal scale, fine spatial scale and fine/fast 
temporal scale, fine spatial scale and coarse temporal scale, 
etc.). 

[0069] In some embodiments, the radial bandwidth of 
filters can be any suitable range, such as approximately one 
to three octaves. In a particular example, radial bandwidth of 
filters can be two octaves. Note that a choice of bandwidth 
is relatively unlikely to make a substantial difference to 
system operations, and can be relatively small implementa­
tion detail. In some embodiments, the temporal filters can be 
adjusted separately for each scale, with the center frequen­
cies k, obtained for a pre-specified set of velocities {0, v 1, v2 , 

... } through EQ. (3). In some embodiments, any suitable 
number of velocities can be used. For example, in the 
experiments described below, three velocities were gener­
ally used. 

[0070] In some embodiments, filter responses can be used 
without sub-sampling the filter responses at coarse scales 
(e.g., unlike pyramid representations). This can simplify the 
implementation of algorithms as no interpolation is needed 
to get back to the native sensor resolution, but at the cost of 
higher memory usage. For example, an over-completeness 
factor can be calculated as 2x#scalesx#orientationsx 
#speeds. Using more memory-efficient representations can 
bring further cost reductions in the future. 

[0071] Since individual SPAD samples are binary and 
noisy, filter-banks that can extract relevant details while 
rejecting spurious responses (which tend to dominate the 
data) as much as possible are desirable. In some embodi­
ments, robustly estimating the noise and/or uncertainty in 
the filter responses can facilitate more accurate rejection of 
spurious responses. 

[0072] From the central limit theorem, the response Rk[p] 
of EQ. (2) can be expected to be approximately (complex) 
normally-distributed, with a variance: 

Var[Rk[p]] = °\' ( ) lhk[q] 1
2 -Var(B[p-q]). 

4ESu hk 

(4) 

[0073] This variance can be approximated by assuming an 
ideal sensor where quantum efficiency ri=l and the dark 
counts d=0. Then it follows from EQ. 1 that Var(B[p])=V 
(f[p]), where 

[0074] From an estimate c[p] of the local average flux 
(through a blur kernel on B[p]), EQ. (4) can be approximated 
further using the following representation: 
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Vk[P]: = V(c[p])Eq I hk[q] 1
2 "'Var(Rk[p]). (5) 

The sum Lqlhk[q] 1
2 is known. In some embodiments, at 

run-time, Rk[P] can be converted to a z-score 

[ l
. - IRk[p] I 

Zk p .- ✓ Vk[p]. 

Additionally or alternatively, in some embodiments, the 
z-score can be mapped to a weight WE [0,1] as w(z): 
=1-exp(-max(0, z-z0 )), for example, as shown in FIG. 4. In 
some embodiments, the parameter z0 can be set ahead-of­
time (e.g., within a range including 2 to 6), which can ensure 
that weak responses do not contribute. In some embodi­
ments, the z-score can be used as a secondary input in a 
computer vision task as an indicator of reliability of the 
responses (e.g., which can be provided in the input without 
modification). Note that the downstream computer vision 
task does not necessarily need to scale the response based on 
the z-score directly (though it is one possibility). For 
example, a motion estimation technique can ignore raw 
response magnitudes, and can be based on the z-score and 
response phase. 
[0075] From the Gabor uncertainty relation, smaller band­
width corresponds to larger spatio-temporal support (e.g., 
for coarse scales, or for elongated filters with small angular 
sensitivity). Typically such filters have lower variance in 
EQ. 4, but also exhibit poor localization, resulting in a 
classic trade-off. Ultimately, the filter performance depends 
on the true extent of the signal structures (e.g., edges). 
[0076] A pervasive fact of single-photon vision is that the 
noise level changes with light levels, so a reliable filter in 
strong light can become unreliable in low light. In some 
embodiments, filter designs and downstream algorithms can 
be configured to adapt to this variation, for example, via use 
of multi-scale filter-banks. The use of z-scores further can 
further facilitate techniques to adapt to changes in noise 
(e.g., due to ambient light levels). 
[0077] FIG. 5 shows an example 500 of a process for 
Eulerian single-photon vision in accordance with some 
embodiments of the disclosed subject matter. 
[0078] At 502, process 500 can capture a sequence of 
binary frames of a scene using any suitable image sensor. 
For example, as described above in connection with FIGS. 
lC and 2, the image sensor can be a SPAD-based image 
sensor, or a jot-based image sensor. However, these are 
merely examples, and mechanisms described herein can be 
used to facilitate computer vision tasks using any sensor that 
includes single photon detectors. 

[0079] In some embodiments, process 500 can cause the 
sequence of frames can be captured at any suitable frame 
rate and/or within any suitable time budget. For example, 
process 500 can cause the sequence of frames to be captured 
with a high frame rate in situations where there is likely to 
be scene motion and/or high scene intensity. In a more 
particular example, the frame rate can set between about 300 
frames per second (fps) and about 100,000 fps for current 
SPAD-based image sensors. As another more particular 
example, the frame rate can set between about 10 fps and 
about 1,000 fps for current jot-based image sensors. 
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[0080] In some embodiments, the total time budget can be 
in a range from about 1 millisecond to about 1 second. In a 
particular example, the total time budget can be in a range 
from about 10 milliseconds (ms) to about 100 ms for scenes 
with relatively high dynamic range. In some embodiments, 
the total time budget can be constrained based on the amount 
of motion in the scene, as it is more difficult to generate a 
high quality image for scenes with more motion for longer 
time budgets and/or more binary frames, especially if an 
object moves outside of the scene during the time budget. 
Additionally, in some embodiments, the total time budget 
can be constrained based on the amount of available 
memory, as a longer time budget and/or more binary frames 
requires additional memory availability that can be written 
to at speeds that are comparable to the frame rates of the 
image sensor. 

[0081] In some embodiments, the total time budget can be 
omitted, and a stream of binary frames can be captured, with 
a sequence of binary frames corresponding to a particular 
time period selected after the frames have already been 
captured. For example, process 500 can cause binary frames 
of a scene to be captured continuously, and a sequence of 
frames can be selected from the continuously captured 
sequence at any suitable time for use in a computer vision 
task. As another example, process 500 can cause binary 
frames of a scene to be captured continuously, and as frames 
are captured, process 500 can continuously analyze the 
newest frame (e.g., as described below in connection with 
506 and/or 508), and information from an oldest frame can 
be omitted (e.g., deleted, replaced, no longer considered, 
flagged for overwriting, etc.) from use in a computer vision 
task. 

[0082] In some embodiments, at 502, process 500 can 
capture a series of multi-bit frames of the scene using any 
suitable image sensor. For example, an image sensor can be 
configured to record up to any suitable number of photon 
arrivals during a frame (e.g., recording up to one photon 
arrival can be used to generate a binary frame, recording up 
to two to three photon arrivals can be used to generate a 2-bit 
frame, recording up to seven photon arrivals can be used to 
generate a 3-bit frame, etc.). 

[0083] At 504, process 500 can create one or more multi­
bit frames from the series of binary frames. Additionally or 
alternatively, in some embodiments, process 500 can create 
one or more longer multi-bit frames from a series shorter 
multi-bit frames. 

[0084] In some embodiments, process 500 can determine 
a number of binary (or multi-bit) frames to use to create a 
multi-bit frame using any suitable criteria or combination of 
criteria. For example, process 500 can combine frames to 
target a maximum amount of motion in each multi-bit frame 
to be no greater than one pixel per frame, which can mitigate 
blurring in the combined frame. In some embodiments, 
process 500 can use any suitable technique or combination 
of techniques to determine an amount of movement in a 
scene and/or a number of frames to combine to correspond 
to about one pixel per frame of movement. For example, 
process 500 can evaluate the data in the frequency domain 
(e.g., based on a Fourier transform), and blur can be apparent 
by an absence of high-frequency information in the Fourier 
domain. In some embodiments, 504 can be omitted (e.g., 
where movement in the scene is below 1 pixel per frame, or 
where every binary frame is processed as a binary frame). 
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[0085] At 506, process 500 can perform a convolution of 
the binary frames (or multi-bit frames) with each of multiple 
filters in a filter bank. For example, as shown in FIG. lC, a 
convolution between each binary frame in a sequence of 
binary frames and each velocity-tuned filter can be per­
formed. For example, this can be 3D convolution that is 
similar to a convolution performed in convolutional neural 
networks. In some embodiments, any suitable stride can be 
used in the convolution. For example, the convolution can 
use a stride of 1. As another example, the convolution stride 
can be set relative to the tuning frequency of the filter. In a 
more particular example, coarse-scale (e.g., low-frequency) 
responses can be taken at larger strides (e.g., a lower 
sampling rate) without losing information. Note that the 
filters can be applied in the frequency-domain (e.g., implic­
itly assuming periodic boundary conditions). 
[0086] At 508, process 500 can generate filter responses 
for each of the filters based on the results of the convolution 
between the filter and the binary frame (or multi-bit frame) 
information. For example, each filter can produce a response 
corresponding to each pixel. In a more particular example, 
if there are N filters and the video includes X pixels per 
frame, the responses can include NxX values. As another 
example, each filter can produce less than one response 
corresponding to each pixel (e.g., with a stride greater than 
1 pixel and/or frame). In some embodiments, process 500 
can generate a filter response corresponding to each frame in 
the sequence of frames captured at 502 and/or for each 
multi-bit frame created at 504. In some embodiments, the 
filter response can be a feature map based on the results of 
the convolution between the filter and one or more binary 
frames. 
[0087] At 510, process 500 can perform any suitable 
computer vision process or processes to analyze the series of 
binary frames based on the filter responses generated at 508. 
[0088] In some embodiments, at 510, process 500 can 
utilize a phase-based technique to perform an edge detection 
computer vision process. Additionally or alternatively, in 
some embodiments, at 510, process 500 can utilize a phase­
based technique to perform a motion estimation computer 
vision process. These algorithms can be described as Eul­
erian since no search is performed, and only local informa­
tion is used, with most of the computations being pixel-wise, 
and therefore easily parallelizable. Note that these tech­
niques can be operated y directly processing sequences of 
single-photon frames without expensive image or video 
reconstruction, which can increase the speed at which com­
puter vision tasks can be performed on single-photon data. 
[0089] In some embodiments, process 500 can perform an 
edge detection computer vision process, which can be based 
on temporal phase congruency. Phase congruency is the 
insightful observation that features like edges are disconti­
nuities where the phase of all frequency components in the 
signal align. Phase congruency also applies to video, as a 
moving edge traces a plane in 3D through time. In this case 
a multi-scale bank of velocity-tuned filters can play the role 
of the frequency components and temporal phase congru­
ency (TPC) can be detected. The tuned frequency k of one 
filter of a multi-scale bank of filters can be represented as 
(kx, k,,, k,)=sk, where s denotes the scale and k:=(sin <p cos 
0, sin <p sin 0, cos qi) the unit vector along its spatio-temporal 
orientation (0, qi), where 0 and <p can be spherical coordi­
nates with 0 corresponding to an angle in the x,y plane 
deflected from x=0 and <p corresponding to an angle in the 
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time dimension deflected from x,y=0. the phase congruency 
PC along this direction can be represented as: 

(6) 

which is 1 if the responses at all scales have the same phase. 
In some embodiments, EQ. (6) can be adjusted to be 1-cos 
-I (PC) when the responses at all scales have the same phase, 
as it can better localize features. For example, adjustments 
to EQ. (6) can be made based on the discussion in Kovesi, 
"Image Features from Phase Congruency", which can better 
handle blurred features. Note that phase congruency is a 
normalized quantity, invariant to any scaling of the ampli­
tudes (such as due to light level). The above expression in 
EQ. (6) uses phase information only implicitly, which avoids 
the phase wrapping issue. 

[0090] In some embodiments, once PC7c is computed for 
all orientations, process 500 can estimate edge strength 
using (3-dimensional) principal component analysis, which 
can be implemented efficiently using a closed-form expres­
sion for the eigenvalues of a 3x3 matrix (e.g., based on the 
description in Kopp, "Efficient Numerical Diagonalization 
of Hermitian 3x3 matrices," International Journal of Modern 
Physics C, 19(03):523-548 (2008) and Smith, "Eigenvalues 
of a Symmetric 3x3 matrix," Communications of the ACM, 
4(4): 168 (1961). In some embodiments, the second eigen­
value (when significant) can be indicative of space-time 
"corners" in the 3D volume. 

[0091] In some embodiments, in the noisy conditions of 
single-photon sensing, the right-hand side of EQ. (6) can be 
multiplied by the weight term described above in connection 
with FIG. 4, which can exclude orientations with weak 
responses (e.g., z0 was set to 2 for all edge detection 
experiments described below). 

[0092] In some embodiments, process 500 can perform a 
motion estimation computer vision process that estimates 
edge normal velocities, which can be based on temporal 
phase congruency. Such information can be used to estimate 
normal velocities from 3D edge orientation estimates. Since 
the principal direction yielded by temporal phase congru­
ency is in 3D (it is the normal to the plane traced out by a 
moving edge over time), process 500 can also directly 
receive normal velocity estimates at the edge locations, 
which are similar to the optical flow obtained from event 
cameras. Additional description of these estimates is 
included below in connection with FIG. 9. 

[0093] In some embodiments, process 500 can perform a 
motion estimation computer vision process, which can be 
based on local frequency information. In some embodi­
ments, a filter at spatio-temporal frequency k can be defined, 
and process 500 can estimate a velocity in the direction of 
k that is given by the instantaneous frequency (e.g., the 
gradient of the local phase arg(Rk[p])). In some embodi­
ments, the instantaneous frequency can be represented as k: 
=s•(sin ~cos 0, sin ~sin 0, cos~). the component velocity v, 
is in the spatial direction 0, and given as v n=cot ~- To obtain 
the 2D velocity (optical flow) (vx, Vy) at a pixel, process 500 
can form phase constancy equations from component esti­
mates: 
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(7) 

[0094] In some embodiments, process 500 can obtain one 
equation from each reliable filter response, which can then 
be put together and solved as a weighted least-squares 
problem, with the weights described above in connection 
with FIG. 4 (the threshold z0 was set to 6 for optical flow 
experiments described below). Appendix A, which has been 
incorporated by reference herein, include additional imple­
mentation details. In some embodiments, such a motion 
estimate can be applied independently at each scale. The role 
of scale is described below in connection with FIG. 8. 
[0095] In some embodiments, process 500 can perform 
502-510 on any suitable block of frames. For example, 
process 500 can divide the sequence of binary frames 
captured at 502 into any suitable number of blocks. In some 
embodiments, the sequence of binary images can be divided 
into blocks of a particular size (e.g., blocks of 50 to 10,000 
frames for frame rates up to 100,000 fps, blocks correspond­
ing to about 10 milliseconds of total exposure time, etc.). In 
some embodiments, blocks can include at least a minimum 
number of binary frames to ensure that when convolved with 
filters at 506, sufficient information is included in filter 
responses. For example, in some embodiments, each block 
can include at least 20 binary frames. As another example, 
in a particular range of light levels (e.g., around 1 photon/ 
pixel), each block can include a single binary frames. 
[0096] In some embodiments, process 500 can be subject 
to some latency, for example, corresponding to at least a 
time between when a first binary frame in a block of binary 
frames being analyzed is captured, and a time when a last 
binary frame in a block of binary frames being analyzed is 
captured. 
[0097] In some embodiments, process 500 can return to 
502, and can begin capturing additional binary frames of the 
scene after performing the computer vision process(es) at 
510, or in parallel as 504-510 are performed. In such 
embodiments, process 500 can analyze discrete blocks of 
frames (e.g., a first block of frames can be analyzed begin­
ning at a first time, and a second block of frames that does 
not include any of the frames included in the first block of 
frames can be analyzed beginning at a later second time). 
[0098] Additionally or alternatively, in some embodi­
ments, process 500 can move to 512 after performing (or 
initiating performance of) a computer vision process(es) at 
510, and can capture an additional binary frame (or frames) 
of the scene. 
[0099] At 514, process 500 can create one or more addi­
tional multi-bit frames from the series of binary frames. 
Additionally or alternatively, in some embodiments, process 
500 can create one or more longer multi-bit frames from a 
series shorter multi-bit frames. In some embodiments, 514 
can be omitted (e.g., where movement in the scene is below 
1 pixel per frame, or where every binary frame is processed 
as a binary frame). 
[0100] At 516, process 500 can perform a convolution of 
the additional binary frame(s) (or multi-bit frame(s)) cap­
tured at 512 to determine a contribution of that frame(s) to 
the filter responses generated at 508 ( or in a previous 
iteration of 518) for each of multiple filters in a filter bank. 
[0101] At 518, process 500 can generate one or more new 
filter responses corresponding to the additional frame(s) 
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based on the convolution performed at 516, and in some 
cases, in part based on the convolution performed at 506 ( or 
an earlier iteration of 516). For example, the results of the 
convolution of the filters with earlier frames in the series of 
frames can be added to the results of the convolution 
performed at 516 to generate a filter response for the current 
frame(s). 
[0102] At 520, process 500 can remove and/or disregard 
the oldest filter responses (e.g., from memory) and/or the 
contributions to the oldest filter responses that have not been 
removed (e.g., by removing the contributions to the oldest 
filter responses from the oldest frames). 
[0103] At 522, process 500 can perform any suitable 
computer vision process or processes to analyze the series of 
binary frames based on the filter responses generated/up­
dated at 518 and/or 520. In some embodiments, process 500 
can return to 512, and can capture additional binary frames 
of the scene after performing the computer vision process 
(es) at 522, or in parallel as 514-520 are performed. In such 
embodiments, process 500 can analyze an updating stream 
of frames (e.g., a first block of frames can be analyzed 
beginning at a first time, and a second block of frames that 
includes many of the same frames included in the first block 
of frames can be analyzed beginning at a later second time). 
[0104] FIGS. 6 and 8-10 show examples demonstrating 
results generated using techniques described herein on real 
binary frame sequences captured with the SwissSPAD sen­
sor, which has a 256x512 resolution and frame rate up to 
97,700 fps. Flux levels are reported as photons-per-pixel, 
abbreviated as ppp. 
[0105] Sequences with gradual motion (where the flow is 
«l pixel per frame, common with high frame rates) were 
temporally low-passed and sub-sampled, approximately 
equivalent to sampling with a multi-bit sensor. The set of 
tuned velocities was adapted accordingly. 
[0106] The SPAD prototype is a research-grade device 
with several "hot pixels" with high dark count rate. These 
pixels were detected offline with a dark frame, and interpo­
lated. 
[0107] Filtering was done in frequency-domain due to the 
large support of the filters. For fair comparisons, the algo­
rithms described herein and the techniques compared to 
(e.g., BM3D, made available by Tampere University of 
Technology at https( colon)//webpages( dot)tuni( dot)fi/foi/ 
GCF-BM3D/index(dot)html; and burst reconstruction as 
described in Ma et al., U.S. Pat. No. 11,170,549) were 
implemented in MATLAB and run on CPUs. 
[0108] FIG. 6 shows examples of binary frames of two 
scenes, and edge detection results generated using various 
techniques, including techniques described herein for Eul­
erian single-photon computer vision. 
[0109] In FIG. 6, edge detection results on real SPAD 
video is shown. Binary frames from SwissSPAD (top) and 
edges from the Eulerian Temporal Phase Congruency algo­
rithm (TPC, bottom) described above in connection with 
FIG. 5, compared against various reconstruction-based 
approaches (middle rows). Single-image denoising used 
BM3D and Lagrangian vision used burst photography. The 
Richer Convolutional Features detector was used for all 
reconstruction-based results. TPC recovered sharp edges 
even under noise and motion at a fraction of the cost of burst 
reconstruction (and faster than BM3D). Direct detection 
from a single frame and the naive average are fast, but suffer 
from the noise vs. motion blur tradeoff, respectively. Single-
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image denoising avoids motion blur but has over-smoothing 
artifacts resulting in loss of many edges. 
[0110] The results shown in FIG. 6 show edges obtained 
by TPC from videos captured with the SwissSPAD sensor, 
lowpass-filtered to sequences of 120 frames. For compari­
son, results with reconstruction-based approaches are also 
presented, including the Lagrangian reconstruction-based 
approach of FIG. lB. Richer Convolutional Features (RCF) 
were used as a representative frame-based edge detector for 
comparisons. 
[0111] The Eulerian approach implemented in accordance 
with mechanisms described herein achieved similar-quality 
results as the Lagrangian technique, but was more than two 
orders of magnitude faster ( e.g., performing an analysis in 
0.145 seconds in the MATLAB implementation compared to 
153 seconds for the Legrangian MATLAB implementation. 
The Eulerian approach was also faster than the tested BM3D 
implementation by an order of magnitude, in the same 
hardware and software environment. 
[0112] FIG. 7 shows examples of edge detection results 
generated using techniques described herein for Eulerian 
single-photon computer vision for various levels of frame 
averaging and various levels of scene flux in accordance 
with some embodiments of the disclosed subject matter. 

[0113] FIG. 7 demonstrates the influence of flux on edge 
detection in a simulated scene. A SPAD video with 51 
frames of size 128x128, simulated with motion of 1 pixel 
per frame and at varying flux levels (in photons per pixel, 
ppp) and precision, with edges detected by temporal phase 
congruency are shown in FIG. 7. Edge recovery quality 
depends on the total incident flux (its contour lines are 
roughly the dotted diagonals), and if the flux is at least 1 ppp, 
edges can be detected even from binary video. 

[0114] The performance of the edge detector depends on 
the light level in the scene as well as the amount of motion. 
Indeed, in slow-moving scenes, higher-precision data can be 
achieved with simple low-pass filtering. FIG. 7 shows this 
variation for the TPC detector with a fixed filter-bank, with 
a simulated synthetic scene. An ideal sensor was assumed 
with no dark counts and full quantum efficiency. Even under 
extremely challenging conditions (1-bit samples and 
motion), TPC successfully recovered edges. The recovery 
ultimately depends on the total number of incident photons, 
with flux levels as low as -1 photon-per-pixel being suffi­
cient for reasonable quality. 

[0115] FIG. 8 shows examples of a binary frame of a scene 
at two flux levels, and edge detection results generated using 
techniques described herein for Eulerian single-photon com­
puter vision using various numbers and coarseness of scal­
ing in the filters in accordance with some embodiments of 
the disclosed subject matter. 

[0116] FIG. 8 demonstrates results of edge detection under 
varying filter configurations. A scene with non-rigid motion 
(a person juggling two footballs) was captured. Faces are 
blurred for privacy. In the top row, an input frame after 
temporal low pass filter is shown, and edges detected with 
temporal phase congruency over two scale ranges. Inset 
shows a tone-mapped burst reconstruction for reference. In 
the bottom row, an input frame from the same scene is 
shown from a re-recording under less light. The fine-scale 
edge map worsens significantly, but the coarse scale map 
retains quality. In the last colunm the angular bandwidth of 
the filters was reduced. Long edges are now recovered more 

10 
Nov. 7, 2024 

reliably, but the detector overshot around curved edges such 
as the football, the head, and the elbows. 

[0117] As described above in connection with EQS. (4) 
and (5), design of the filters is important, and can impact 
results. FIG. 8 shows a somewhat similar example as shown 
in FIG. 7, but with real data. In this example, the same 
controlled scene (a person juggling two footballs) was 
captured twice under different light conditions (moderate 
and low light). TPC was run with filter-banks having two 
different scale ranges: one spanning spatial wavelengths 
from 3 to 13 pixels ("fine scales"), and another spanning 6 
to 28 pixels ("coarse scales"). Filters were created at six 
spatial orientation tunings {0°, 60°, ... ,300° } and three 
velocity-tunings { 0,0.3,1 }pixels/frame. The fine-scales fil­
ter-bank yielded sharp edges under more light, but suffered 
in low light. In contrast, the coarse-scale filters gave thicker 
(less resolved) edges, but were more reliable under low 
light. The SNR can be improved further by reducing the 
angular bandwidth of the filters, which helps with long edges 
but is prone to over-shooting around curved edges-this is 
another form of de-localization or loss of resolution. These 
results are consistent with the detection vs. localization 
trade-off which has been long-studied in the edge detection 
literature. 

[0118] FIG. 9 shows examples of binary frames of a scene, 
and motion estimates generated using various techniques, 
including techniques described herein for Eulerian single­
photon computer vision. 

[0119] In FIG. 9, motion estimation from real SPAD video 
is illustrated. FIG. 9 shows a low light scene with a moving 
object (a toy train on a track), and optical flow estimates. 
Reference flows were estimated with RAFT-it. In the top 
row, a binary frame after temporal low-pass filtering (LPF) 
is shown (with originals inset) on the left, and an optical flow 
based on two binary frames is shown on the right. In the 
second row, a sample reconstructed image and optical flow 
results generated from a frame-by-frame denoising with 
BM3D are shown. In the third row, a sample reconstructed 
image generated using Lagrangian/explicit burst vision and 
optical flow results generated from reconstructed images are 
shown. In the bottom row, normal velocities from edges 
(magnified at top-right) extracted by temporal phase con­
gruency, and 2D velocities from an implementation of the 
motion estimation computer vision process described above 
in connection with FIG. 5. The motion of the train is clearly 
isolated, unlike two-frame estimation directly or with 
BM3D. The Lagrangian technique provides good quality 
and reliability, but at considerably higher cost (in time). 

[0120] FIG. 9 shows results from both edge normal veloci­
ties and 2D velocity estimation techniques described above 
in connection with FIG. 5 on a real SwissSPAD sequence. 
For comparison, RAFT-it, a state-of-the-art two-frame tech­
nique, was applied with and without image reconstruction. 
The results generated using implementations of mechanisms 
described herein are significantly better than directly apply­
ing RAFT-it on noisy frames, in that it can reliably separate 
the moving object from the static background. The results 
generated using implementations of mechanisms described 
herein also achieved considerably better performance as 
compared to single-image denoising, due to the temporal 
incoherence of denoising artifacts. The Lagrangian tech­
nique yielded the best quality results, but also at significantly 
higher cost. 
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[0121] One may notice from the phase-based 2D velocity 
estimates that the movement of the train's projected head­
lights was also detected as motion, but RAFT-it ignored that 
and only segmented the train. This may be due to better 
higher-level knowledge in the learning-based technique, and 
motivates developing similar multi-frame or 3D flow esti­
mators for single-photon sensors. 
[0122] FIG. 10 shows examples of a binary frame of two 
scenes, and motion estimates generated using techniques 
described herein for Eulerian single-photon computer vision 
using various coarseness of scaling in the filters in accor­
dance with some embodiments of the disclosed subject 
matter. 
[0123] In FIG. 10, multiple velocity cues from multi-scale 
motion estimation and edge detection are illustrated. From 
left, SPAD sequences after pre-filtering are shown, then 
normal velocity estimates from 3D edge orientation based 
on temporal phase congruency, and 2D velocity estimates at 
two scales. Burst reconstruction using is inset for reference. 
Since coarser-scale filter responses have less noise, more 
reliable estimates were obtained from them compared to 
finer scales. This yields denser flow maps but with poorer 
localization. Edge velocities are naturally sparse, though the 
underlying algorithm (TPC) does use coarse-scale filters as 
well. The quality varies spatially with the local light level 
and image contrast, as expected from Poisson noise. 
[0124] The fine-scale and the normal velocity estimates 
are better-localized but may not always be reliable due to 
noise. They can also suffer from the aperture problem. 
Coarse-scale estimates are more robust (the responses have 
a higher z-score) and suffer less from the aperture problem, 
but they are poorly localized and can bleed over object 
boundaries. 
[0125] Implementations of Eulerian temporal phase con­
gruency-based edge detection and edge normal velocity 
detection, and phase-based 2D motion were also evaluated 
quantitatively on simulated data, and compared to the 
single-image denoising-based approach which is faster than 
burst reconstruction. Those results are described in Appen­
dix A, which has been incorporated herein by reference. 
[0126] While single-photon sensors provide the prospect 
of recording visual details at the resolution of individual 
photons, they also introduce challenges: a very noisy and 
quantized imaging model, and extremely large volumes of 
data generated, resulting in prohibitive compute and band­
width requirements. In some embodiments, mechanisms 
described herein can be used to implement relatively light­
weight vision algorithms based on linear filtering and local 
phase-based processing of raw single-photon data, bypass­
ing the expensive intermediate step of image reconstruction. 
[0127] In some embodiments, mechanisms described 
herein can be used to implement at least a portion of a 
computer-vision pipeline on a single-photon detector-based 
image sensor. As new hardware architectures are developed 
for single-photon sensors that can perform complex calcu­
lations at the photon-level, mechanisms described herein can 
facilitate completely on-chip real-time photon-processing, 
as the photons are captured. This is made possible by the 
computational simplicity of mechanisms described herein. 
In some embodiments, mechanisms described herein can be 
implemented with better memory efficiency by performing 
filtering fully on-line (e.g., through exponential smoothing), 
such that memory of past frames is not required. Such 
on-chip Eulerian vision systems can facilitate widespread 
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deployment of single-photon imaging in real-world com­
puter vision applications, including SLAM, scientific fields 
like bio-mechanics, and in consumer domains like sports 
videography. 
[0128] As described above, a specific family of velocity­
tuned log-Gabor filters have been described in connection 
with mechanisms described herein. In some embodiments, 
better and more efficient filters can be obtained by formu­
lating appropriate loss functions for the downstream vision 
task, including filters learned end-to-end from data. Addi­
tionally or alternatively, in some embodiments, 3D gradients 
and monogenic filters can be used very similarly as phase, 
with the Canny edge detector (and its 3D counterpart), and 
the Lucas-Kanade optical flow estimator being classic algo­
rithms that can be adapted for use with mechanisms 
described herein. Such techniques can be expected to run 
faster than the phase-based techniques described herein, 
since fewer filters are needed. Apart from SNR and local­
ization, which are standard optimization criteria in this 
setting, other relevant constraints such as causality and 
resource cost may impact which types of filters are suitable 
for a particular computer vision application. 
[0129] In general, velocity-tuned filters operate under the 
local linear-motion assumptions, which may be violated by 
sudden appearances or disappearances of objects. In some 
embodiments, explicit occlusion reasoning, as done in more 
modern optical flow techniques, can be used in certain 
practical implementations to mitigate errors that may be 
caused violation of the linear-motion assumptions. 
[0130] As described herein, reconstructing high-SNR 
input ( e.g., high SNR reconstructed images) is not always 
necessary for visual tasks. A related notion is the prospect of 
any-time results, which improve as the algorithm runs for 
longer. In some embodiments, the filter-bank scale can be 
considered as the equivalent of time, as information gets 
aggregated over wider volumes, but the algorithms attempt 
to detect features fine scales. In some embodiments, mecha­
nisms described herein can be used in connection with 
diffusion-based algorithms, which may have even lower 
compute and bandwidth costs on specialized architectures. 

Further Examples Having a Variety of Features 

[0131] Implementation examples are described in the fol­
lowing numbered clauses: 
[0132] 1. A method for facilitating single-photon computer 
vision tasks, the method comprising: causing an image 
sensor to generate a sequence of images representing a 
scene, each of the images comprising a plurality of pixels, 
wherein the image sensor comprises a plurality of detectors 
configured to detect arrival of individual photons, the plu­
rality of detectors arranged in an array; performing, for each 
of a plurality of three dimensional filters, a convolution 
between the three dimensional filter and a plurality of 
frames, wherein each of the plurality of frames is based on 
one or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality of 
filter bank responses each corresponding to a three dimen­
sional filter of the plurality of three dimensional filters; and 
performing a computer vision process based on the plurality 
of filter responses. 
[0133] 2. The method of clause 1, wherein each of the 
plurality of detectors comprises a single photon avalanche 
diode (SPAD). 
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[0134] 3. The method of any one of clauses 1 or 2, wherein 
each image of the sequence of images comprises a binary 
image that represents photons detected by the image sensor 
during an exposure time T. 
[0135] 4. The method of any one of clauses 1 to 3, wherein 
each of the plurality of three dimensional filters comprises a 
velocity tuned filter, and wherein a first subset of the 
plurality of three dimensional filters are tuned to a three 
dimensional frequency k:=(kx, k,,, k,), where kx and k,, 
represent spatial patterns, and k, represents a pattern in time, 
each of the three dimensional filters of the first subset having 
a different scale. 
[0136] 5. The method of any one of clauses 1 to 4, further 
comprising: determining a z-score for each of the plurality 
of filter bank responses; mapping each z-score to a weight 
associated with the respective filter bank for which the 
z-score was determined; and utilize the weighted filter bank 
responses to perform the computer vision process based on 
the plurality of filter responses 
[0137] 6. The method of clause 5, further comprising: 
estimating a variance value Var(Rk[p]) using a relationship 
Vk[p]: =V(c[p]) Lqlhk[q]l 2

, where Rk[p] is a filter bank 
response generated by applying a filter hk[q] to the plurality 
of frames B[p], V(c[p]) is a variance of an estimated local 
average flux over B[p], and Lqlhk[q]l 2 is a sum of the filter 
hk[q] over q<p; and determining the z-score using a rela­
tionship 

[ l
. - IRk[p] I 

Zk p • - ✓ Vk[p]. 

[0138] 7. The method of clause 6, further comprising: 
mapping each z-score to a weight associated with the 
respective filter bank for which the z-score was determined 
using a relationship w(z): =1-exp(-max(O, z-z0 )), where z0 

comprises a threshold z-score. 
[0139] 8. The method of any one of clauses 1 to 7, wherein 
the computer vision process is an edge detection process 
based on a phase congruency associated with each of the 
plurality of filter responses. 
[0140] 9. The method of clause 8, further comprising: 
detecting one or more corners based on the phase congru­
ency associated with each of the plurality of filter responses. 
[0141] 10. The method of clause 1, wherein the computer 
vision process is a motion estimation process based on a 
phase constancy relationship. 
[0142] 11. The method of clause 1, wherein the computer 
vision process is a motion estimation process, and the 
method further comprises: performing the computer vision 
process for each of the plurality of pixels based on a phase 
constancy relationship v x cos 0+v Y sin 0=cot ~. whe~e (v x• 

v y) is a velocity at the respective pixel, v n=cot <p is a 
component velocity of a respective three dimensional filter 
kin a spatial direction 0, and k:=s (sin ~cos~- sin ~sin 0, cos 
~). where (0, ~) is a spatio-temporal direction of k. 
[0143] 12. A non-transitory computer-readable medium 
storing computer-executable code, comprising code for 
causing a computer to cause a processor to: perform a 
method of any of clauses 1 to 11. 
[0144] 13. A system for simulating interactions with an 
infant, comprising: at least one processor that is configured 
to: perform a method of any of clauses 1 to 11. 
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[0145] 14. The system of clause 13, further comprising: 
the image sensor comprising a plurality of detectors config­
ured to detect arrival of individual photons, the plurality of 
detectors arranged in an array. 
[0146] In some embodiments, any suitable computer read­
able media can be used for storing instructions for perform­
ing the functions and/or processes described herein. For 
example, in some embodiments, computer readable media 
can be transitory or non-transitory. For example, non-tran­
sitory computer readable media can include media such as 
magnetic media (such as hard disks, floppy disks, etc.), 
optical media (such as compact discs, digital video discs, 
Blu-ray discs, etc.), semiconductor media (such as RAM, 
Flash memory, electrically programmable read only memory 
(EPROM), electrically erasable programmable read only 
memory (EEPROM), etc.), any suitable media that is not 
fleeting or devoid of any semblance of permanence during 
transmission, and/or any suitable tangible media. As another 
example, transitory computer readable media can include 
signals on networks, in wires, conductors, optical fibers, 
circuits, or any suitable media that is fleeting and devoid of 
any semblance of permanence during transmission, and/or 
any suitable intangible media. 
[0147] It should be noted that, as used herein, the term 
mechanism can encompass hardware, software, firmware, or 
any suitable combination thereof. 
[0148] It should be understood that the above described 
steps of the process of FIG. 5 can be executed or performed 
in any suitable order or sequence not limited to the order and 
sequence shown and described in the figures. Also, some of 
the above steps of the process of FIG. 5 can be executed or 
performed substantially simultaneously where appropriate 
or in parallel to reduce latency and processing times. 
[0149] Although the invention has been described and 
illustrated in the foregoing illustrative embodiments, it is 
understood that the present disclosure has been made only 
by way of example, and that numerous changes in the details 
of implementation of the invention can be made without 
departing from the spirit and scope of the invention, which 
is limited only by the claims that follow. Features of the 
disclosed embodiments can be combined and rearranged in 
various ways. 

What is claimed is: 
1. A system for facilitating single-photon computer vision 

tasks, comprising: 
an image sensor comprising a plurality of detectors con­

figured to detect arrival of individual photons, the 
plurality of detectors arranged in an array; 

at least one processor that is programmed to: 
cause the image sensor to generate a sequence of 

images representing a scene, each of the images 
comprising a plurality of pixels; 

perform, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 
filter and a plurality of frames, 
wherein each of the plurality of frames is based on 

one or more of the images of the sequence of 
images; 

generate, for each of the plurality of frames, a plurality 
of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimen­
sional filters; and 

perform a computer vision process based on the plu­
rality of filter responses. 
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2. The system of claim 1, wherein each of the plurality of 
detectors comprises a single photon avalanche diode 
(SPAD). 

3. The system of claim 1, wherein each image of the 
sequence of images comprises a binary image that represents 
photons detected by the image sensor during an exposure 
time T. 

4. The system of claim 1, wherein each of the plurality of 
three dimensional filters comprises a velocity tuned filter, 
and 

wherein a first subset of the plurality of three dimensional 
filters are tuned to a three dimensional frequency k: 
=(kx, k,,, k,), where kx and k,, represent spatial patterns, 
and k, represents a pattern in time, each of the three 
dimensional filters of the first subset having a different 
scale. 

5. The system of claim 1, wherein the at least one 
processor that is further programmed to: 

determine a z-score for each of the plurality of filter bank 
responses; 

map each z-score to a weight associated with the respec­
tive filter bank for which the z-score was determined; 
and 

utilize the weighted filter bank responses to perform the 
computer vision process based on the plurality of filter 
responses. 

6. The system of claim 5, wherein the at least one 
processor that is further programmed to: 

estimate a variance value Var(Rk[pl) using a relationship 
Vk[pJ: =V(c[pl) Lqlhk[qJ1 2

, 

where Rk[p] is a filter bank response generated by 
applying a filter hk[q] to the plurality of frames B[p], 
V(c[pl) is a variance of an estimated local average 
flux over B[p], and Lqlhk[q] 12 is a sum of the filter 
hk[q] over q<p; and 

determine the z-score using a relationship 

[ l
. - IRk[p] I 

Zk p .- ✓ Vk[p]. 

7. The system of claim 6, wherein the at least one 
processor that is further programmed to: 

map each z-score to a weight associated with the respec­
tive filter bank for which the z-score was determined 
using a relationship w(z): =1-exp(-max(O, z-z0)), 
where z0 comprises a threshold z-score. 

8. The system of claim 1, wherein the computer vision 
process is an edge detection process, and 

wherein at least one processor that is further programmed 
to: 
perform the computer vision process based on a phase 

congruency associated with each of the plurality of 
filter responses. 

9. The system of claim 8, wherein at least one processor 
that is further programmed to: 

detect one or more corners based on the phase congruency 
associated with each of the plurality of filter responses. 

10. The system of claim 1, wherein the computer vision 
process is a motion estimation process, and 

wherein at least one processor that is further programmed 
to: 
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perform the computer vision process for each of the 
plurality of pixels based on a phase constancy rela­
tionship v x cos 0+v Y sin 0=cot ~-
where (vx,_ Vy) is a velocity at the respective pixel, 

Vn=cot <pis a component velocity of a respective 
three_ dimensio1:,1al fil_ter k i1:,1 a spatial d}rection 0, 
and k: =s•(sin <pcos 0, sin <psin <p, cos qi), 
where (0, ~) is a spatio-temporal direction of k. 

11. A method for facilitating single-photon computer 
vision tasks, the method comprising: 

causing an image sensor to generate a sequence of images 
representing a scene, each of the images comprising a 
plurality of pixels, 
wherein the image sensor comprises a plurality of 

detectors configured to detect arrival of individual 
photons, the plurality of detectors arranged in an 
array; 

performing, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 
filter and a plurality of frames, 
wherein each of the plurality of frames is based on one 

or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality 

of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimensional 
filters; and 

performing a computer vision process based on the plu­
rality of filter responses. 

12. The method of claim 11, wherein each of the plurality 
of detectors comprises a single photon avalanche diode 
(SPAD). 

13. The method of claim 11, wherein each image of the 
sequence of images comprises a binary image that represents 
photons detected by the image sensor during an exposure 
time t. 

14. The method of claim 11, wherein each of the plurality 
of three dimensional filters comprises a velocity tuned filter, 
and 

wherein a first subset of the plurality of three dimensional 
filters are tuned to a three dimensional frequency k: 
=(kx, k,,, k,), where kx and k,, represent spatial patterns, 
and k, represents a pattern in time, each of the three 
dimensional filters of the first subset having a different 
scale. 

15. The method of claim 11, further comprising: 

determining a z-score for each of the plurality of filter 
bank responses; 

mapping each z-score to a weight associated with the 
respective filter bank for which the z-score was deter­
mined; and 

utilize the weighted filter bank responses to perform the 
computer vision process based on the plurality of filter 
responses 

16. The method of claim 15, further comprising: 

estimating a variance value Var(Rk[P]) using a relation­
ship Vk[p]: =V(c[Pl) Lqlhk[q]l 2

, 

where Rk[P] is a filter bank response generated by 
applying a filter hk[q] to the plurality of frames B[p], 
V(c[pl) is a variance of an estimated local average 
flux over B[p], and Lqlhk[q]l 2 is a sum of the filter 
hk[q] over q<p; and 
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determining the z-score using a relationship 

zk[p]:= I~_ 
\fVk[p] 

17. The method of claim 11, wherein the computer vision 
process is an edge detection process based on a phase 
congruency associated with each of the plurality of filter 
responses. 

18. The method of claim 11, wherein the computer vision 
process is a motion estimation process based on a phase 
constancy relationship. 

19. A non-transitory computer readable medium contain­
ing computer executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
facilitating single-photon computer vision tasks, the method 
comprising: 

causing an image sensor to generate a sequence of images 
representing a scene, each of the images comprising a 
plurality of pixels, 
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wherein the image sensor comprises a plurality of 
detectors configured to detect arrival of individual 
photons, the plurality of detectors arranged in an 
array; 

performing, for each of a plurality of three dimensional 
filters, a convolution between the three dimensional 
filter and a plurality of frames, 
wherein each of the plurality of frames is based on one 

or more of the images of the sequence of images; 
generating, for each of the plurality of frames, a plurality 

of filter bank responses each corresponding to a three 
dimensional filter of the plurality of three dimensional 
filters; and 

performing a computer vision process based on the plu­
rality of filter responses. 

20. The non-transitory computer readable medium of 
claim 19, wherein each of the plurality of detectors com­
prises a single photon avalanche diode (SPAD). 

21. The non-transitory computer readable medium of 
claim 19, wherein each image of the sequence of images 
comprises a binary image that represents photons detected 
by the image sensor during an exposure time t. 

* * * * * 




