

US 20240401067A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2024/0401067 A1

Ujor

MICROBES AND METHODS FOR (54) SELECTIVE DETOXIFICATION OF LIGNOCELLULOSIC BIOMASS

- (71) Applicant: Wisconsin Alumni Research Foundation, Madison, WI (US)
- (72) Inventor: Victor Ujor, Sun Prairie, WI (US)
- Assignee: Wisconsin Alumni Research (73) Foundation, Madison, WI (US)
- (21)Appl. No.: 18/672,924
- (22) Filed: May 23, 2024

Related U.S. Application Data

Provisional application No. 63/505,197, filed on May (60) 31, 2023.

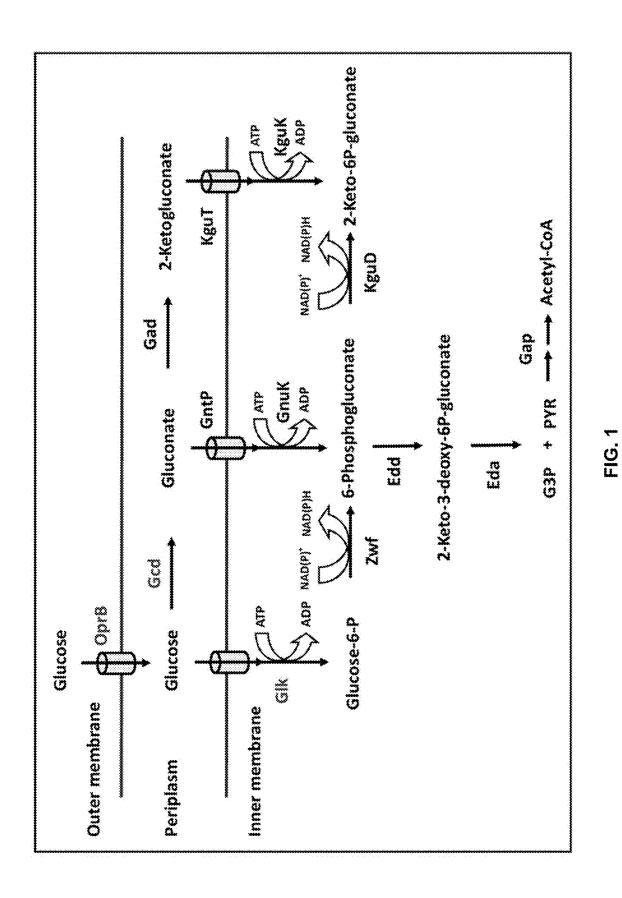
Publication Classification

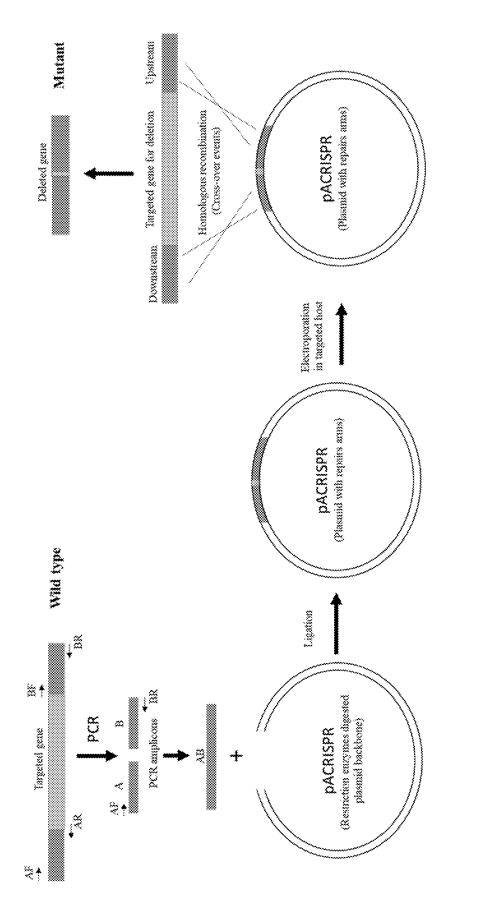
(51) Int. Cl.

C12N 15/78	(2006.01)
C07K 14/195	(2006.01)

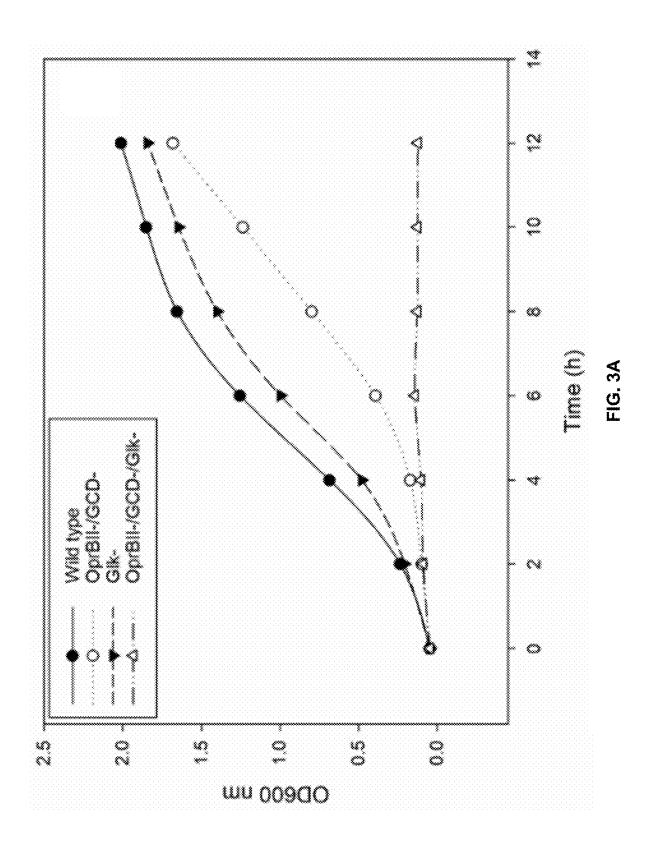
Dec. 5, 2024 (43) **Pub. Date:**

C12N 9/00	(2006.01)
C12N 9/02	(2006.01)
C12N 9/04	(2006.01)
C12N 9/10	(2006.01)
C12N 9/88	(2006.01)

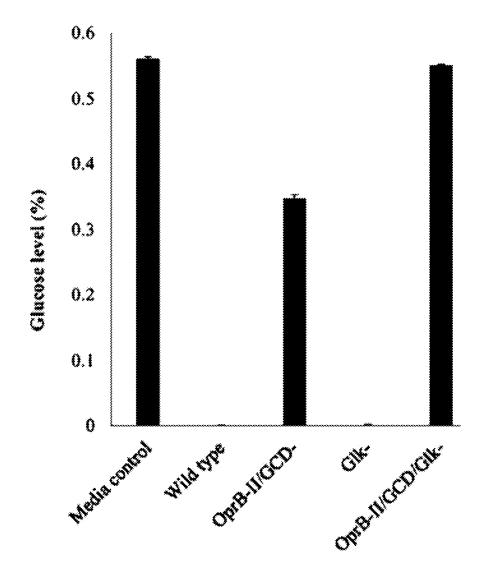
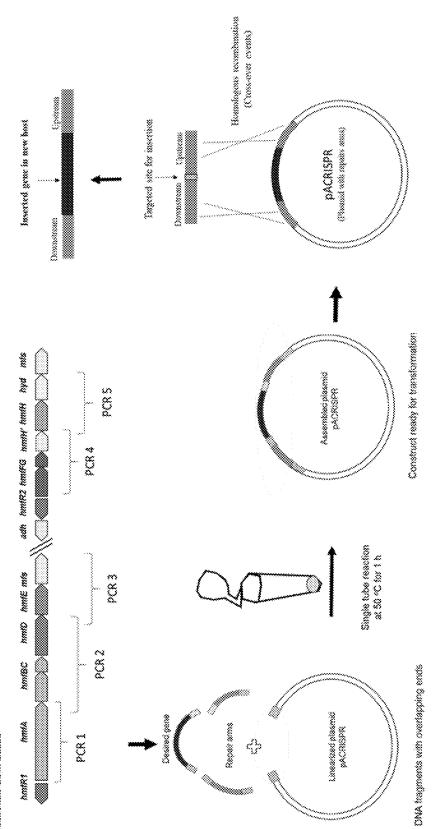
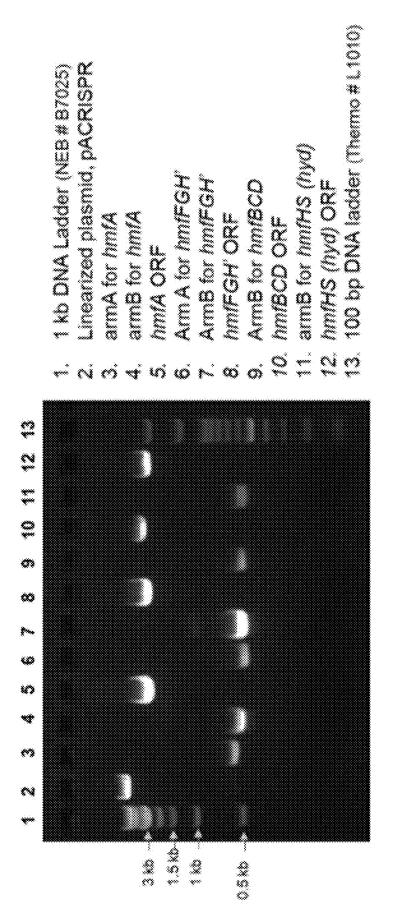

(52) U.S. Cl.

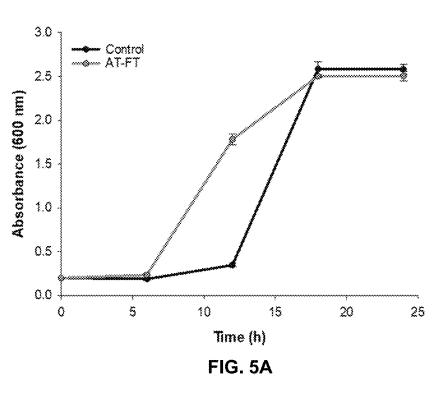

CPC C12N 15/78 (2013.01); C07K 14/195 (2013.01); C12N 9/0006 (2013.01); C12N 9/001 (2013.01); C12N 9/1085 (2013.01); C12N 9/88 (2013.01); C12N 9/93 (2013.01); C12Y 103/99008 (2013.01); C12Y 602/01031 (2013.01)

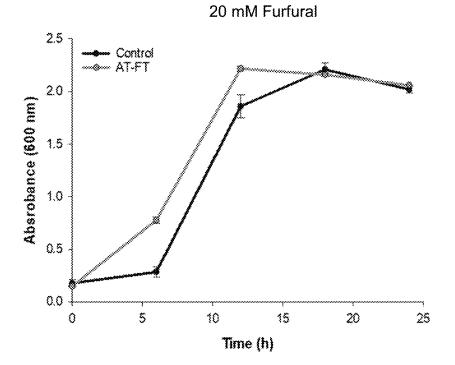
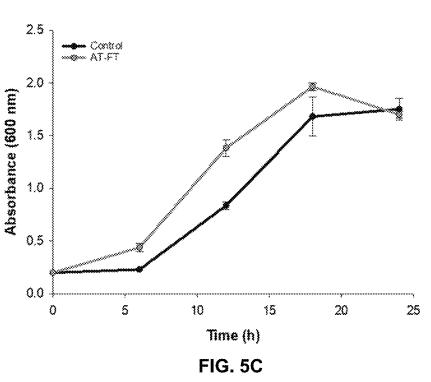
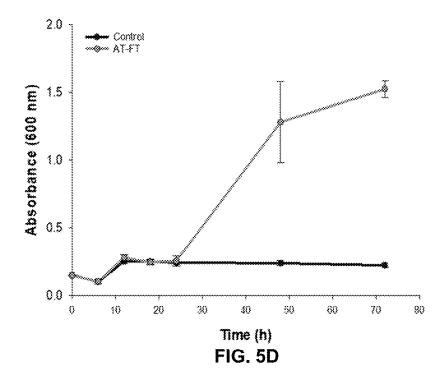
(57)ABSTRACT

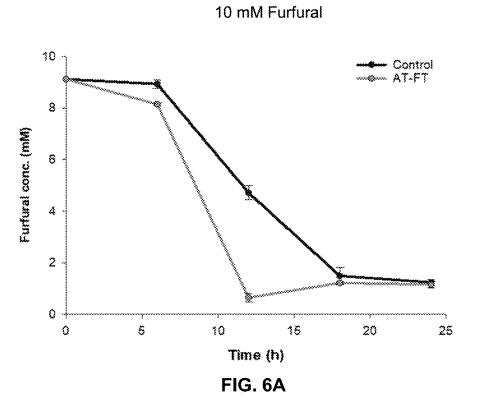

Microbes and methods for selectively detoxifying lignocellulosic biomass, such as microbes and methods for removing furanic and phenolic aldehydes from lignocellulosic hydrolysates.

Specification includes a Sequence Listing.


FIG. 3B


FIG. 5B

30 mM Furfural

40 mM Furfural

20 mM Furfural

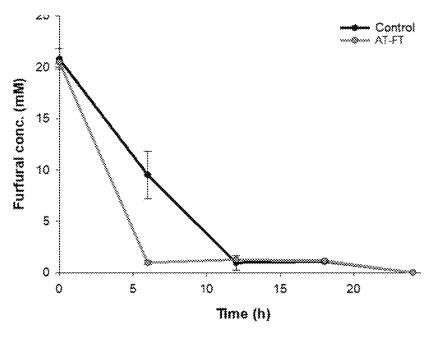
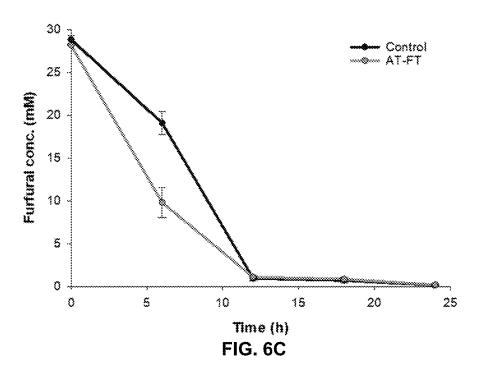
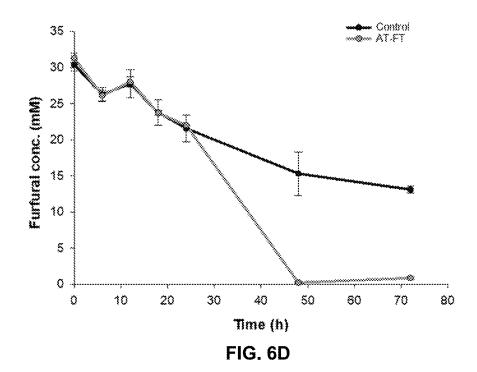




FIG. 6B

30 mM Furfural

40 mM Furfural

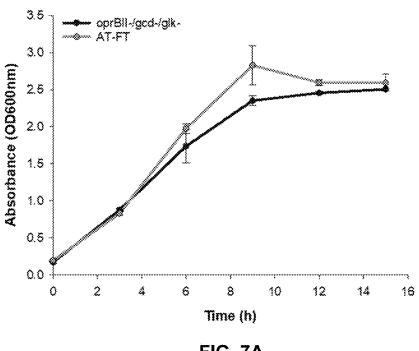
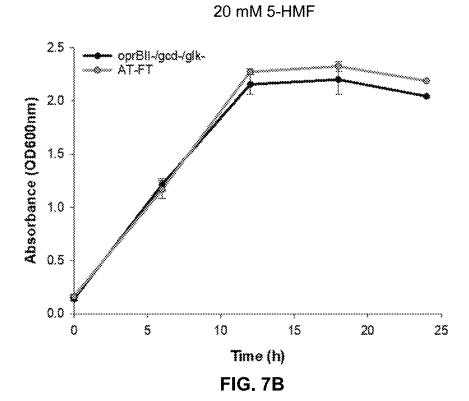
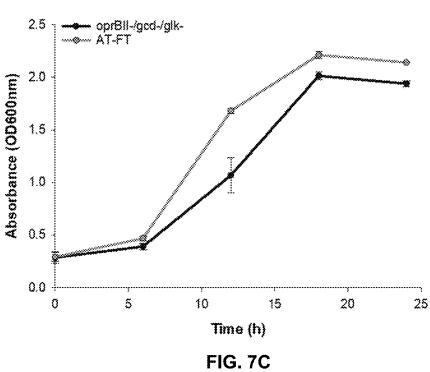
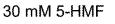
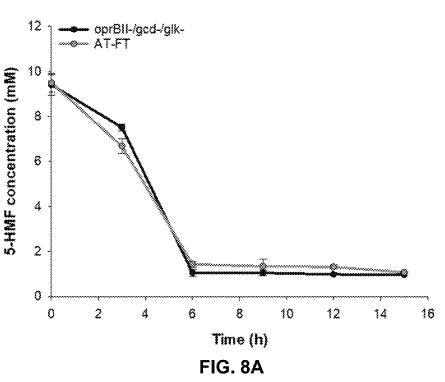
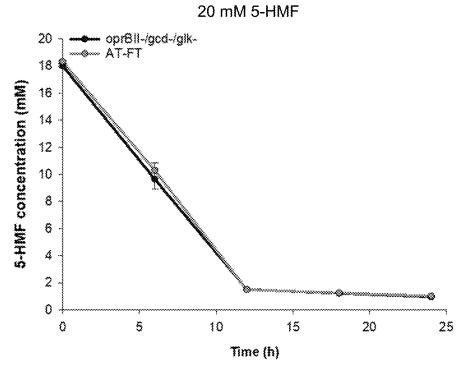
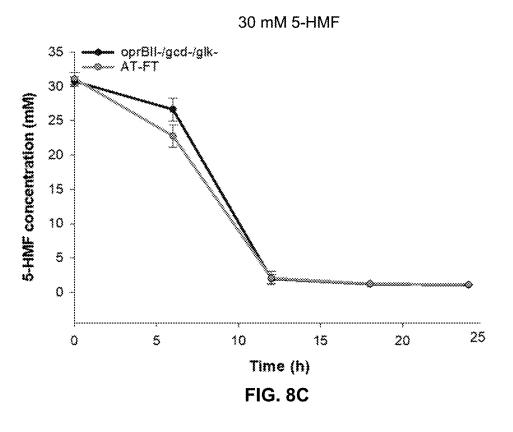





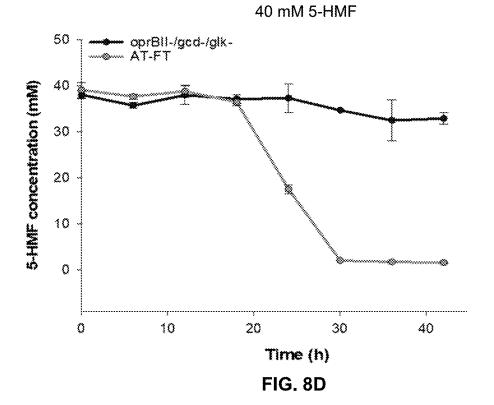
FIG. 7A


10 mM 5-HMF



40 mM 5-HMF


FIG. 7D



10 mM 5-HMF

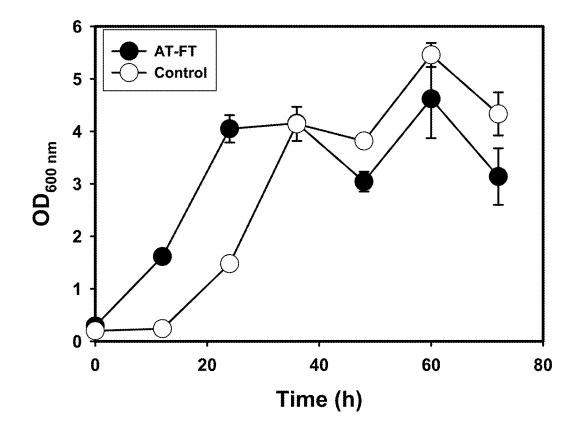


FIG. 9

MICROBES AND METHODS FOR SELECTIVE DETOXIFICATION OF LIGNOCELLULOSIC BIOMASS

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0001] This invention was made with government support under 25-CRHF-0-6055 awarded by the USDA/NIFA. The government has certain rights in the invention.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted in XML format and is hereby incorporated by reference in its entirety. The XML copy, created on May 8, 2024, is named USPTO-240523-09824519-P230311US02-APP-SEQ_LIST and is 95,019 bytes in size.

FIELD OF THE INVENTION

[0003] The invention is directed to microbes and methods for selectively detoxifying lignocellulosic biomass, such as microbes and methods for removing furanic and phenolic aldehydes from lignocellulosic hydrolysates.

BACKGROUND

[0004] The use of lignocellulosic biomass as a renewable feedstock in biomanufacturing remains limited by several issues. A primary concern is that the commonly used acidor alkali-based deconstruction strategies are efficient at releasing sugars (e.g., glucose and xylose), but also generate several co-products. These co-products include furanic and phenolic aledehydes, which are generally toxic to commonly used fermenting microorganisms. As a result, there continues to be a need for economical methods for removing these unwanted compounds from lignocellulosic biomass hydrolysates.

SUMMARY OF THE INVENTION

[0005] One aspect of the invention is directed to recombinant microorganisms. In some versions, The recombinant microorganisms comprise one or more modifications with respect to a corresponding microorganism not comprising the one or more modifications.

[0006] In some versions, the one or more modifications comprise 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or each of: a functional deletion of a glucokinase gene present in the corresponding microorganism; a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism; a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism; a recombinant gene encoding HmfA of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfB of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfC of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfD of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfE of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfT1 of Cupriavidus basilensis or a homolog thereof; a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH' of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and a recombinant gene encoding HmfT2 of *Cupriavidus basilensis* or a homolog thereof.

[0007] In some versions, the one or more modifications comprise one or more, two or more, or each of: a functional deletion of a glucokinase gene present in the corresponding microorganism; a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism; and a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism.

[0008] In some versions, the one or more modifications comprise one or both of: a functional deletion of a glucokinase gene present in the corresponding microorganism; and a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism.

[0009] In some versions, the glucokinase gene is glk of *Pseudomonas putida*, glk of *Escherichia coli*, glk of *Enterobacter hormaechei*, or a homolog of any of the foregoing.

[0010] In some versions, the quinoprotein glucose dehydrogenase gene is gcd of *Pseudomonas putida*, gcd of *Escherichia coli*, gcd of *Enterobacter hormaechei*, or a homolog of any of the foregoing.

[0011] In some versions, the carbohydrate transporter gene is oprB-II of *Pseudomonas putida* or a homolog thereof.

[0012] In some versions, the glucokinase gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:2 and 8.

[0013] In some versions, the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:4 and 10.

[0014] In some versions, the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:6, 46, 48, and 50.

[0015] In some versions, the wherein the one or more modifications comprise a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism, wherein the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:6.

[0016] In some versions, the recombinant microorganism further comprises a functional deletion of one, two or three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes each encode a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:46, 48, and 50.

[0017] In some versions, the recombinant microorganism further comprises a functional deletion of three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes encode: a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:46; a protein comprising an amino acid sequence with at least 80%, at least 95%, or at least 99% sequence identity to SEQ ID NO:46; a protein comprising an amino acid sequence with at least 80%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:48; a protein comprising an amino acid sequence with at least 80%, at least 95%, or at least 95

[0018] In some versions, the one or more modifications comprise one or more, two or more three or more, four or more, five or more, or each of: a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof; and a recombinant gene encoding HmfT1 of *Cupriavidus basilensis* or a homolog thereof.

[0019] In some versions, the one or more modifications comprise one or more, two or more three or more, four or more, five or more, or each of: a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH' of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof; a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof; and a recombinant gene encoding HmfT2 of *Cupriavidus basilensis* or a homolog thereof.

[0020] In some versions, the HmfA of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:13.

[0021] In some versions, the HmfB of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:15.

[0022] In some versions, the HmfC of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:17.

[0023] In some versions, the HmfD of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:19.

[0024] In some versions, the HmfE of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:21.

[0025] In some versions, the HmfT1 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid

sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:23.

[0026] In some versions, the HmfF of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:26.

[0027] In some versions, the HmfG of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:28.

[0028] In some versions, the HmfH' of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:30.

[0029] In some versions, the HmfH of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:32.

[0030] In some versions, the HmfS of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:34.

[0031] In some versions, the HmfT2 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% sequence identity to SEQ ID NO:36.

[0032] In some versions, the recombinant microorganism is an aerobic microorganism.

[0033] In some versions, the recombinant microorganism is a bacterium.

[0034] In some versions, the recombinant microorganism is an aerobic bacterium.

[0035] In some versions, the recombinant microorganism is from a genus selected from the group consisting of *Pseudomonas, Escherichia,* and *Enterobacter.*

[0036] In some versions, the recombinant microorganism is selected from the group consisting of *Pseudomonas putida*, *Escherichia coli*, and *Enterobacter hormaechei*.

[0037] In some versions, the recombinant microorganism is from a genus of *Pseudomonas*.

[0038] In some versions, the recombinant microorganism is *Pseudomonas putida*.

[0039] In some versions, the recombinant microorganism exhibits reduced consumption of a carbohydrate with respect to the corresponding microorganism.

[0040] In some versions, the recombinant microorganism exhibits increased consumption of a substituted furan with respect to the corresponding microorganism.

[0041] In some versions, the recombinant microorganism exhibits increased consumption of a substituted furan selected from the group consisting of furfural and hydroxymethylfurfural with respect to the corresponding microorganism.

[0042] Another aspect of the invention is directed methods of decreasing an amount of a substituted furan in a medium. In some versions, the methods comprise contacting the

medium with a recombinant microorganism of the invention for a time sufficient to decrease the substituted furan in the medium.

[0043] In some versions, the substituted furan is selected from the group consisting of furfural and hydroxymethyl-furfural.

[0044] In some versions, the medium comprises lignocellulosic biomass.

[0045] In some versions, the medium comprises lignocellulosic biomass hydrolysate.

[0046] In some versions, the contacting is performed under aerobic conditions.

[0047] The objects and advantages of the invention will appear more fully from the following detailed description of the preferred embodiment of the invention made in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0048] FIG. 1. Glucose import machinery of *Pseudomo-nas putida*. Genes encoding OprB, Gcd and Glk (in light blue) are inactivated by homologous recombination.

[0049] FIG. **2**. Schematic of homologous recombinationbased gene deletion in *P. putida*.

[0050] FIGS. **3**A and **3**B. The growth profiles of *P. putida* knockout mutants on glucose relative to the wildtype. FIG. **3**A. Optical densities. FIG. **3**B. residual glucose concentrations.

[0051] FIGS. **4**A and **4**B. Strategy for enhancing inhibitor utilization in *P. putida*. FIG. **4**A. Schematic of homologous recombination-based gene insertion into *P. putida*, showing the genetic map of furfural/HMF utilizing gene clusters of *C. basilensis* and a schematic of Gibson assembly used for joining DNA fragments. FIG. **4**B. Agarose (1.2%) gel showing DNA fragments (linearized plasmid, PCR amplified hmf genes from genomic DNA of *C. basilensis*, and repairs arms amplified from genomic DNA of *P. putida*).

[0052] FIGS. **5**A-**5**D. Growth kinetics of cultures of *P. putida*_control and *P. putida*_AT-FT supplemented with 10, 20, 30, and 40 mM furfural.

[0053] FIGS. **6A-6**D. Furfural concentration profiles of cultures of *P. putida*_control and *P. putida*_AT-FT supplemented with 10, 20, 30, and 40 mM furfural.

[0054] FIGS. 7A-7D. Growth kinetics of cultures of *P. putida*_control and *P. putida*_AT-FT supplemented with 10, 20, 30, and 40 mM HMF.

[0055] FIGS. **8**A-**8**D. HMF concentration profiles of cultures of *P. putida*_control and *P. putida*_AT-FT supplemented with 10, 20, 30, and 40 mM HMF.

[0056] FIG. **9**. The growth profile of *C. beijerinckii* grown in glucose (60 g/L) and furfural (40 mM)-supplemented medium in which *P. putida*_AT-FT and *P. putida*_control were pre-grown.

DETAILED DESCRIPTION OF THE INVENTION

[0057] One aspect of the invention is directed to recombinant microorganisms. The recombinant microorganisms of the invention comprise one or more modifications with respect to a corresponding microorganism not comprising the one or more modifications. The one or more modifications may confer reduced consumption of a sugar such as glucose with respect to the corresponding microorganism, increased consumption of a substituted furan such as furfural

and hydroxymethylfurfural with respect to the corresponding microorganism, or any combination thereof.

[0058] "Corresponding microorganism" refers to a microorganism of the same species having the same or substantially same genetic and proteomic composition as a recombinant microorganism of the invention, with the exception of genetic and proteomic differences resulting from the modifications described herein for the recombinant microorganisms of the invention. In some versions, the corresponding microorganism is the native version of the recombinant microorganism of the invention, i.e., the unmodified microorganism as found in nature. The terms "microorganism" and "microbe" are used interchangeably herein.

[0059] The recombinant and/or corresponding microorganisms of the invention may comprise any type of microorganism. The recombinant and/or corresponding may be prokaryotic or eukaryotic. Suitable prokaryotes include bacteria and archaea. Suitable types of bacteria include α - and y-proteobacteria, gram-positive bacteria, gram-negative bacteria, ungrouped bacteria, phototrophs, lithotrophs, and organotrophs. Suitable eukaryotes include yeast and other fungi. The recombinant and/or corresponding microorganism in some versions can be from an order selected from the group consisting of Pseudomonadales, Enterobacterales, and Sphingomonadales. The recombinant and/or corresponding microorganism in some versions can be from a family selected from the group consisting of Pseudomonadaceae, Enterobacteriaceae, and Sphingomonadaceae. The recombinant and/or corresponding microorganism in some versions can be from a genus selected from the group consisting of Pseudomonas, Escherichia, Enterobacter, Erythrobacter, Altererythrobacter Sphingomonas, Sphingobium, Sphingosinicella, Sphingopyxis, and Novosphingobium. An exemplary microorganism from the genus Pseudomonas is Pseudomonas putida. An exemplary microorganism from the genus Escherichia is Escherichia coli. An exemplary microorganism from the genus Enterobacter is Enterobacter hormaechei. Other examples of suitable microorganisms include Gram-positive bacteria such as strains of Bacillus, (e.g., B. brevis or B. subtilis), Lactobacillus, Lactococcus, or Streptomyces, or Gram-negative bacteria, such as strains of Salmonella, Vibrio, Corynebacterium, Ralstonia, Aeromonas or cyanobacteria, or oleaginous bacteria, such as Rhodococcus opacus, or Acinetobactor baylyi. Examples of suitable yeast cells include strains of Saccharomyces, such as S. cerevisiae or Lipomyces starkeyi; Schizosaccharomyces; Kluyveromyces; Pichia, such as P. pastoris or P. methlanolica, or P. stipitis; Hansenula, such as H. Polymorpha; Yarrowia; Candida; Cryptococcus; Basidiomycete, such as Rhodosporidium. Examples of suitable microalgal species Chlorophyta, such as chlorella; Bacillariophyceae, such as chaetoceros. Examples of suitable filamentous fungal cells include strains of Aspergillus, e.g., A. oryzae, A. niger, or A. nidulans; Fusarium or Trichoderma.

[0060] In some versions of the invention, the recombinant and/or corresponding microorganism is a microorganism incapable or minimally capable of consuming a sugar selected from the group consisting of glucose and xylose. In some versions of the invention, the recombinant and/or corresponding microorganism is a microorganism incapable or minimally capable of consuming glucose. In some versions of the invention, the recombinant and/or corresponding microorganism is a microorganism incapable or minimally capable of consuming xylose. **[0061]** In some versions of the invention, the recombinant and/or corresponding microorganism is an aerobe or a facultative anaerobe. In some versions of the invention, the recombinant and/or corresponding microorganism is an aerobe. Aerobes are microorganisms that are able to live and reproduce only in the presence of free oxygen. Facultative anaerobes are microorganisms that are able to live and grow either with or without free oxygen.

[0062] The modifications of the invention may include a functional deletion of one or more genes. "Functional deletion" or its grammatical equivalents refers to any modification to a microorganism that ablates, reduces, inhibits, or otherwise disrupts production of a gene product, renders the gene product non-functional, or otherwise reduces or ablates the gene product's activity. "Gene product" refers to a protein or polypeptide encoded and produced by a particular gene. In some versions of the invention, functionally deleting a gene product or homolog thereof means that the gene is mutated to an extent that corresponding gene product is not produced at all.

[0063] One of ordinary skill in the art will appreciate that there are many well-known ways to functionally delete a gene product. For example, functional deletion can be accomplished by introducing one or more genetic modifications. As used herein, "genetic modifications" refer to any differences in the nucleic acid composition of a cell, whether in the cell's native chromosome or in endogenous or exogenous non-chromosomal plasmids harbored within the cell. Examples of genetic modifications that may result in a functionally deleted gene product include but are not limited to mutations, partial or complete deletions, insertions, and/or other variations to a coding sequence or a sequence controlling the transcription or translation of a coding sequence; placing a coding sequence under the control of a less active promoter; and expressing ribozymes or antisense sequences that target the mRNA of the gene of interest, etc. In some versions, a gene or coding sequence can be replaced with a selection marker or screenable marker. The genetic modifications that functionally delete a product of a particular gene can be cis-acting modifications (direct modifications of the particular gene itself) or trans-actin modifications (modifications other than to the particular gene itself that indirectly affect the gene). Various methods for introducing the genetic modifications described above are well known in the art and include homologous recombination, among other mechanisms. See, e.g., Green et al., Molecular Cloning: A laboratory manual, 4th ed., Cold Spring Harbor Laboratory Press (2012) and Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press (2001). Various other genetic modifications that functionally delete a gene product are described in the examples below. [0064] In certain versions of the invention, the functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 5%, less than about 1%, or about 0% of the activity of the non-functionally deleted gene product. [0065] In certain versions of the invention, a microorganism with a functionally deleted gene product may have less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 60%, less than about 55%, less than about 50%, less than about 40%, less than about 35%, less than about 30%, less than about 25%, less than about 20%, less than about 15%, less than about 10%, less than about 15%, less than about 10%, less than about 1%, or about 0% of the activity of the gene product compared to a microorganism with the non-functionally deleted gene product.

[0066] In certain versions of the invention, the functionally deleted gene product may be expressed at an amount less than about 95%, less than about 90%, less than about 85%, less than about 80%, less than about 75%, less than about 70%, less than about 65%, less than about 55%, less than about 50%, less than about 45%, less than about 40%, less than about 35%, less than about 35%, less than about 35%, less than about 25%, less than about 35%, less than about 45%, less than about 25%, less than about 35%, less than about 45%, less than about 25%, less than about 35%, less than about 10%, less than about 15%, less than about 10%, less than about 15%, less than about 10%, less than about 15%, less than about 10%, less than about 55%, less than about 55%, less than about 10%, less than about 55%, less than about 55%, less than about 10%, less than about 55%, less than about 55%, less than about 10%, less than about 55%, less than about 55%, less than about 10%, less than about 55%, less than about 55%,

[0067] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more nonsynonymous substitutions are present in the gene or coding sequence of the gene product.

[0068] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least 1, at least 2, at least 3, at least 4, at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, or more bases are inserted in the gene or coding sequence of the gene product.

[0069] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 75%, at least about 65%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the gene product's gene or coding sequence is deleted or mutated.

[0070] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of a promoter driving expression of the gene product is deleted or mutated.

[0071] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 75%, at least about 65%, at least about 75%, at least about 90%, at least about 95%, or about 100% of an enhancer controlling transcription of the gene product's gene is deleted or mutated.

[0072] In certain versions of the invention, the functionally deleted gene product may result from a genetic modification in which at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 95%, or about 100% of a sequence controlling translation of gene product's mRNA is deleted or mutated.

[0073] In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its unaltered state as found in nature. In certain versions of the invention, the decreased activity or expression of the functionally deleted gene product is determined with respect to the activity or expression of the gene product in its form in a corresponding microorganism. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene in its unaltered state as found in nature. In certain versions, the genetic modifications giving rise to a functionally deleted gene product are determined with respect to the gene in its form in a corresponding microorganism.

[0074] In some versions of the invention, a glucokinase gene is functionally deleted. Glucokinases have activity falling under Enzyme Commission (EC) EC 2.7.1.2. In some versions, the glucokinase gene is glk of *Pseudomonas putida*, glk of *Escherichia coli*, glk of *Enterobacter hormaechei*, or a homolog of any of the foregoing. In some versions, the glucokinase gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:2 and 8.

[0075] In some versions of the invention, a quinoprotein glucose dehydrogenase gene is functionally deleted. Quinoprotein glucose dehydrogenases have activity falling under EC 1.2.5.2. In some versions, the quinoprotein glucose dehydrogenase gene is gcd of *Pseudomonas putida*, gcd of *Escherichia coli*, gcd of *Enterobacter hormaechei*, or a homolog of any of the foregoing. In some versions, the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:4 and 10.

[0076] In some versions of the invention, a carbohydrate transporter gene is functionally deleted. Carbohydrate transporter genes are genes encoding a protein that facilities transfer of a carbohydrate, such as glucose and/or xylose, into the cell. In some versions, the carbohydrate transporter gene is a glucose transporter gene. A glucose transporter gene is a gene encoding a protein that facilitates transfer of glucose into the cell. In some versions, the carbohydrate transporter gene is a gene encoding a protein that facilitates transfer of glucose into the cell. In some versions, the carbohydrate transporter gene is a gene encoding a protein that facilitates transfer of xylose into the cell. Examples of carbohydrate transporter genes, sodium solute symporter genes, enzyme II integral membrane subunit genes of the bacterial PEP-dependent phosphotransferase system (PTS), and porin

genes, such as carbohydrate-selective porins. In some versions, the carbohydrate transporter gene is a carbohydrateselective porin gene. In some versions, the carbohydrate transporter gene is a carbohydrate-selective porin gene that facilitates transfer of glucose into the cell. In some versions, the carbohydrate transporter gene is oprB-II of Pseudomonas putida or a homolog thereof. In some versions, the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to SEQ ID NO:6. In some versions, the carbohydrate transporter gene is oprB-1 of Pseudomonas putida or a homolog thereof. In some versions, the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to SEQ ID NO:46. In some versions, the carbohydrate transporter gene is gtsB of Pseudomonas putida or a homolog thereof. In some versions, the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to SEQ ID NO:48. In some versions, the carbohydrate transporter gene is KBDANE_ 14125 or PP_RS13865 of Pseudomonas putida or a homolog thereof. In some versions, the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% sequence identity to SEQ ID NO:50.

[0077] In some versions of the invention, the one or more modifications comprise a genetic modification to include a recombinant gene. In most cases, the recombinant gene is configured to be expressed or overexpressed in the microorganism. If a cell endogenously comprises a particular gene, the gene may be modified to exchange or optimize promoters, exchange or optimize enhancers, or exchange or optimize any other genetic element to result in increased expression of the gene. Alternatively, one or more additional copies of the gene or coding sequence thereof may be introduced to the cell for enhanced expression of the gene product. If a microorganism does not endogenously comprise a particular gene, the gene or coding sequence thereof may be introduced to the microorganism for heterologous expression of the gene product. The gene or coding sequence may be incorporated into the genome of the microorganism or may be contained on an extra-chromosomal plasmid. The gene or coding sequence may be introduced to the microorganism individually or may be included on an operon. Techniques for genetic manipulation are described in further detail below.

[0078] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof. The *C. basilensis* HmfA is the large subunit of a 2-furoyl-CoA dehydrogenase (EC 1.3.99.8). 2-Furoyl-CoA+Acceptor+ H_2O <=>S-(5-Hydroxy-2-furoyl)-CoA+Reduced acceptor. The amino acid sequence of the *C. basilensis* HmfA is SEQ ID NO:13, which is encoded by SEQ ID NO:12. Homologs of the *C. basilensis* HmfA can include variants of the *C. basilensis* HmfA comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:13. Homologs of the *C. basilensis* HmfA can also include any native homolog found in other organisms,

as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the *C. basilensis* HmfA are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. *Comput Struct Biotechnol J.* 2021 Apr. 16; 19:2160-2169).

[0079] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfB of C. basilensis or a homolog thereof. The C. basilensis HmfB is the FAD-binding subunit of a 2-furoyl-CoA dehydrogenase (EC 1.3.99.8). 2-Furoyl-CoA dehydrogenases catalyze the reaction: 2-Furoyl-CoA+Acceptor+H₂O<=>S-(5-Hydroxy-2-furoyl)-CoA+Reduced acceptor. The amino acid sequence of the C. basilensis HmfB is SEQ ID NO:15, which is encoded by SEQ ID NO:14. Homologs of the C. basilensis HmfB can include variants of the C. basilensis HmfB comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:15. Homologs of the C. basilensis HmfB can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfB are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0080] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfC of C. basilensis or a homolog thereof. The C. basilensis HmfC is the 2Fe-2S iron sulfur subunit of a 2-furoyl-CoA dehydrogenase (EC 1.3.99.8). 2-Furoyl-CoA dehydrogenases catalyze the reaction: 2-Furoyl-CoA+Acceptor+ $H_2O \le S-(5-Hydroxy-2-furoyl)-CoA+Reduced$ acceptor. The amino acid sequence of the C. basilensis HmfC is SEQ ID NO:17, which is encoded by SEQ ID NO:16. Homologs of the C. basilensis HmfC can include variants of the C. basilensis HmfC comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:17. Homologs of the C. basilensis HmfC can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfC are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169). In some versions of the invention, the recombinant microorganism comprises one or more genes encoding each of HmfA, HmfB, or HmfC, or homologs thereof.

[0081] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfD of *C. basilensis* or a homolog thereof. The *C. basilensis* HmfD is a furoyl-CoA synthetase (EC 6.2.1.31). Furoyl-CoA synthetases catalyze the reaction: ATP+2-Furoate+CoA<=>AMP+Diphosphate+2-Furoyl-CoA. The amino

acid sequence of the C. basilensis HmfD is SEQ ID NO:19, which is encoded by SEQ ID NO:18. Homologs of the C. basilensis HmfD can include variants of the C. basilensis HmfD comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:19. Homologs of the C. basilensis HmfD can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfD are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0082] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfE of C. basilensis or a homolog thereof. The C. basilensis HmfE is a 2-oxoglutaroyl-CoA hydrolase. 2-Oxoglutaroyl-CoA hydrolases catalyze the reaction: 2-Oxoglutaryl-CoA+ H2O<=>2-Oxoglutarate+CoA. The amino acid sequence of the C. basilensis HmfE is SEQ ID NO:21, which is encoded by SEQ ID NO:20. Homologs of the C. basilensis HmfE can include variants of the C. basilensis HmfE comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:21. Homologs of the C. basilensis HmfE can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfE are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0083] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfT1 of C. basilensis or a homolog thereof. The C. basilensis HmfT1 is a transporter protein in the Major Facilitator Superfamily. The amino acid sequence of the C. basilensis HmfT1 is SEQ ID NO:23, which is encoded by SEQ ID NO:22. Homologs of the C. basilensis HmfT1 can include variants of the C. basilensis HmfT1 comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:23. Homologs of the C. basilensis HmfT1 can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfT1 are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0084] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfF of *C. basilensis* or a homolog thereof. The *C. basilensis* HmfF is a 2,5-furandicarboxylate decarboxylase, referred to as 2,5-furandicarboxylate decarboxylase 1. 2,5-Furandicarboxylate decarboxylase scalayze the reaction: 2,5-Furandicarboxylate<=>2-Furoate+CO₂. The amino acid sequence

of the C. basilensis HmfF is SEQ ID NO:26, which is encoded by SEQ ID NO:25. Homologs of the C. basilensis HmfF can include variants of the C. basilensis HmfF comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:26. Homologs of the C. basilensis HmfF can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfF are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0085] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfG of C. basilensis or a homolog thereof. The C. basilensis HmfG is a 2,5-furandicarboxylate decarboxylase, referred to as 2,5-furandicarboxylate decarboxylase 2. 2,5-Furandicarboxylate decarboxylases catalyze the reaction: 2,5-Furandicarboxylate <=>2-Furoate+CO₂. The amino acid sequence of the C. basilensis HmfG is SEQ ID NO:28, which is encoded by SEQ ID NO:27. Homologs of the C. basilensis HmfG can include variants of the C. basilensis HmfG comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:28. Homologs of the C. basilensis HmfG can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfG are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169). HmfF and HmfG are two subunits of a single enzyme. HmfF and HmfG are therefore preferably expressed together in the same recombinant microorganism, such that if the recombinant microorganism comprises a recombinant gene encoding either one of HmfF or HmfG of C. basilensis or a homolog thereof, the recombinant microorganism also preferably comprises a recombinant gene encoding the other one of HmfF or HmfG of C. basilensis or a homolog thereof.

[0086] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfH' (TetC) of C. basilensis or a homolog thereof. The C. basilensis HmfH' is a tripartite tricarboxylate transporter substrate-binding protein. The amino acid sequence of the C. basilensis HmfH' is SEQ ID NO:30, which is encoded by SEQ ID NO:29. Homologs of the C. basilensis HmfH' can include variants of the C. basilensis HmfH' comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:30. Homologs of the C. basilensis HmfH' can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfH' are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. *Comput Struct Biotechnol* J. 2021 Apr. 16; 19:2160-2169).

[0087] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfH of C. basilensis or a homolog thereof. The C. basilensis HmfH is a 5-(hydroxymethyl)furfural/furfural oxidase (EC 1.1.3.47, 1.1.3.-). 5-(Hydroxymethyl)furfural/furfural oxidases catalyze the reactions: Furfural+H₂O+Oxygen<=>2-Furoate+Hydrogen peroxide; and 5-Hydroxymethyl-2-furaldehyde+H2O+Oxygen<=>5-Hydroxymethyl-2-furoate+ Hydrogen peroxide. The amino acid sequence of the C. basilensis HmfH is SEQ ID NO:32, which is encoded by SEQ ID NO:31. Homologs of the C. basilensis HmfH can include variants of the C. basilensis HmfH comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:32. Homologs of the C. basilensis HmfH can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfH are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. Comput Struct Biotechnol J. 2021 Apr. 16; 19:2160-2169).

[0088] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfS of C. basilensis or a homolog thereof. The C. basilensis HmfS is a fatty acid hydroxylase. Fatty acid hydroxylases add an oxygen atom to a hydrogen atom in a specific position in a fatty acid chain. They also catalyze desaturation of sterol (a lipid), during sterol biosynthesis. The amino acid sequence of the C. basilensis HmfS is SEQ ID NO:34, which is encoded by SEQ ID NO:33. Homologs of the C. basilensis HmfS can include variants of the C. basilensis HmfS comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:34. Homologs of the C. basilensis HmfS can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto.

[0089] In some versions of the invention, the one or more modifications comprise a recombinant gene encoding HmfT2 of C. basilensis or a homolog thereof. The C. basilensis HmfT2 is a transporter protein in the Major Facilitator Superfamily and is related to BenE- or LivKHMGF-like transporters. The amino acid sequence of the C. basilensis HmfT2 is SEQ ID NO:36, which is encoded by SEQ ID NO:35. Homologs of the C. basilensis HmfT2 can include variants of the C. basilensis HmfT2 comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity to SEQ ID NO:36. Homologs of the C. basilensis HmfT2 can also include any native homolog found in other organisms, as well as variants of such native homologs comprising an amino acid sequence with at least 80%, 85%, 90%, 95%, 99%, or 100% sequence identity thereto. Exemplary native homologs of the C. basilensis HmfT2 are described in Donoso et al. 2021 (Donoso R A, González-Toro F, Pérez-Pantoja D. Widespread distribution of hmf genes in Proteobacteria reveals key enzymes for 5-hydroxymethylfurfural conversion. *Comput Struct Biotechnol* J. 2021 Apr. 16; 19:2160-2169).

[0090] In some versions, the recombinant microorganism exhibits reduced consumption of a carbohydrate, such as glucose and/or xylose, with respect to the corresponding microorganism.

[0091] In some versions, the recombinant microorganism exhibits increased consumption of a substituted furan with respect to the corresponding microorganism. Substituted furans include compounds having at least one substituent on a furan backbone:

[0092] Examples of substituents include a halogen atom, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, hydroxy, carboxy, alkyloxy, alkenyloxy, alkynyloxy, cycloalkyloxy, cycloalkenyloxy, mercapto, alkylthio, alkenylthio, alkynylthio, alkylsulfinyl, alkylsulfonyl, alkylsulfonyloxy, cycloalkylthio, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfonyloxy, cycloalkenylthio, cycloalkenylsulfinyl, cycloalkenylsulfonyl, cycloalkenylsulfonyloxy, amino, acyl, alkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryloxycarbonyl, carbamoyl, sulfamoyl, cyano, nitro, aryl, aryloxy, arylthio, arylsulfinyl, arylsulfonyl, arylsulfonyloxy, heteroaryl, heteroaryloxy, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfonyloxy, and non-aromatic heterocyclic. See U.S. Pat. No. 11,117,881, which is incorporated herein by reference in its entirety, for definitions of such substitutents. Specific examples of substituted furans include furfural, hydroxymethylfurfural (5-(hydroxymethyl)furfural), furfural alcohol, furoic acid, 2-methyl furan, and furfurylamine, among others. In some versions, the recombinant microorganism exhibits increased consumption of a substituted furan selected from the group consisting of furfural and hydroxymethylfurfural with respect to the corresponding microorganism. In some versions, the recombinant microorganism exhibits increased consumption of furfural with respect to the corresponding microorganism. In some versions, the recombinant microorganism exhibits increased consumption of hydroxymethylfurfural with respect to the corresponding microorganism. [0093] The microorganisms of the invention may be genetically altered to functionally delete, express, or overexpress homologs of any of the specific genes or gene products explicitly described herein. Proteins and/or protein sequences are "homologous" when they are derived, naturally or artificially, from a common ancestral protein or protein sequence. Similarly, nucleic acids and/or nucleic acid sequences are homologous when they are derived, naturally or artificially, from a common ancestral nucleic acid or nucleic acid sequence. Nucleic acid or gene product (amino acid) sequences of any known gene, including the genes or gene products described herein, can be determined by searching any sequence databases known the art using the gene name or accession number as a search term. Common sequence databases include GenBank (ncbi.nlm.nih.gov/ genbank/), ExPASy (expasy.org), KEGG (genome.jp/kegg/), among others. Homology is generally inferred from sequence similarity between two or more nucleic acids or proteins (or sequences thereof). The precise percentage of similarity between sequences that is useful in establishing homology varies with the nucleic acid and protein at issue, but as little as 25% sequence similarity (e.g., identity) over 50, 100, 150 or more residues (nucleotides or amino acids) is routinely used to establish homology (e.g., over the full length of the two sequences to be compared). Higher levels of sequence similarity (e.g., identity), e.g., 30%, 35% 40%, 45% 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% or more, can also be used to establish homology. Accordingly, homologs of the genes or gene products described herein include genes or gene products having at least about 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identity to the genes or gene products described herein. Methods for determining sequence similarity percentages (e.g., BLASTP and BLASTN using default parameters) are described herein and are generally available. The homologous proteins should demonstrate comparable activities and, if an enzyme, participate in the same or analogous pathways. "Orthologs" are genes in different species that evolved from a common ancestral gene by speciation. Normally, orthologs retain the same or similar function in the course of evolution. As used herein "orthologs" are included in the term "homologs".

[0094] For sequence comparison and homology determination, one sequence typically acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence based on the designated program parameters. A typical reference sequence of the invention is a nucleic acid or amino acid sequence corresponding to acsA or other genes or products described herein.

[0095] Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2008)).

[0096] One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity for purposes of defining homologs is the BLAST algorithm, which is described in Altschul et al., J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood

word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always>0) and N (penalty score for mismatching residues; always<0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

[0097] In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.001. The above-described techniques are useful in identifying homologous sequences for use in the methods described herein.

[0098] The terms "identical" or "percent identity", in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described above (or other algorithms available to persons of skill) or by visual inspection.

[0099] The phrase "substantially identical" in the context of two nucleic acids or polypeptides refers to two or more sequences or subsequences that have at least about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90, about 95%, about 98%, or about 99% or more nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using a sequence comparison algorithm or by visual inspection. Such "substantially identical" sequences are typically considered to be "homologous", without reference to actual ancestry. Preferably, the "substantial identity" exists over a region of the sequences that is at least about 50 residues in length, more preferably over a region of at least about 100 residues, and most preferably, the sequences are substantially identical over at least about 150 residues, at least about 250 residues, or over the full length of the two sequences to be compared.

[0100] Terms used herein pertaining to genetic manipulation are defined as follows.

[0101] Deletion: The removal of one or more nucleotides from a nucleic acid molecule or one or more amino acids from a protein, the regions on either side being joined together.

[0102] Derived: When used with reference to a nucleic acid or protein, "derived" means that the nucleic acid or polypeptide is isolated from a described source or is at least 70%, 80%, 90%, 95%, 99%, or more identical to a nucleic acid or polypeptide included in the described source.

[0103] Endogenous: An endogenous nucleic acid, gene, gene element (e.g., promoter, enhancer, coding sequence), polypeptide, sequence or any other element in a given cell is one that is naturally occurring in the given cell.

[0104] Exogenous: An exogenous nucleic acid, gene, gene element (e.g., promoter, enhancer, coding sequence), polypeptide, sequence or any other element in a given cell is one that is not naturally occurring in the given cell. The term "heterologous" is used herein interchangeably with "exogenous."

[0105] Expression: The process by which a gene's coded information is converted into the structures and functions of a cell, such as a protein, transfer RNA, or ribosomal RNA. Expressed genes include those that are transcribed into mRNA and then translated into protein and those that are transcribed into RNA but not translated into protein (for example, transfer and ribosomal RNAs).

[0106] Gene: "Gene" refers minimally to a coding sequence and a promoter operationally linked to the coding sequence. A gene may additionally include other elements, such as enhancers and silencers.

[0107] Introduce: When used with reference to genetic material, such as a nucleic acid, and a cell, "introduce" refers to the delivery of the genetic material to the cell in a manner such that the genetic material is capable of being expressed within the cell. Introduction of genetic material includes both transformation and transfection. Transformation encompasses techniques by which a nucleic acid molecule can be introduced into cells such as prokaryotic cells or non-animal eukaryotic cells. Transfection encompasses techniques by which a nucleic acid molecule can be introduced into cells. Transfection encompasses techniques by which a nucleic acid molecule can be introduced into cells. Transfection encompasses techniques by which a nucleic acid molecule can be introduced into cells such as animal cells. These techniques include but are not limited to introduction of a nucleic acid via conjugation, electroporation, lipofection, infection, and particle gun acceleration.

[0108] Isolated: An "isolated" biological component (such as a nucleic acid molecule, polypeptide, or cell) has been substantially separated or purified away from other biological components in its original form, such as its native form or the form in which it was originally produced.

[0109] Nucleic acid: Encompasses both RNA and DNA molecules including, without limitation, cDNA, genomic DNA, and mRNA. Nucleic acids also include synthetic nucleic acid molecules, such as those that are chemically synthesized or recombinantly produced. The nucleic acid can be double-stranded or single-stranded. Where single-stranded, the nucleic acid molecule can be the sense strand, the antisense strand, or both. In addition, the nucleic acid can be circular or linear.

[0110] Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For

instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. An origin of replication is operably linked to a coding sequence if the origin of replication controls the replication or copy number of the nucleic acid in the cell. Operably linked nucleic acids may or may not be contiguous.

[0111] Operon: Configurations of separate genes that are transcribed in tandem as a single messenger RNA are denoted as operons. Thus, a set of in-frame genes in close proximity under the transcriptional regulation of a single promoter constitutes an operon. Operons may be synthetically generated using the methods described herein.

[0112] Overexpress: When a gene is caused to be transcribed at an elevated rate compared to the endogenous or basal transcription rate for that gene. In some examples, overexpression additionally includes an elevated rate of translation of the gene compared to the endogenous translation rate for that gene. Methods of testing for overexpression are well known in the art, for example transcribed RNA levels can be assessed using rtPCR and protein levels can be assessed using SDS page gel analysis.

[0113] Recombinant: A recombinant nucleic acid, gene, gene element (e.g., promoter, enhancer, coding sequence), or polypeptide is one that has a sequence that is not naturally occurring. A recombinant cell or microorganism is one that contains a recombinant nucleic acid, gene, gene element (e.g., promoter, enhancer, coding sequence), or polypeptide.

[0114] Vector or expression vector: An entity comprising a nucleic acid molecule that is capable of introducing the nucleic acid, or being introduced with the nucleic acid, into a cell for expression of the nucleic acid. A vector can include nucleic acid sequences that permit it to replicate in the cell, such as an origin of replication. A vector can also include one or more selectable marker genes and other genetic elements known in the art. Examples of suitable vectors are found below.

[0115] Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below.

[0116] Exogenous nucleic acids can be introduced stably or transiently into a cell using techniques well known in the art, including electroporation, calcium phosphate precipitation, DEAE-dextran mediated transfection, liposome-mediated transfection, conjugation, transduction, and the like. For stable transformation, a nucleic acid can further include a selectable marker. Suitable selectable markers include antibiotic resistance genes that confer, for example, resistance to neomycin, tetracycline, chloramphenicol, or kanamycin, genes that complement auxotrophic deficiencies, and the like. (See below for more detail.)

[0117] Various embodiments of the invention use an expression vector that includes a heterologous nucleic acid encoding a protein. Suitable expression vectors include, but are not limited to viral vectors, such as baculovirus vectors or those based on vaccinia virus, polio virus, adenovirus, adenovassociated virus, SV40, herpes simplex virus, and the like; phage vectors, such as bacteriophage vectors; plasmids; phagemids; cosmids; fosmids; bacterial artificial chromo-

somes; P1-based artificial chromosomes; yeast plasmids; yeast artificial chromosomes; and any other vectors specific for cells of interest.

[0118] Useful vectors can include one or more selectable marker genes to provide a phenotypic trait for selection of transformed cells. The selectable marker gene encodes a protein necessary for the survival or growth of transformed cells grown in a selective culture medium. Cells not transformed with the vector containing the selectable marker gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. In alternative embodiments, the selectable marker gene is one that encodes dihydrofolate reductase or confers neomycin resistance (for use in eukaryotic cell culture), or one that confers tetracycline or ampicillin resistance (for use in a prokaryotic cell, such as E. coli).

[0119] The coding sequence in the expression vector is operably linked to an appropriate expression control sequence (promoters, enhancers, and the like) to direct synthesis of the encoded gene product. Such promoters can be derived from microbial or viral sources, including CMV and SV40. Depending on the cell/vector system utilized, any of a number of suitable transcription and translation control elements, including constitutive and inducible promoters, transcription enhancer elements, transcription terminators, etc. can be used in the expression vector (see e.g., Bitter et al. (1987) Methods in Enzymology, 153:516-544).

[0120] Suitable promoters for use in prokaryotic cells include but are not limited to: promoters capable of recognizing the T4, T3, Sp6, and T7 polymerases; the P_R and P_L promoters of bacteriophage lambda; the trp, recA, heat shock, and lacZ promoters of *E. coli*; the alpha-amylase and the sigma-specific promoters of *B. subtilis*; the promoters of the bacteriophages of *Bacillus; Streptomyces* promoters; the int promoter of bacteriophage lambda; the bla promoter of the beta-lactamase gene of pBR322; and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters are reviewed by Glick, *J. Ind. Microbiol.* 1:277 (1987); Watson et al, Molecular Biology of the Gene, 4th Ed., Benjamin Cummins (1987); and Sambrook et al., In: *Molecular Cloning: A Laboratory Manual,* 3rd ed., Cold Spring Harbor Laboratory Press (2001).

[0121] Non-limiting examples of suitable promoters for use within a eukaryotic cell are typically viral in origin and include the promoter of the mouse metallothionein I gene (Hamer et al. (1982) *J. Mol. Appl. Gen.* 1:273); the TK promoter of Herpes virus (McKnight (1982) *Cell* 31:355); the SV40 early promoter (Benoist et al. (1981) Nature (London) 290:304); the Rous sarcoma virus promoter; the cytomegalovirus promoter (Foecking et al. (1980) *Gene* 45:101); the yeast gal4 gene promoter (Johnston et al. (1982) *PNAS* (USA) 79:6971; Silver et al. (1984) *PNAS* (USA) 81:5951); and the IgG promoter (Orlandi et al. (1989) *PNAS* (USA) 86:3833).

[0122] Coding sequences can be operably linked to an inducible promoter. Inducible promoters are those wherein addition of an effector induces expression. Suitable effectors include proteins, metabolites, chemicals, or culture conditions capable of inducing expression. Suitable inducible promoters include but are not limited to the lac promoter

(regulated by IPTG or analogs thereof), the lacUV5 promoter (regulated by IPTG or analogs thereof), the tac promoter (regulated by IPTG or analogs thereof), the trc promoter (regulated by IPTG or analogs thereof), the ara-BAD promoter (regulated by L-arabinose), the phoA promoter (regulated by phosphate starvation), the recA promoter (regulated by nalidixic acid), the proU promoter (regulated by osmolarity changes), the cst-1 promoter (regulated by glucose starvation), the tetA promoter (regulated by tetracycline), the cadA promoter (regulated by pH), the nar promoter (regulated by anaerobic conditions), the p_L promoter (regulated by thermal shift), the cspA promoter (regulated by thermal shift), the T7 promoter (regulated by thermal shift), the T7-lac promoter (regulated by IPTG), the T3-lac promoter (regulated by IPTG), the T5-lac promoter (regulated by IPTG), the T4 gene 32 promoter (regulated by T4 infection), the nprM-lac promoter (regulated by IPTG), the VHb promoter (regulated by oxygen), the metallothionein promoter (regulated by heavy metals), the MMTV promoter (regulated by steroids such as dexamethasone) and variants thereof.

[0123] Alternatively, a coding sequence can be operably linked to a repressible promoter. Repressible promoters are those wherein addition of an effector represses expression. Examples of repressible promoters include but are not limited to the trp promoter (regulated by tryptophan); tetracycline-repressible promoters, such as those employed in the "TET-OFF"-brand system (Clontech, Mountain View, CA); and variants thereof.

[0124] In some versions, the cell is genetically modified with a heterologous nucleic acid encoding a gene product that is operably linked to a constitutive promoter. Suitable constitutive promoters are known in the art and include constitutive adenovirus major late promoter, a constitutive MPSV promoter, and a constitutive CMV promoter.

[0125] The relative strengths of the promoters described herein are well-known in the art.

[0126] In some versions, the cell is genetically modified with an exogenous nucleic acid encoding a single protein. In other embodiments, a modified cell is one that is genetically modified with exogenous nucleic acids encoding two or more proteins. Where the cell is genetically modified to express two or more proteins, those nucleic acids can each be contained in a single or in separate expression vectors. When the nucleic acids are contained in a single expression vector, the nucleotide sequences may be operably linked to a common control element (e.g., a promoter), that is, the common control element controls expression of all of the coding sequences in the single expression vector.

[0127] When the cell is genetically modified with heterologous nucleic acids encoding two or more proteins, one of the nucleic acids can be operably linked to an inducible promoter, and one or more of the nucleic acids can be operably linked to a constitutive promoter. Alternatively, all can be operably linked to inducible promoters or all can be operably linked to constitutive promoters.

[0128] Nucleic acids encoding enzymes desired to be expressed in a cell may be codon-optimized for that particular type of cell. Codon optimization can be performed for any nucleic acid by "OPTIMUMGENE"-brand gene design system by GenScript (Piscataway, NJ).

[0129] The introduction of a vector into a bacterial cell may be performed by protoplast transformation (Chang and Cohen (1979) *Molecular General Genetics*, 168:111-115),

using competent cells (Young and Spizizen (1961) *Journal* of Bacteriology, 81:823-829; Dubnau and Davidoff-Abelson (1971) *Journal of Molecular Biology*, 56: 209-221), electroporation (Shigekawa and Dower (1988) *Biotechniques*, 6:742-751), or conjugation (Koehler and Thorne (1987) *Journal of Bacteriology*, 169:5771-5278). Commercially available vectors for expressing heterologous proteins in bacterial cells include but are not limited to pZERO, pTrc99A, pUC19, pUC18, pKK223-3, pEXI, pCAL, pET, pSPUTK, pTrxFus, pFastBac, pThioHis, pTrcHis2, and pLEx, in addition to those described in the following Examples.

[0130] Methods for transforming yeast cells with heterologous DNA and producing heterologous polypeptides therefrom are disclosed by Clontech Laboratories, Inc., Palo Alto, Calif, USA (in the product protocol for the "YEAST-MAKER"-brand yeast transformation system kit); Reeves et al. (1992) FEMS Microbiology Letters 99:193-198; Manivasakam and Schiestl (1993) Nucleic Acids Research 21(18): 4414-5; and Ganeva et al. (1994) FEMS Microbiology Letters 121:159-64. Expression and transformation vectors for transformation into many yeast strains are available. For example, expression vectors have been developed for the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson et al. (1986) J. Gen. Microbiol. 132:3459) and Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluvveromvces fragilis (Das et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737) and Van den Berg et al. (1990) Bio/Technology 8:135); Pichia quillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Pat. Nos. 4,837, 148; and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929 and Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach et al. (1981) Nature 300:706); and Yarrowia lipolytica (Davidow et al. (1985) Curr. Genet. 10:380-471 and Gaillardin et al. (1985) Curr. Genet. 10:49).

[0131] Suitable procedures for transformation of *Asper-gillus* cells are described in EP 238 023 and U.S. Pat. No. 5,679,543. Suitable methods for transforming *Fusarium* species are described by Malardier et al., *Gene*, 1989, 78:147-56 and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J. N. and Simon, M. I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al. (1983) *Journal of Bacteriology*, 153: 163; and Hinnen et al. (1978) *PNAS* USA, 75:1920.

[0132] Another aspect of the invention is directed to methods of decreasing an amount of a substituted furan in a medium. The methods can comprise contacting the medium with a recombinant microorganism of the invention for a time sufficient to decrease the furan in the medium. In some versions, the furan is selected from the group consisting of furfural and hydroxymethylfurfural, such that the methods comprise contacting the medium with a recombinant microorganism of the invention for a time sufficient to decrease furfural, hydroxymethylfurfural, or furfural and hydroxymethylfurfural, or furfural and hydroxymethylfurfural in the medium. In some versions, the medium further comprises a carbohydrate, such as glucose and/or xylose.

[0133] In various versions of the invention, the medium is contacted with a recombinant microorganism of the invention for a time sufficient to decrease the furan in the medium to an amount by mass less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 5%, less than 3%, less than 1%, or 0% of an amount by mass of the furan present in the medium prior to contacting.

[0134] In various versions of the invention, the medium is contacted with a recombinant microorganism of the invention for a time sufficient to decrease furfural in the medium to an amount by mass less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, less than 55%, less than 3%, less than 1%, or 0% of an amount by mass of the furfural present in the medium prior to contacting.

[0135] In various versions of the invention, the medium is contacted with a recombinant microorganism of the invention for a time sufficient to decrease hydroxymethylfurfural in the medium to an amount by mass less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 55%, less than 50%, less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 30%, less than 55%, less than 10%, less than 5%, less than 3%, less than 15%, less than 10%, less than 5%, less than 3%, less than 15%, less than 10%, less than 5%, less than 3%, less than 10%, less than 5%, less than 3%, less than 10%, less than 5%, less than 3%, less than 10%, less than 10%, less than 5%, less than 3%, less than 10%, l

[0136] In various versions of the invention, glucose is maintained over the entire course of the time in which the medium is contacted with the recombinant microorganism in an amount by mass of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% of an amount by mass of the glucose present in the medium prior to contacting.

[0137] In various versions of the invention, xylose is maintained over the entire course of the time in which the medium is contacted with the recombinant microorganism in an amount by mass of at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or 100% of an amount by mass of the xylose present in the medium prior to contacting.

[0138] In various versions of the invention, the medium is contacted with a recombinant microorganism of the invention for a time of at least 0.5 hours, at least 1 hour, at least 1.5 hours, at least 2 hours, or more. In various versions of the invention, the medium is contacted with a recombinant microorganism of the invention for a time up to 1 hour, up to 1.5 hours, up to 2 hours, up to 2.5 hours, up to 3 hours, up to 3.5 hours, up to 4 hours, up to 4.5 hours, up to 7 hours, up to 7.5 hours, up to 8 hours, up to 8.5 hours, up to 9 hours, up to 9.5 hours, up to 10 hours, up to 15 hours, up to 20 hours, up to 25 hours, up to 30 hours, up to 20 hours, up to 30 hours, up to 30 hours, or more.

[0139] In some versions of the invention, the contacting is performed under aerobic conditions. "Aerobic conditions" refers to the presence of free oxygen (O_2) , such as in a gas contacting the medium. In some versions, the gas comprises at least 1 vol % free oxygen, at least 5 vol % free oxygen, at least 10 vol % free oxygen, at least 15 vol % free oxygen, or at least 20 vol % free oxygen. In some versions, the gas comprises up to 25 vol % free oxygen, up to 30 vol % free oxygen, up to 35 vol % free oxygen, up to 40 vol % free oxygen, up to 45 vol % free oxygen, up to 50 vol % free oxygen, up to 55 vol % free oxygen, up to 60 vol % free oxygen, up to 65 vol % free oxygen, up to 70 vol % free oxygen, up to 75 vol % free oxygen, up to 80 vol % free oxygen, up to 85 vol % free oxygen, up to 90 vol % free oxygen, up to 95 vol % free oxygen, up to 99 vol % free oxygen, or about 100 vol % free oxygen.

[0140] In some versions, the medium comprises lignocellulosic biomass. The lignocellulosic biomass can be derived from any source, such as corn cobs, corn stover, cotton seed hairs, grasses, hardwood stems, leaves, newspaper, nut shells, paper, softwood stems, sorghum, switchgrass, waste papers from chemical pulps, wheat straw, wood, woody residues, mixed biomass species such as those produced by native prairie, and other sources.

[0141] The lignocellulosic biomass is preferably processed lignocellulosic biomass. "Processed lignocellulosic biomass" refers to lignocellulosic biomass that has been chemically or physically processed. Various methods of processing lignocellulosic biomass are known in the art. See Pandey et al. 2010 (Pandey M P, Kim C S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical & Engineering Technology, 2010, Vol. 34, Issue 1, pp. 3-145), Wang et al. 2013 (Wang H, Tucker M, Ji Y. Recent Development in Chemical Depolymerization of Lignin: A Review. Journal of Applied Chemistry, 2013, Volume 2013, Article ID 838645), Kumar et al. 2017 (Kumar AK and Sharma S. Recent Updates on Different Methods of Pretreatment of Lignocellulosic Feedstocks: A Review. Bioresour. Bioprocess. (2017) 4:7), Kumar et al. 2009 (Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P., Methods for Pretreatment of lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 2009, 48, (8), 3713-3729), Wang et al. 2013 (Wang H, Tucker M, Ji Y. Recent Development in Chemical Depolymerization of Lignin: A Review. (2013) Journal of Applied Chemistry. 2013:1-9), Karlen et al. 2020 (Karlen S D, Fasahati P, Mazaheri M, Serate J, Smith R A, Sirobhushanam S, Chen M, Tymkhin V I, Cass C L, Liu S, Padmakshan D, Xie D, Zhang Y, McGee M A, Russell J D, Coon J J, Kaeppler H F, de Leon N, Maravelias C T, Runge T M, Kaeppler S M, Sedbrook J C, Ralph J. Assessing the viability of recovering hydroxycinnamic acids from lignocellulosic biorefinery alkaline pretreatment waste streams. ChemSusChem. 2020 Jan. 26), and Jönsson et al. 2013 (Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013 Jan. 28; 6(1):16). Examples of lignocellulosic biomass processing include chipping, grinding, milling, steam pretreatment, ammonia fiber expansion (AFEX, also referred to as ammonia fiber explosion), ammonia recycle percolation (ARP), CO₂ explosion, steam explosion, ozonolysis, wet oxidation, acid hydrolysis,

dilute-acid hydrolysis, alkaline hydrolysis, organosolv, ionic liquids, gamma-valerolactone, and pulsed electrical field treatment, among others.

[0142] In some versions, the medium comprises lignocellulosic biomass hydrolysate. Lignocellulosic biomass hydrolysates are processed forms of lignocellulosic biomass that have undergone hydrolytic processing, such as through enzymatic hydrolysis, acid hydrolysis, dilute-acid hydrolysis, and alkaline hydrolysis, among others.

[0143] Some methods of the invention the contacting the medium with a recombinant microorganism of the invention generates a second medium and the methods further comprise, after contacting the medium with a recombinant microorganism of the invention, fermenting the second medium with a second microorganism. In some versions, the second microorganism is not the recombinant microorganism of the invention. In some versions, the second microorganism is an anaerobe or a facultative anaerobe. In some versions, the fermenting is performed under anaerobic conditions. In some versions, the fermenting consumes glucose and/or xylose in the second medium. In some versions, the fermenting converts the glucose and/or xylose to ethanol or other compounds.

[0144] The elements and method steps described herein can be used in any combination whether explicitly described or not.

[0145] All combinations of method steps as used herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.

[0146] As used herein, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise.

[0147] Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.

[0148] All patents, patent publications, and peer-reviewed publications (i.e., "references") cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.

[0149] It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.

EXAMPLES

An Engineered Strain of *Pseudomonas putida* for Dedicated Selective Detoxification of Lignocellulosic Hydrolysates.

[0150] Despite their enormous potential as economical and renewable feedstocks for the production of biofuels and biochemicals, lignocellulosic biomasses (LB) are still severely plagued by a formidable technical issue. Specifically, deconstruction of LB by acid- or alkali-based pretreatment to obtain fermentable sugars is a cost-effective approach to release sugars from LB. However, the release of fermentable sugars from LB by this approach is accompanied by co-generation of furanic and phenolic aldehydes that exert severe toxicity on fermenting microorganisms. Consequently, economical decontamination of LB hydrolysates (LBHs) is a critical prerequisite to bioconversion of LB to value-added chemicals. Although bioabatement is recognized as a potential practical and economical strategy to overcome this challenge, the vast majority of efforts towards this goal have focused on metabolic engineering of single strains that can efficiently decontaminate LBH-borne inhibitory aldehydes and simultaneously produce target chemicals. Despite considerable progress, this approach has failed thus far to generate strains capable of these tasks (i.e., simultaneous decontamination and target chemical production).

[0151] Additionally, most fermentative processes that convert sugars to value-added chemicals are anaerobic. Under this condition, the furanic and phenolic aldehydes are merely reduced to their less toxic alcohols. While this minimizes the toxicity of LBHs, it does not eliminate it entirely, as the resulting alcohols (following the reduction of toxic aldehydes to alcohols) and residual aldehydes conspire to retain toxicity on fermenting cells. Consequently, bioproduction of target chemicals is greatly diminished, thereby derailing commercialization efforts.

[0152] The present examples provide the foundation for a different, two-step strategy for the valorization of LBH. In a first step, a dedicated strain is engineered to solely decontaminate LBH-borne inhibitors pre-fermentation. Instead of reducing the inhibitory aldehydes to their corresponding alcohols, the engineered strain described herein is intended to catabolize and thereby completely remove the inhibitors from the medium pre-fermentation (aerobically). In the second step, the inhibitor-free LBH will be seamlessly fermented to any target chemical with an appropriate microorganism.

[0153] A critical step towards engineering a dedicated strain that selectively utilizes LBH-borne inhibitors as carbon sources-without sugar utilization-is to eliminate the sugar utilization machinery of the organism. That way, the resulting strain exclusively utilizes the inhibitors as carbon sources, and in so doing, eliminate them from the LBH. To this end, Pseudomonas putida DSM 6125 was selected as a base microbe for engineering. This strain utilizes glucose but is incapable of xylose utilization. Xylose is the second most abundant sugar in LBHs. A triple mutant (oprB-II⁻/gcd⁻/ glk⁻) of P. putida DSM 6125 has been engineered by eliminating the glucose import permease gene (oprB-II), glucose dehydrogenase gene (gcd), and glucokinase gene (glk) (FIGS. 1 and 2). Alternative strains include Escherichia coli and Enterobacter hormaechei, from which the glucose dehydrogenase gene (gcd) and glucokinase gene (glk) can be deleted.

[0154] The growth profiles of wildtype *P. putida* DSM 6125, the triple deletion mutant (*P. putida_oprB-II⁻/gcd^{-/}glk⁻*), the single deletion mutant (*P. putida_glk⁻*) and the double deletion mutant (*P. putida_oprB-II⁻/gcd⁻*) confirm complete elimination of the glucose utilization machinery of this organism in the triple deletion mutant (FIGS. **3**A and **3**B). Whereas the wildtype and *P. putida_glk⁻* completely consumed the glucose in a glucose medium (FIG. **3**B), *P. putida_oprB-II⁻/gcd⁻* consumed only 58% of the glucose in the medium (FIG. **3**B), and *P. putida_oprB-II⁻/gcd⁻/glk⁻* did not grow in the glucose medium (FIG. **3**A). Additionally,

there was no change in glucose concentration in cultures of *P. putida_*oprB-II⁻/gcd⁻/glk⁻ (FIG. **3**B).

[0155] Having eliminated glucose utilization in an organism that does not utilize xylose, our next task is to amplify the capacity of P. putida_oprB-II⁻/gcd⁻/glk⁻ to utilize LBHborne inhibitors, particularly, furfural and 5-hydroxymethyl furfural (HMF), the two most abundant and most toxic inhibitors in LBHs. This will ensure rapid catabolism of inhibitors, hence, removal from LBHs pre-fermentation. Although P. putida DSM 6125 utilizes furfural and HMF as carbon sources, it does so slowly and at low concentrations (1-2 g/L). However, LBHs contain as high as 6 g/L furfural and 3 g/L HMF. Therefore, to expedite furfural and HMF catabolism and, thus, rapid detoxification of LBHs, genetic elements for rapid inhibitor transport and utilization are currently being integrated into P. putida_oprB-II-/gcd-/glk-. Genes encoding inhibitor transporters and catabolic enzymes have been amplified from Cupriavidus basilensis DSM 11853 (FIGS. 4A and 4B), which is capable of excellent utilization of furfural and HMF (as well as phenolic inhibitors).

[0156] The furfural metabolizing gene cluster (from *C. basilensis* DSM 11853) containing the genes hmfABCDET1 (SEQ ID NO:11) and the cluster involved in the metabolism

of HMF to 2-furoic acid containing the genes hmfFGH'HST2 (SEQ ID NO:24) have been sequentially amplified by PCR and assembled (using Gibson assembly) for integration into P. putida_oprB-II/gcd⁻/glk⁻ (FIGS. 4A and 4B). These operons include genes for major facilitator superfamily transporters (MFS; hmfT1, hmfT2), which aid the import of furans into the cell. Plasmids harboring desired genes with their repair arms have been electroporated into P. putida for the first round to integrate hmfFGH' into the genome at the glk⁻ deletion site (in-frame to translation start codon of glk) in P. putida_oprB-II-/gcd-/glk- using the homologous recombination. The resulting colonies are currently being screened for successful integration. After confirmation of successful integration of hmfFGH', additional plasmid constructs with hmfHS and hmfT2 will be integrated next to hmfFGH'. Similarly, genes for furfural metabolism (hmfABCDET1) will be integrated at the gcdsite in P. putida. After complete insertion of genes of both hmf clusters of C. basilensis into P. putida_oprB-II⁻/gcd⁻/ glk⁻, the growth of engineered strain will be evaluated on furfural and HMF as sole carbon sources in mineral media and then in LBHs.

TABLE 1

Genes for Deleting in Pseudomonas putida DSM 6125.					
Gene/ enzyme name	Gene symbol	E.C. number	Function	SEQ ID NOS (NT, PRT)	
Glucokinase	glk	[EC: 2.7.1.2]	Carbohydrate metabolism	1, 2	
Quinoprotein glucose dehydrogenase	gcd	[EC: 1.1.5.2]	Carbohydrate metabolism	3, 4	
Carbohydrate- selective porin	oprB-II	n/a	Transporter	5,6	

TABLE 2

Genes for Deleting in <i>Escherichia coli</i> and <i>Enterobacter hormaechei</i> .				
Gene/enzyme name	Gene symbol	E.C. number	Function	SEQ ID NOS* (NT, PRT)
Glucokinase	glk	[EC: 2.7.1.2]	Carbohydrate metabolism	7, 8
Quinoprotein glucose dehydrogenase	gcd	[EC: 1.1.5.2]	Carbohydrate metabolism	9,10

*SEQ ID NOS are provided for Enterobacter hormaechei

TABLE	3
-------	---

			omonas putida DSN bacter hormaechei)	1
Gene/enzyme name	Gene symbol	E.C. number	Function	SEQ ID NOS (NT, PRT)
HMF-AE	CDET operon	(furfural utilizing	g genes) (SEQ ID N	IO: 11)
Molybdopterin- dependent oxidoreductase	hmfA	[EC: 1.3.99.8]	Aerobic-type carbon monoxide dehydrogenase homologue	12, 13

Genes for Insertion (e.g., in <i>Pseudomonas putida</i> DSM 6125, <i>Escherichia coli</i> , or <i>Enterobacter hormaechei</i>)					
Gene/enzyme name	Gene symbol	E.C. number	Function	SEQ ID NOS (NT, PRT)	
FAD binding domain-containing protein	hmfB	[EC: 1.3.99.8]	Carbon- monoxide dehydrogenase	14, 15	
(2Fe—2S)-binding protein	hmfC	n/a	Aerobic-type carbon monoxide dehydrogenase 2Fe—2S iron- sulfur subunit	16, 17	
AMP-binding protein	hmfD	[EC: 6.2.1.31]	Furoyl-CoA syntethase	18, 19	
Enoyl-CoA hydratase/isomerase family protein	hmfE	n/a	2-oxoglutaroyl- CoA hydrolase	20, 21	
MFS transporter	hmfT1	n/a	Transport	22, 23	
HMF-FG	H'HST' operon	(5-HMF utilizing	g genes) (SEQ ID N	O: 24)	
UbiD family decarboxylase	hmfF	[EC: 4.1.1.98]	2,5-furan- dicarboxylic acid decarboxylase 1	25, 26	
UbiX family flavin prenyltransferase	hmfG	[EC: 2.5.1.129]	2,5-furan- dicarboxylic acid decarboxylase 2	27, 28	
Tripartite tricarboxylate transporter substrate-binding protein	hmfH' (tetC)	n/a	transport	29, 30	
GMC family oxidoreductase	hmfH	[EC: 1.1.3.47]	HMF/furfural oxidoreductase	31, 32	
Sterol desaturase family protein	hmfS	n/a	fatty acid hydroxylase	33, 34	
MFS transporter	hmfT2	n/a	transport	35, 36	

TABLE 3-continued

Methodology of Gene Deletion and Integration

[0157] For in-frame deletion of target genes (Glucokinase (glk), glucose dehydrogenase (gcd), and carbohydrate-selective porin (oprB-HI)), upstream and downstream of the target genes (repair arms of approx. 550 bp) were amplified separately (as fragment A & B) using two sets of primers (named as AF, AR & BF, BR; see sequences below) and gDNA of P. putida by standard PCR method (98° C. for 3 min, 35 cycles of (50-55° C. for 30 sec, 72° C. for 1 min) and final extension of 72° C. for 5 min and 4° C. hold). Both sets of primers were designed to have appropriate restriction sites in the external primers (XhoI on AF and HindIII on BR), and overlapping bases in the internal primers (AR and BF) so that amplified fragments (A and B) could be fused together using overlapping PCR (98° C. for 3 min, 15 cycles of (50° C. for 5 min, 72° C. for 1 min), and final extension of 72° C. for 5 min and 4° C. hold). A fused amplicon (AB) was subsequently cloned by restriction digestion and ligation into a modified pACRISPR^s plasmid digested similarly with restriction enzymes (XhoI and HindIII) to create a recombinant plasmid (pACRISPRs-AB) carrying SacB and gentamicin (GenR) cassettes for selection on sucrose and gentamicin respectively. The ligated product was transformed into DH5a cells and selected on gentamicin plates (50 µg/mL). Gentamicin-resistant colonies were then screened for fragment-AB by colony PCR using an end set of primers (AF and BR). Positive clones were processed for plasmid isolation and further confirmed by sequencing. To delete target genes, pACRISPRs-AB was transferred by electroporation into electrocompetent cells of P. putida DSM 6125 and transformed colonies were selected on a gentamicin antibiotic plate (25 µg/mL). Only a few colonies were found growing on the gentamicin selection plate indicating successful integration of the plasmid into the chromosome (single cross-over event). These gentamicin-resistant colonies were transferred onto a new antibiotic plate and three single colonies were grown overnight (O/N) separately in 5 mL low salt (5% NaCl) liquid Luria Broth (LB), and 50 μL of this O/N culture was diluted 10^{-3} times and was spread on 6% sucrose selection plate for 24-48 hours at 30° C. (double-cross over event). A few colonies found growing on sucrose plates were replica plated on both gentamicin and plain LB plates. Colonies found growing only on plain LB plates were tested for deletion of the desired gene by PCR. Both internal and external sets of primers were used to screen out false positive mutants (due to possible mutations on SacB and GenR cassettes), and colonies showing successful deletion of the gene (only shortened PCR amplicons compared to control) were tested for desired phenotypes (such as defect for growth on glucose in minimal media).

[0158] For the integration of furan-metabolizing genes (hmf operon) at glk and gcd/oprB-II sites, the triple gene knockout mutant (oprB-II-gcd⁻/glk⁻) of *Pseudomonas putida* DSM 6125 (a parent strain of KT2440) defective in

utilizing glucose as a carbon source was selected as a host for chromosomal integration of furfural and HMF metabolizing genes (see Table 3) from other bacteria. The furfural metabolizing cluster containing the hmfABCDE genes and the cluster involved in the metabolism of HMF to 2-furoic acid containing hmfFGH genes were sequentially PCR amplified using the genomic DNA of Cupriavidus basilensis using the Q5 DNA polymerase. Other genes such as major facilitator superfamily transporter (MFS; hmfT1, hmfT2) present in these two hmf operons were also PCR amplified as these genes could be potentially involved in the transport of furans. The complete operons were amplified in multiple fragments of ~3-3.5 kb size (hmfA, hmfBCD, hmfET1, hmfFGH', hmfHS, and hmfT2) using sets of primers with overlapping sequences at their 5' and 3' ends for ease of cloning with repair arms (0.5 kb DNA amplified from upand down-stream of deleted genes of P. putida).

[0159] Gibson assembly method was used to ligate the PCR products (hmf fragments and corresponding repair arms) into a plasmid (pACRISPR) linearized by restriction enzymes (XbaI+HindII) as per the instruction manual for NEBuilder HiFi DNA assembly cloning kit (NEB, USA). The ligated product was transformed into E. coli DH5a and transformants were selected on gentamycin (50 µg/ml). The single colonies obtained from overnight growth were streaked on new antibiotic plates. Clones were confirmed by colony PCR, plasmids were isolated from three positive colonies, and sent for sequencing (Eurofins genomic, USA). Plasmids harboring desired genes with their repair arms were electroporated for the first round of integration of hmfFGT at the glk⁻ deletion site (in-frame to the translation start codon of glk) in P. putida using the homologous recombination process used previously for the deletion of genes. After confirmation of the successful integration of hmfFGH' genes, a second plasmid construct with hmfHS was being integrated next to hmfFGH', as well as an additional construct with hmfT2. Similarly, genes for furfural metabolism were integrated at the gcd/oprB-II site in P. nutida.

[0160] The triple deletion mutant (oprB-II⁻/gcd⁻/glk⁻) of *P. putida* DSM 6125, hereafter referred to as *P. putida*_control, and the triple deletion mutant with the integrated furfural and 5-hydroxymethylfurfural (HMF) catabolic operons identified in Table 3 above, hereafter referred to as *P. putida*_AT-FT, were assessed for furfural and HMF catabolism in medium containing 10-40 mM furfural or HMF and 20 mM glucose. In all experiments, furfural/HMF and glucose concentrations were measured during and after cultivation of both strains of *P. putida*.

[0161] The results show that *P. putida*_control, in which the glucose import and catabolic machinery was disrupted, is capable of furfural and HMF catabolism. Notably, *P. putida*_AT-FT, in which the glucose import and catabolic machinery was disrupted in addition to incorporation of the furfural and HMF catabolic operons into the chromosome, exhibited a significantly higher rate of growth and inhibitor utilization at all the inhibitor concentrations tested. With *P. putida*_AT-FT, the growth rate was 5.5-, 2.6-, 1.8-, and 6.7-fold greater than the rates observed with *P. putida*_ control in cultures supplemented with 10, 20, 30, and 40 mM furfural, respectively (FIGS. **5**A-**5**D). Concomitantly, the rates of furfural reduction by *P. putida*_AT-FT were 46-, 20-, 2.5-, and 330-fold faster than those observed for *P. putida*_ control (FIGS. **6**A-**6**D).

[0162] When HMF (10, 20, 30, and 40 mM) was supplemented to cultures of both strains of P. putida, both strains exhibited the capacity to reduce this inhibitor. However, with increasing HMF concentration, the ability of P. putida_ AT-FT to better catabolize HMF became apparent (FIGS. 7A-7D and 8A-8D). With 10 and 20 mM HMF, the growth rates of P. putida_AT-FT were marginally greater than those of P. putida_control (FIGS. 7A and 7B). When HMF concentrations were increased to 30 and 40 mM, the growth rates of P. putida_AT-FT were 1.8- and 8.0-fold greater than those of P. putida_control (FIGS. 7C and 7D). In fact, at 40 mM HMF, the growth of P. putida_control was inhibited (FIG. 7D). Similar to the growth profiles observed with HMF, at 10, 20, and 30 mM HMF, both strains exhibited comparable rates of HMF utilization (FIGS. 8A-8C). However, with 40 mM HMF, HMF concentration reduced 1,915fold faster in cultures of P. putida AT-FT relative to those of P. putida control (FIG. 8D). In both cases (with furfural or HMF), the glucose concentration remained intact (i.e., unused).

[0163] To ascertain the potential utility of using *P. putida*_ AT-FT for selective removal of inhibitors in lignocellulosic hydrolysate (LBH), to facilitate subsequent fermentation of LBH-borne sugars to target products/chemicals, P. putida_ AT-FT and P. putida_control were grown in a medium containing 40 mM furfural and 60 g/L glucose for 12 hours. Because furfural is the most abundant inhibitor in LBH, it was selected for this preliminary assessment. Afterwards, the resulting medium was sterilized by standard procedures and then fermented with the butanol-producing Clostridium beijerinckii. The growth profile of C. beijerinckii in media in which P. putida_AT-FT and P. putida_control were pregrown underscore more enhanced furfural utilization, hence, removal from the P. putida_AT-FT-pre-grown medium relative to the P. putida_control-pre-grown medium. Specifically, C. beijerinckii exhibited a 2-fold faster growth rate in the medium in which P. putida_AT-FT was pre-grown when compared to that in which P. putida_control was pre-grown (FIG. 9). However, considerable sugar losses were observed for both sets of cultures. To ensure absolute selective inhibitor removal without sugar utilization at high glucose concentration-such as 60 g/L used in this study, which mimics LBH-we have identified three additional genes that we will knock out individually and in combination in P. putida_AT-FT to ensure complete shutdown of glucose import and utilization. These are oprB-1 of Pseudomonas putida (SEQ ID NO:45 (coding sequence), SEQ ID NO:46 (protein sequence)), gtsB of Pseudomonas putida (SEQ ID NO:47 (coding sequence), SEQ ID NO:48 (protein sequence)), and KBDANE_14125 or PP_RS13865 of Pseudomonas putida (SEQ ID NO:49 (coding sequence), SEQ ID NO:50 (protein sequence)).

(SEQ ID NO: 37) 5'-CCGCTCGAGGTGTTCCAGGACCAGCAGTC-3' Glk AR': (SEQ ID NO: 38)

5'-ACGCCTGCTGCCAACCAGCAGGTGCTTCAT-3'

Primers used for deletion of Glk and OprB-II/ GCD genes: Glk AF'-XhoI:

Glk BF':

(SEQ ID NO: 39) 5'-TGCTGGTTGGCAGCAGGCGTTGGATCACTGA-3' Glk BR'-HindIII:

(SEQ ID NO: 40) 5'-CCCAAGCTTCAGTCGTCGAAGGCCAGCA-3'

OprB-II-AF-XhoI:

(SEQ ID NO: 41) 5'-CCCAAGCTTGTAGACGTGCAGCACGCTG-3'

OprB-II-AR:

- (SEQ ID NO: 42) 5'-CTCGGCTAAAGGCAGTTGGAACATGAGATAGC-3' GCD-RE-
- (SEQ ID NO: 43) 5'-CAACTGCCTTTAGCCGAGTAAGCGACACC-3'

GCD-BR-HindIII:

(SEQ ID NO: 44) 5'-CCGCTCGAGGCAGTGCCGAGGTGTCGAAG-3'

EXEMPLARY EMBODIMENTS

- **[0164]** 1. A recombinant microorganism comprising one or more modifications with respect to a corresponding microorganism not comprising the one or more modifications, wherein the one or more modifications comprise 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or each of:
 - **[0165]** a functional deletion of a glucokinase gene present in the corresponding microorganism;
 - **[0166]** a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism;
 - **[0167]** a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism;
 - [0168] a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof;
 - **[0169]** a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof;
 - **[0170]** a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof;
 - [0171] a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof;
 - [0172] a recombinant gene encoding HmfE of *Cupriavidus basilensis* or a homolog thereof;
 - [0173] a recombinant gene encoding HmfT1 of *Cupriavidus basilensis* or a homolog thereof;
 - [0174] a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof;
 - [0175] a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof;
 - [0176] a recombinant gene encoding HmfH' of *Cupriavidus basilensis* or a homolog thereof;
 - [0177] a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof;
 - [0178] a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and
 - [0179] a recombinant gene encoding HmfT2 of *Cupriavidus basilensis* or a homolog thereof.

- [0180] 2. The recombinant microorganism of exemplary embodiment 1, wherein the one or more modifications comprise one or more, two or more, or each of:[0181] a functional deletion of a glucokinase gene present in the corresponding microorganism;
 - **[0182]** a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism; and
 - **[0183]** a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism.
- **[0184]** 3. The recombinant microorganism of any prior exemplary embodiment, wherein the one or more modifications comprise one or both of:
 - **[0185]** a functional deletion of a glucokinase gene present in the corresponding microorganism; and
 - **[0186]** a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism.
- [0187] 4. The recombinant microorganism of any prior exemplary embodiment, wherein:
 - **[0188]** the glucokinase gene is glk of *Pseudomonas putida*, glk of *Escherichia coli*, glk of *Enterobacter hormaechei*, or a homolog of any of the foregoing;
 - **[0189]** the quinoprotein glucose dehydrogenase gene is gcd of *Pseudomonas putida*, gcd of *Escherichia coli*, gcd of *Enterobacter hormaechei*, or a homolog of any of the foregoing; and/or
- **[0190]** the carbohydrate transporter gene is oprB-II of *Pseudomonas putida* or a homolog thereof.
- **[0191]** 5. The recombinant microorganism of any prior exemplary embodiment, wherein:
 - **[0192]** the glucokinase gene encodes a protein comprising an amino acid sequence with at least 80% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:2 and 8;
 - **[0193]** the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 80% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:4 and 10; and
 - **[0194]** the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:6, 46, 48, and 50.
- **[0195]** 6. The recombinant microorganism of any prior exemplary embodiment, wherein:
 - **[0196]** the glucokinase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:2 and 8;
 - **[0197]** the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:4 and 10; and
 - **[0198]** the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:6, 46, 48, and 50.
- **[0199]** 7. The recombinant microorganism of any prior exemplary embodiment, wherein the wherein the one

or more modifications comprise a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism, wherein the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 80% or at least 95% sequence identity to SEQ ID NO:6.

- **[0200]** 8. The recombinant microorganism of exemplary embodiment 7, further comprising a functional deletion of one, two or three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes each encode a protein comprising an amino acid sequence with at least 80% or at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:46, 48, and 50.
- **[0201]** 9. The recombinant microorganism of exemplary embodiment 7, further comprising a functional deletion of three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes encode:
 - **[0202]** a protein comprising an amino acid sequence with at least 80% or at least 95% sequence identity to SEQ ID NO:46;
 - **[0203]** a protein comprising an amino acid sequence with at least 80% or at least 95% sequence identity to SEQ ID NO: 48;
- **[0204]** a protein comprising an amino acid sequence with at least 80% or at least 95% sequence identity to SEQ ID NO:50.
- **[0205]** 10. The recombinant microorganism of any prior exemplary embodiment, wherein the one or more modifications comprise one or more, two or more three or more, four or more, five or more, or each of:
 - **[0206]** a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof;
 - [0207] a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof;
 - **[0208]** a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof;
 - **[0209]** a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof;
 - [0210] a recombinant gene encoding HmfE of *Cupriavidus basilensis* or a homolog thereof; and
 - **[0211]** a recombinant gene encoding HmfT1 of *Cupriavidus basilensis* or a homolog thereof.
- **[0212]** 11. The recombinant microorganism of any prior exemplary embodiment, wherein the one or more modifications comprise one or more, two or more three or more, four or more, five or more, or each of:
 - **[0213]** a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof;
 - [0214] a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof;
 - [0215] a recombinant gene encoding HmfH' of *Cupriavidus basilensis* or a homolog thereof;
 - [0216] a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof;
 - [0217] a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and
 - **[0218]** a recombinant gene encoding HmfT2 of *Cupriavidus basilensis* or a homolog thereof.

- **[0219]** 12. The recombinant microorganism of any prior exemplary embodiment, wherein:
 - **[0220]** the HmfA of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:13;
 - **[0221]** the HmfB of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:15;
 - **[0222]** the HmfC of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:17;
 - **[0223]** the HmfD of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:19;
 - **[0224]** the HmfE of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:21;
 - **[0225]** the HmfT1 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:23;
 - **[0226]** the HmfF of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:26;
 - **[0227]** the HmfG of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:28;
 - **[0228]** the HmfH' of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:30;
 - **[0229]** the HmfH of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:32;
 - **[0230]** the HmfS of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:34; and
 - **[0231]** the HmfT2 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 80% sequence identity to SEQ ID NO:36.
- **[0232]** 13. The recombinant microorganism of any prior exemplary embodiment, wherein:
 - **[0233]** the HmfA of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:13;
 - **[0234]** the HmfB of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:15;
 - **[0235]** the HmfC of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:17;

- **[0237]** the HmfE of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:21:
- **[0238]** the HmfT1 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:23;
- **[0239]** the HmfF of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:26;
- **[0240]** the HmfG of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:28;
- **[0241]** the HmfH' of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:30;
- **[0242]** the HmfH of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:32;
- **[0243]** the HmfS of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:34; and
- **[0244]** the HmfT2 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:36.
- **[0245]** 14. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is an aerobic microorganism.
- **[0246]** 15. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is a bacterium.
- **[0247]** 16. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is an aerobic bacterium.
- [0248] 17. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant

SEQUENCE LISTING

Sequence total quantit	ty: 50	
SEQ ID NO: 1	moltype = DNA length = 960	
FEATURE	Location/Qualifiers	
source	1960	
	mol_type = genomic DNA	
	organism = Pseudomonas putida	
SEQUENCE: 1		
atgaagcacc tgctggttgg	tgatattggc ggcaccaatg cccgttttgc gttgtggcg	5 60
gacaaccagc tgcatgaagt	aaatgttttc gccaccgtgg actacaccaa cccggagcag	g 120
gccatcgagg cctacctgga	aagccaaggt atcgcccgcg gtggcctggc ggcggtgtg	2 180
ctggcggtgg ccggcccggt	cgatggcgat gaatttcgct tcaccaacaa ccactggcg	240
ctgagtcgca cggcattttg	caagacettg caggtegage ggetgttget gateaatga	300
ttcaccgcaa tggcactggg	catgacgcgt ctgcgcgaag gcgagttccg cgaggtgtg	360
cccggccagg ccgacccctc	gaggeeggea etggtgateg ggeeaggtae tggeetggg	420
gtgggctcgc tgctgcgcct	gggcgaacag ctctggaagg ccctgccggg tgaaggcgg	g 480

microorganism is from a genus selected from the group consisting of *Pseudomonas*, *Escherichia*, and *Enterobacter*.

- **[0249]** 18. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is selected from the group consisting of *Pseudomonas putida, Escherichia coli,* and *Enterobacter hormaechei.*
- **[0250]** 19. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is from a genus of *Pseudomonas*.
- **[0251]** 20. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism is *Pseudomonas putida*.
- **[0252]** 21. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism exhibits reduced consumption of a carbohydrate with respect to the corresponding microorganism.
- **[0253]** 22. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism exhibits increased consumption of a substituted furan with respect to the corresponding microorganism.
- **[0254]** 23. The recombinant microorganism of any prior exemplary embodiment, wherein the recombinant microorganism exhibits increased consumption of a substituted furan selected from the group consisting of furfural and hydroxymethylfurfural with respect to the corresponding microorganism.
- **[0255]** 24. A method of decreasing an amount of a substituted furan in a medium, the method comprising contacting the medium with the recombinant microorganism of any one of exemplary embodiments 1-23 for a time sufficient to decrease the substituted furan in the medium.
- **[0256]** 25. The method of exemplary embodiment 24, wherein the substituted furan is selected from the group consisting of furfural and hydroxymethylfurfural.
- **[0257]** 26. The method of any one of exemplary embodiments 24-25, wherein the medium comprises lignocellulosic biomass.
- **[0258]** 27. The method of any one of exemplary embodiments 24-26, wherein the medium comprises lignocellulosic biomass hydrolysate.
- **[0259]** 28. The method of any one of exemplary embodiments 24-27, wherein the contacting is performed under aerobic conditions.

-continued

20

catattaacc	taccaataaa	caatgctcgc	gaageggeaa	tccaccagca	gatccacagt	540
		cgaggccgtg				600
		cggcgacacg				660
		gccacgggcg				720
		taatgtgctg				780
						840
		ctttgccgag				900
		gagtggctat				960 960
geggagtttt	eeggguugga	gggagcaggg	gragegrige	ageaggegtt	ggaleaelga	960
OTO TO NO	0			210		
SEQ ID NO:	2		AA length	= 319		
FEATURE		Location/Q	uallilers			
source		1319				
		mol_type =				
		organism =	Pseudomona	as putida		
SEQUENCE: 2						
		DNQLHEVNVF				60
		LSRTAFCKTL				120
		VGSLLRLGEQ				180
		QAICALDGDT				240
		VGGVIPRFAE	LFLRSGFAAS	FADKGCMSGY	FTGVPVWLVT	300
AEFSGLEGAG	VALQQALDH					319
SEQ ID NO:	3	moltype =	DNA length	n = 2412		
FEATURE		Location/Q	ualifiers			
source		12412				
		mol type =	genomic Dl	A		
		organism =	- Pseudomona	as putida		
SEQUENCE: 3		-		-		
		ccaaggaagc	cqctqqctac	cqcqcctqat	tqqcqcqctq	60
		cctgctggcc				120
		cggtattggc				180
		cctgtatggc				240
		ctggtggcaa				300
		gccgtgggca				360
		cgtggcagtg				420
		agtgttcggc				480
						480 540
		cgacggcgaa				600
		ccagatcacc				660
		tctgccaacc				720
		cggcatgctt				780
		cgcagaaatc				
		tgcccacatg				840
		cggcagcccg				900
		tcgcctctat				960
		ggtctgcgaa				1020
		caccgccggc				1080
		cggtggccac				1140
		cgacgtgcac				1200
		gccattggct				1260
		cgtcgacgaa				1320
		gggcgccgac				1380
		ggccaccggc				1440
cacgacctgt	gggacatgga	cgtcggcagc	cageegaeee	tggtacacct	gaaaaccgac	1500
gatggtgtga	aaccggcgat	catcgtaccg	accaagcaag	gcagcctgta	cgtgctcgac	1560
cgccgcgacg	gtacgccaat	cgtgccgatc	cgcgagatcc	ccaccccaca	aggcgcagtg	1620
		cacccaggcc				1680
ctgaccgaac	aggccatgtg	gggcgccacg	cctttcgacc	agatgctgtg	ccgcatccag	1740
ttccgcgaac	tgcgctacga	aggccagtac	accccgccat	ccgaacaagg	ttcgttggtc	1800
taccccggca	acgtcggtgt	attcaactgg	ggcagcgtgt	cggtcgaccc	ggtgcgccag	1860
ctgctgttca	cttcgcccaa	ctacatggcg	ttcgtgtcga	agatggtccc	gcgtgagcag	1920
gttgccgaag	gcagcaagcg	cgaaagcgag	accagcggcg	tgcagccgaa	caccggcgca	1980
ccgtatgcag	tgatcatgca	cccgttcatg	tcgccgctcg	gtgtaccgtg	ccaggcaccc	2040
gcctggggct	acgtcgccgc	catcgacctg	ttcaccaaca	aggtggtgtg	gaaacacaag	2100
		caccccgcta				2160
		cgccggtggc				2220
		gaacaacggc				2280
		gagetacace				2230
		gctgggcacc	aayaryyyyy	accacaccat	Lyccadad	2400
ttagccgagt	aa					2412
		-				
SEQ ID NO:	4	moltype =		= 803		
FEATURE		Location/Ç	ualifiers			
source		1803				
		mol_type =	protein			
			Pseudomona	as putida		
SEQUENCE: 4						

			001101	iiucu	
MSTEGANOGS	RWLPRLIGAL	LLLMGLALLA GGIKLSQI	GG SLYYLIAGIG	FALSGVLLLA	60
		LFEVGLDWWQ LVPRLAIV			120
		OFTHPGEVFG ELGRDSSI			180
DRYSPLRQIT	PQNAYRLEEA	WRIRTGDLPT ENDPVEL	INQ NTPLKVNGML	YACTAHSRLL	240
ALDPDTGAEI	WRYDPQVKSP	TGTFKGFAHM TCRGVSY	DE NRYVSRDGSP	APKITDAGQA	300
VAQACPRRLY	LPTADARLIA	INADNGKVCE GFANQGV	IDL TTGIGPFTAG	GYYSTSPAAI	360
		SGVIRAYDVH DGHLVWNV			420
		NQTPDQWGAD RTPGAEK			480
		DGVKPAIIVP TKQGSLYV			540
		LTEQAMWGAT PFDQMLCH			600
		LLFTSPNYMA FVSKMVP			660
		AWGYVAAIDL FTNKVVWI			720
		YLRAYDVNNG KELWKARI	JPA GGQATPMSYT	GKDGKQYVLV	780
TAGGHGSLGT	KMGDYIIAYK	LAE			803
SEQ ID NO:	-	moltume - DNA ler	nqth = 1335		
FEATURE	5	<pre>moltype = DNA ler Location/Qualifier</pre>	0		
source		11335			
		mol type = genomic	DNA		
		organism = Pseudor			
SEQUENCE: !	5	5	-		
atgttccaac	tgcctaaaac	ctgctacatc ggcctgg	cc tcagtgcctt	ggcaaccccc	60
gccggcgcca	gcgaaatgtt	cgccagcgac tcccctto	yga tgctcggcga	ctggggtgga	120
acccgcagcg	aactgctgga	aaagggctac gacttcad	ccc ttggctacac	cggcgagatg	180
ggcagcaacc	tgcacggcgg	ctacgaccac gaccgcad	ccg cgcgctacag	cgaccagttc	240
		cctggagaag atcctcg			300
		cggcgacaac atcagcaa			360
		ccaggaagtc tggggcco			420
		gtacttcgac ggtgcgci			480
		cagetteect tgegaett			540 600
		gggtggcatc tggtaca tacccccgag ctgtacgo			600 660
	-	cggcaatggt ttcaagci			720
		ggtatggacc ccacgtat			780
		taatgccaag gcacaaga			840
		cgccgcctac cgcagcag			900
		cacctcgctg gcgtccga			960
		tgacaaaaag accaatgo			1020
		tttcgatgcc cgcgccaa			1080
		tgcctatcgc aagaacgo			1140
ggcctctatg	actacgacaa	cccgggcttc ctgccagt	.gc aggacaccga	gtacagcgcc	1200
gagctgtatt	acggcattca	cttggccgac tggctcad	cgg tacgccccaa	cctgcagtac	1260
atccgccacc	cgggcggggt	gtcgcaggtc gatggcgo	ccc tgatcggcgg	cctgaagatc	1320
cagagcagtt	tctaa				1335
	~				
SEQ ID NO:	6		yth = 444		
FEATURE source		Location/Qualifier 1444	. 9		
source		<pre>mol_type = proteir</pre>			
		organism = Pseudor			
SEQUENCE:	5		Toniab Pactaa		
		AGASEMFASD SPWMLGDV	VGG TRSELLEKGY	DFTLGYTGEM	60
		TFGSHLDLEK ILGWHDTH			120
VGGFTSAQEV	WGRGETWRLT	QMWIKQKYFD GALDVKF	GRF GEGEDFNSFP	CDFQNLAFCG	180
SQVGNWVGGI	WYNWPVSQWA	LRVRYNLTPE LYAQVGVI	EQ NPSNLESGNG	FKLSGSGTQG	240
	PRIOGLEGEY	RAGYYYSNAK AQDVLKDS	SNG QPAALSGAAY	RSSSSKHGLW	300
	ASDQSRGLSV	FANATVHDKK TNAIDNY	/QA GLVFKGPFDA		360
ARVHVNPAYR	ASDQSRGLSV KNARLVNQAA	GLYDYDNPGF LPVQDTE	/QA GLVFKGPFDA		420
ARVHVNPAYR	ASDQSRGLSV	GLYDYDNPGF LPVQDTE	/QA GLVFKGPFDA		
ARVHVNPAYR IRHPGGVSQV	ASDQSRGLSV KNARLVNQAA DGALIGGLKI	GLYDYDNPGF LPVQDTE QSSF	/QA GLVFKGPFDA /SA ELYYGIHLAD		420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO:	ASDQSRGLSV KNARLVNQAA DGALIGGLKI	GLYDYDNPGF LPVQDTE QSSF moltype = DNA ler	VQA GLVFKGPFDA XSA ELYYGIHLAD ngth = 966		420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE	ASDQSRGLSV KNARLVNQAA DGALIGGLKI	GLYDYDNPGF LPVQDTE QSSF moltype = DNA ler Location/Qualifier	VQA GLVFKGPFDA XSA ELYYGIHLAD ngth = 966		420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO:	ASDQSRGLSV KNARLVNQAA DGALIGGLKI	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966	/QA GLVFKGPFDA /SA ELYYGIHLAD ngth = 966 :s		420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE	ASDQSRGLSV KNARLVNQAA DGALIGGLKI	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic	7QA GLVFKGPFDA 7SA ELYYGIHLAD ngth = 966 rs : DNA	WLTVRPNLQY	420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966	7QA GLVFKGPFDA 7SA ELYYGIHLAD ngth = 966 rs : DNA	WLTVRPNLQY	420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE:	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7	GLYDYDNPGF LPVQDTE QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol	/QA GLVFKGPFDA /SA ELYYGIHLAD ngth = 966 :s : DNA pacter hormaec	WLTVRPNLQY hei	420 444
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt	GLYDYDNPGF LPVQDTE QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac	/QA GLVFKGPFDA /SA ELYYGIHLAD ngth = 966 :s DNA bacter hormaec cca acgcgcgcct	WLTVRPNLQY hei tgccctgtgc	420 444 60
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac ttctcaggcg aaaaccta	/QA GLVFKGPFDA /SA ELYYGIHLAD ngth = 966 :s DNA Dacter hormaec :ca acgcgcgcct att cagggctgga	WLTVRPNLQY hei tgccctgtgc ttacccaagc	420 444 60 120
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggttcgcgt	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac ttotcaggcg aaaacta ctatctggaa gagcataa	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD /gth = 966 /s /s /s /s /s /s /s /s /s /s /s /s /s</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt	420 444 60 120 180
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg atcgccatcg	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggttcgcgt cctgtccgat	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterof aggtgatgta ggcggcac ttctcaggcg aaaactt ctatctggaa gagcataa caccggcgac tgggtgg	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD /gth = 966 /s /s /s /s /s /s /s /s /s /s /s /s /s</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc	420 444 60 120 180 240
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaagt gatgtgaaca ctggaagcgg atcgccatcg ttctcaattg	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggttcgcgt cctgtccgat ccgaaatgcg	GLYDYDNPGF LPVQDTEY QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterof aggtgatgta ggcggcac ttctcaggcg aaaaccta ctatctggaa gagcataa caccggcgac tgggtggg gaaaaacctc ggcttcto	YQA GLVFKGPFDA YSA ELYYGIHLAD ngth = 966 :s : DNA bacter hormaec cca acgcgcgcct att cagggctgga tgagcgtgga tgaccaacca cga tgaccaacca	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc tattaacgac	420 444 120 180 240 300
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg atcgccatcg ttctcaattg	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggtccggt cctgtccgat ccgaaatgcg tttccatggc	GLYDYDNPGF LPVQDTEN QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac ttctcaggcg aaaaccta ctatctggaa gagcataa caccggcgac tgggtggg gaaaaacctc ggcttcto tatcccaatg cttaaaco	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD ngth = 966 // // DNA // DA // DA // DA // CA // C</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc tattaacgac tcagttcggc	420 444 120 120 180 240 300 360
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg atcgccatcg ttctcaattg ttccactgcgg ggtacggccc	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggtccggt cctgtccgat ccgaaatgcg tttccatggc cggttgaagg	GLYDYDNPGF LPVQDTEN QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac ttctcaggcg aaaaccta ctatctggaa gagcataa caccggcgac tggggggg gaaaaacctc ggcttgd tatcccaatg cttaaacc taaaccgatt gccgttta	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD /sgth = 966 /s /s DNA /sacter hormaec /sca acgcgcgcct att cagggctgga /sga tgagcgttga /sga tgagcgttga /sga tgaccaacca /sga accttgaaat /sag agcatctgat /sag gcgcgggcac</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc tattaacgac tcagtcggg cggcctgggg	420 444 120 120 180 240 300 360 420
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg atcgccatcg ttctcaattg ttccaattg ttccactgcgg ggtacgccc gtggcgcacc	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggttcgcgt cctgaccgat ccgaaatgcg tttccatggc cggttgaagg tggttcacgt	GLYDYDNPGF LPVQDTEN QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcad ttctcaggcg aaaaccta ctatctggaa gagcataa caccggcgac tgggtgg gaaaaacctc ggcttca tatcccaatg cttaaacc taaaccgat gccgttta cgacaaaacgc tgggtcag	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD /sgth = 966 /s /s DNA /sacter hormaec /sca acgcgcgcgct att cagggctgga /sga tgagcgttga /sga tgagcgttga /sga accttgaaat /sag agcatctgat /sag gcgcgggcac /scc tgccgggcga</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc tattaacgac tcagttcggc cggcctgggg gggcggtcat	420 444 120 120 180 240 360 420 480
ARVHVNPAYR IRHPGGVSQV SEQ ID NO: FEATURE source SEQUENCE: atgacaaagt gatgtgaaca ctggaagcgg atcgccatcg ttcccaattg ttcccattg ggtacggccc gtggcgcacc gtggatttg	ASDQSRGLSV KNARLVNQAA DGALIGGLKI 7 atgctttggt gcggtgaaat tggttcgcgt cctgtccgat ccgaaatgcg tttccatggc cggttgaagg tggttcacgt cggctgaacag	GLYDYDNPGF LPVQDTEN QSSF moltype = DNA ler Location/Qualifier 1966 mol_type = genomic organism = Enterol aggtgatgta ggcggcac ttctcaggcg aaaaccta ctatctggaa gagcataa caccggcgac tggggggg gaaaaacctc ggcttgd tatcccaatg cttaaacc taaaccgatt gccgttta	<pre>/QA GLVFKGPFDA /SA ELYYGIHLAD /gth = 966 /s /s /s /s /s /s /s /s /s /s /s /s /s</pre>	WLTVRPNLQY hei tgccctgtgc ttacccaagc agacggttgt cacgtgggcc tattaacgac cggcctgggg gggcggtcat acgcgccgag	420 444 120 120 180 240 300 360 420

gcgattgtaa aatcagacgg	tcgtctgccg gaaaatctgc aaccgaaaga tgtgaccgaa	660
	tattgactgc cgccgtgctt tgtcgctgtt ctgcgtcatc	720
	cctggcgctg aacctcggca cctttggcgg ggtctatatt	780
	cttcctcgat ttctttaccg cctccggctt ccgtggcggc	840
	cagaagctat gtccaggaca ttcctgttta cctgattgtc	900
	gggctccggc gcgcatctgc gtcaggtact cggtcagatt	960
ctctga	3333333	966
5		
SEQ ID NO: 8	moltype = AA length = 321	
FEATURE	Location/Qualifiers	
source	1321	
	mol type = protein	
	organism = Enterobacter hormaechei	
SEQUENCE: 8	5	
MTKYALVGDV GGTNARLALC	DVNSGEISQA KTYSGLDYPS LEAVVRVYLE EHKVSVEDGC	60
	FSIAEMRKNL GFSHLEIIND FTAVSMAIPM LKPEHLIQFG	120
	VAHLVHVDKR WVSLPGEGGH VDFAPNSEEE GIILEELRAE	180
	AIVKSDGRLP ENLQPKDVTE RALADSCIDC RRALSLFCVI	240
	AGGIVPRFLD FFTASGFRGG FEDKGRFRSY VQDIPVYLIV	300
HDNPGLLGSG AHLRQVLGQI		321
IBM CERCE INDIG + DOGI		521
SEQ ID NO: 9	moltype = DNA length = 2391	
FEATURE	Location/Qualifiers	
source	12391	
source		
	mol_type = genomic DNA organism = Enterobacter hormaechei	
SEQUENCE: 9	organism - Enterobacter normaecher	
	acaggaggat atagtgatga gattaagaga ggggtttgag	60
	acageegegt etaetggtga eattaaeage egegtttgee gttaateggt ggegtatgge tggtegegat tggeggetee	120
		120
	tctggttatg gttggcgtaa ccgtcctgct tttacgcaga	
	gtacgcagcg ttactgctcg caaccatgat ctggggcgtc	240
	ctgggcgttg acgccgcgca gcgacattct ggtcttcttc	300
	gtttgtctgg cgtcgtctga tcgtcccttc cagtggcgcc	360
	ccttctgatt agtggcggca tcctgacctg ggccggtttt	420
	cggtacgctg aacgcggaat ccacgccggc tgcggctatt	480
	ctggcctgct tatggtcgta accaggaagg tcaacgctac	540
	cgcggacaac gtgaaaaacc tgaaggaagc ctgggtattc	600
	gccaaacgat ccgggtgagc tgaccaacga agtgaccccg	660
	ctacctgtgt acggcgcacc agcgtctgtt cgcgctcgac	720
	atggcacttt gatccacagc tgaactccaa cccgtcgttc	780
	cgtctcttac cacgaagcgc gcgccgataa tgccagcccg	840
gaagtcattg ccgactgtcc	tegeegeatt atgetgeeag tgaaegatgg eegeetgttt	900
gccattaacg ctgagaccgg	caagetgtge gaaacetteg eeaataaagg cattetgaat	960
	caccacgeeg ggeetgtatg ageegaeete eeegeeaate	1020
atcaccgata aaaccatcgt	gattgccggt tcggtaacgg ataacttctc tacccgtgaa	1080
acctccggcg ttatccgtgg	tttcgacgtg aacaccggta aactgctgtg ggccttcgac	1140
ccgggcgcga aagatcctaa	cgcgatccca tcggatgaac acacctttac ctttaactca	1200
ccgaactcct gggcaccggc	agcgtatgac gcgaagctgg acctggtcta cctgccgatg	1260
ggcgtgacca cgccggatat	ctgggggggt aaccgtacgc cggagcagga acgttacgcc	1320
agctccatcg tggcgctgaa	cgcaacaacc ggtaaactgg catggagcta ccagaccgtt	1380
caccacgatc tgtgggatat	ggatatgeeg teecageega egetggegga cattacegtt	1440
aacggtaaaa ccgtaccggt	gatttacgcc ccggcgaaaa ccggtaacat cttcgtgctt	1500
gatcgtagca acggtaagct	ggttgttcct gcgccggaaa aaccggttcc gcagggtgcg	1560
gccaaaggcg actacgtcac	caaaacgcag ccgttctctg acctgagctt ccgtccgaag	1620
aaagatctca gcggtgcaga	catgtggggt gccaccatgt ttgaccagct ggtatgccgc	1680
gtgatgttcc accagctgcg	ctacgaaggg attttcaccc cgccgtcaga gcagggtacg	1740
ctggtcttcc cgggtaacct	ggggatgttc gaatggggtg ggatctccgt tgaccctaac	1800
cgtcaggtcg ccatcgctaa	cccaatggcg ctgccgttcg tttcccgcct gatccctcgt	1860
ggtccgggta acccaatgga	gcagccgaaa gatgcgaaag gcagcggtac cgaagccggt	1920
atccagccac agtatggcgt	teettatggt gtgaceetga atcegtteet gteteegttt	1980
ggtctgccgt gtaaacagcc	tgcctggggt tacatctccg gtctggatct gaagaccaac	2040
aagatcgtct ggaagaaacg	tattggtacg ccacaggaca gcatgccgtt cccgatgcct	2100
	gggtatgcca atgctgggtg gtccaatctc taccgccggt	2160
	aaccgcagat aactacctgc gcgcgtacaa catgaccaac	2220
	ccgtctgcca gccggtggac aggcaacgcc gatgacctat	2280
	cgttgtcatc tctgcgggtg gtcacggttc gtttggcacg	2340
	cgcgtatgca ctgcctgacg acgctaagta a	2391
augulyyyey actatattyt	egegenegen elgeelgneg algelaagla a	
CEO ID NO. 10	moltume - NN length 500	
SEQ ID NO: 10	moltype = AA length = 796	
FEATURE	Location/Qualifiers	
source	1796	
	<pre>mol_type = protein</pre>	
	organism = Enterobacter hormaechei	
SEQUENCE: 10	-	
MAETKTKQPR LLVTLTAAFA	- AFCALYLLIG GVWLVAIGGS WYYPIAGLVM VGVTVLLLRR	60
MAETKTKQPR LLVTLTAAFA	-	60 120

				-0011011	iucu	
VASLVVALLT	SGGILTWAGE	NDPOEINGTL	NAESTPAAAI	SOVADGDWPA	YGRNOEGORY	180
		RTGDLKMPND		~	~ ~	240
AATGKEKWHF	DPQLNSNPSF	QHITCRGVSY	HEARADNASP	EVIADCPRRI	MLPVNDGRLF	300
AINAETGKLC	${\tt ETFANKGILN}$	LQTNMPDTTP	GLYEPTSPPI	ITDKTIVIAG	SVTDNFSTRE	360
		PGAKDPNAIP				420
		SSIVALNATT				480
		DRSNGKLVVP				540
		VMFHQLRYEG				600
		GPGNPMEQPK KIVWKKRIGT				660 720
		GEKLWQGRLP				720
KMGDYIVAYA		GERENQOREF	AGGQAIFIIII	FANGUÓLAAT	SAGGIIGSTGT	796
101001111111	Drobint					, , , , , , , , , , , , , , , , , , , ,
SEQ ID NO:	11	moltype =	DNA lengt	n = 8282		
FEATURE		Location/(Qualifiers			
source		18282				
			= genomic DI			
		organism =	= Cupriavid	us basilens:	is	
SEQUENCE:						
		cgcgatcctc				60
		gcacgcggcc				120
		cgccgcgctt				180 240
		gtcgcgtccc ccgcgtgcgc				300
		cgaagacgcg				360
		cgaggetgeg				420
		gagcgaccgc				480
		ggtcacgctg				540
		gattgccgag				600
		gttctcgctg				660
		caaggccccg				720
caggcggtgt	ttccttacgc	ggtgctgatg	tgcctggcgt	cccgcaaggc	cggcgcgccg	780
gtcaagtggg	tggaggaccg	cctcgaacat	ctcagcgcgg	ccacctccgc	caccgcgcgg	840
		ggtggagtca				900
		ctatctgcgc				960
		ctacgacatc				1020
		cggcctggtg				1080
		tcgcatcgcg				1140
		cgccgatgcc				1200 1260
		gctggcgctg				1320
		agtcgcacgc ggtatcgaac				1320
		gccgaagaac				1440
		ggtcaccatt				1500
		ggccgatgtg				1560
aacgtcgagt	tcgatacgca	caaggatgca	tggtcggtcg	ccgccggcaa	ctactccage	1620
cgtttcgccg	gcgccgtggc	cggcaccgtg	cacctggccg	ccgagcgggt	gcgcgacaag	1680
ctggcgcgca	tcgtggcgcc	gcagttcggc	tgcacgcccg	ccgaggtggt	gttcgaagac	1740
		cgcgcccgaa				1800
		gcagcagttg				1860
		caacctggaa				1920
		cttcgatatg				1980 2040
		cgtgaccgcg				2040
		cggcgccttc cggcagcttc				2160
		ggacccggtg				2220
		cctgggcgag				2280
		gctcggcgag				2340
		cttcgacgat				2400
gcgatgcgcg	aggccgccgt	gcccgcggcc	cgcaagggca	gcgcaaaggc	gctcaccgcg	2460
cgcggctcgg	tggatctgga	tgccacgccc	gaagccatct	tcgccgtgct	gatggacccg	2520
caggccctgg	ccaaggtagt	gccaggctgc	cacgcgctgg	agcgcaccgc	cgagaaccac	2580
taccgcgccg	atgtgacggt	gggggttggc	atgatcaagg	cccgcttcga	ggcggagatc	2640
gcactgtcgg	acctcgatcc	cccgcgccgg	ctgcggctgg	caggcgcagg	catgtcctcg	2700
ctgggcagtg	cgcgcggcgc	cgggctggtg	gagetggtee	cgcatggcag	cggcacgcgc	2760
ctgagttacg	actacgaggc	cgaggtatcc	ggcaaggtcg	ctgccgtggg	cggccgcatg	2820
		ggtgctgcgc				2880
		gcaaggctgg				2940
		ttcgattacc				3000
		gagggcgcgc				3060
		gcgcagccgc				3120
		gaagacgcgc				3180
		tcgctggccg				3240
		atccggaatc				3300
		cccctggtgc				3360
gttcagcccg	ccgccgccgc	gtgctgcctg	cggccagctt	cttccagggc	atgttgatga	3420

caacacacaa	gcccgacgag	ctaataaaaa	ceatacactt	tecactacaa	caccccaaaa	3480
	ctttgccgaa					3540
	gaccgatgac					3600
						3660
	ctggccgcgc					
	gggcgcgcag					3720
	gagcatgcgt					3780
	aagcccgccg					3840
gctgaacggc	cgcgagcgca	gcggccattg	cgagccgcgc	gagctgctgt	cggacttcct	3900
gcgccacgag	ctcggcgcca	ccggcaccca	tgtgggttgc	gagcacggcg	tctgcggcgc	3960
atgcacggta	cgcgttgacg	gcgttgccgc	gcgctcgtgc	ctgatgctgg	cggtgcaggc	4020
cgagcaccgg	gccatcgata	ccgtcgaagg	gctggcgccg	gccgagggac	tgggcgacct	4080
	ttccgccgcc					4140
	gcggactacc					4200
	ggccacctgt					4260
	gcgatccgtg					4320
	gcttgatcta					4380
						4440
	tgtcgacggc					
	gtccggcctg					4500
	ccgctgggaa					4560
tgatggtgcc	gctgaactgg	cgcgccaagc	cggaggagct	cgattactgt	gtgcaggatg	4620
ccggcgtcaa	ggcgctggtg	ttcgagccgg	tcagcgccga	tgcggtgctg	ggcagccccg	4680
cggcgcaggc	cgtgccctgc	attgcgctgg	actgcgcggc	tggcggctcg	atgtccttcg	4740
	ggacagcgtc					4800
	ctacacctcg					4860
	cgccgcggcg					4920
	cgtgatgccg					4980
						5040
	tggcctgttc					
	ccaccgaatc					5100
	ggggttcgat					5160
	gaacgacggc					5220
tcgtgaacca	ctacggctca	tccgaggtgt	acaccttcag	cgtggaccag	cgcgccaccc	5280
gcaagcccgg	cagcgccggg	cgcgccggca	tcaatacgcg	cctgcgcgtg	gtgcgcctgg	5340
atgcccgctc	acccgacgat	ctggcggcta	ccggcgagga	aggccagatc	atcgccgacc	5400
tgcgcggcga	cgaggccttc	gagggctact	qqaaccqcqa	cqacqccaac	gccaaatcgc	5460
	ctggtacttt					5520
	ccgggtggac					5580
	ggtgctgtcg					5640
	ctggggccag					5700
						5760
	ggatacctac					5820
	cgtggaggag					5880
	cgaatacgcg					
	ccaggctgcg					5940
	cgagatgatc					6000
ccgtggagat	cgatgccggg	cgcgagcgtg	cggatatcat	cctgcaccgt	ccaccctaca	6060
acgtgatcgc	catggcggcg	cgcgaccagt	tgcgtgccgt	cattgaagcg	ctggatgccg	6120
acgatcgcgt	gcgcgtgatc	gtgctgcgtt	cgcaaggcga	gcatttttcc	agcggcggcg	6180
atatcaaggg	cttcctggag	gcatcgcccg	agcatgtctc	gcaactggcc	tggaatgtgg	6240
cqqcqccqqc	gcgctgcagc	aaqccqqtqa	ttqccqccaa	ccqcqqctac	tqctttqqcq	6300
	gctgtcgctg					6360
	acagaagctc					6420
	catcggccgc					6480
						6540
	tgagtggggc					6600
	gctggtcgac					
	caacgacacc					6660
	ccgcctgcgc					6720
	gccggcgttc					6780
gctcgcatcc	cggatgaact	gaccggataa	cgatgcccgc	tgccacgggg	caagcatcgc	6840
ggggggagcg	cttgcctggc	ggcaaggcac	cgcccgcgcg	ccacccgctg	ccgtcatgat	6900
ccaagcagag	atccaaatca	aaggagacaa	caatggaagc	cgtagcaaag	aagagtgcag	6960
cgacgatcag	cgaggcgctg	ccagcggcga	gcaatcgcca	ggtgtttggt	gccgtggcgg	7020
	gggatgggcg					7080
	caggetgttt					7140
	tgccgtgacg					7200
						7260
	ccatggccgc					
	gttcggccta					7320
	gctgcggctg					7380
acactatcgg	taccgaatcg	gtgcccccgt	cctggcgcgg	cgccgtttcc	gggctggtcg	7440
gtggcggtgg	cgcgggtatc	ggggcgctgc	tggcttccat	tacctacatg	gcgatgaccg	7500
	gggggaagcg					7560
	ggtgctcggc					7620
						7680
	ggcggccaag					
	gtaccgtggc					7740
	cctgacctcc					7800
cggccggcga	ggctgccgcc	atcctgatgg	ccagcagtct	gggtgtgatc	gtggcgtcga	7860
teettgeegq	ccacctcagt	acgatgatcq	gccgcaagcq	agccttcctq	ttgatcggcg	7920
	ggtgctgctg					7980

				- CONCIN	Iueu	
ccacactega	cctgtatgcc	ataatactat	ccatactaga	ctacaacaac	ttogcccga	8040
	cctgaacgaa					8100
	cggctttgcc					8160
	cgaactgccc					8220
acctggtggg	tgcgttcatc	gttccggaga	cggcagggcg	ccttggcgac	aatggagcgt	8280
ag						8282
670 TR NO	1.0	7.		0040		
SEQ ID NO:	12	moltype =		n = 2949		
FEATURE			Qualifiers			
source		12949	= genomic D1	17		
			= Cupriavid		is	
SEQUENCE : 1	12	5	1			
atggagcggc	tcgaggacgc	cgcgatcctc	accggccgtg	gccgctatgg	cgacgacctg	60
	cgggcaccct					120
	tcgatgccac					180
	tggcagcctg					240
	tggccatgga					300 360
	gtgccctggc tggtatcgat					420
	ccaatgtggt					480
	cgccgcaccg					540
	gcggcgtggt					600
	tcatggggcc					660
ccggccaacc	ggctgcgcca	caaggccccg	cgcgattccg	gcggcagctt	tggcgtcaag	720
caggcggtgt	ttccttacgc	ggtgctgatg	tgcctggcgt	cccgcaaggc	cggcgcgccg	780
	tggaggaccg					840
	tggaagccgc					900
	actgcggcgg					960
	tgactggcgc agacgcccac	-	-			1020 1080
	ggctggtgca					1140
	actttgtcgc					1200
	gcaactacca					1260
	gccgccgcga					1320
gccgccatcg	tcgagccgtc	ggtatcgaac	atgggctata	tcaccaccgc	catgcccgcc	1380
gaggcgcgca	agaaagcggg	gccgaagaac	ggcgccatcg	ccagcgccac	ggtcagcgtc	1440
	gcggcgtggt					1500
	cgcaggtggt					1560
	tcgatacgca					1620
	gcgccgtggc					1680 1740
	tcgtggcgcc cccgcaaagg					1800
	actggtcacc					1860
	ggtcgccgcc					1920
	acggctttgc					1980
cgcgtgcgca	tcgaccgcta	cgtgaccgcg	cacgacgccg	gcacgctgct	caacccggcg	2040
	gccagatccg					2100
	atggcgccga					2160
	gcgaggtgcc					2220
	gcgccaaggg					2280 2340
	tggccgacgc					2400
	ccatggtggg aggccgccgt					2460
	tggatctgga					2520
					cgagaaccac	2580
					ggcggagatc	2640
					catgtcctcg	2700
					cggcacgcgc	2760
					cggccgcatg	2820
					ccgccaggcc	2880
	eggtaeggee	gcaaggctgg	ettgeeegae	tgetggeeeg	cttgggagta	2940
cgccgatga						2949
SEQ ID NO:	12	moltume -	AA length	- 992		
FEATURE	15		Qualifiers	- 902		
source		1982	guarrierb			
		mol_type :	= protein			
			= Cupriavid	us basilens	is	
SEQUENCE : 3	13					
	TGRGRYGDDL	GVKPGTLHAA	IVRSPHAHAE	LGTIDATAAL	AAPGVHAVLT	60
	FVVAVKSPME					120
	LADDAPILHP					180
					RDSGGSFGVK	240
QAVFPYAVLM	CLASRKAGAP	VKWVEDRLEH	LSAATSATAR	LSTLEAAVES	DGRIKALAYD	300
QIEDCGGYLR	APEPATFYRM	HGCLTGAYDI	PNLLVRNRVV	MTNKTPTGLV	RGFGGPQVYF	360

ALERLVHRIA	TOLGLDPLDV	YRRNFVAADA	FPYRAAAGAL	LDSGNYOLAL	ARALEEGGYY	420
		AAIVEPSVSN				480
		TVCAQVVADV				540
		LARIVAPQFG				600
		TVFWSPPNLE LADGOIRGAF				660 720
		TPLGAKGLGE	~		~	780
		AMREAAVPAA				840
QALAKVVPGC	HALERTAENH	YRADVTVGVG	MIKARFEAEI	ALSDLDPPRR	LRLAGAGMSS	900
		LSYDYEAEVS	GKVAAVGGRM	LEGAAKVVLR	QLFESLGRQA	960
AGKPVRPQGW	LARLLARLGV	RR				982
SEQ ID NO: FEATURE	14	Location/G	DNA length Qualifiers	n = 816		
source		1816		17		
			= genomic DI	NA 18 basilens:	la	
SEQUENCE: 1	14	organitsm -	- cupitaviu	is Dasilens.	LD	
		ttacctgcgc	qccqaqacca	cqcaqcacqc	qctcqaqqcq	60
		cgcgcgcgtg				120
ctcaatatgc	gcctggcgca	gccgcaactg	ctgatcgata	tctcgcgcac	cgtcgagctg	180
		cgcgcacctg				240
		ggccgacgag				300
		gaatcgcggc				360
		ggtgctgacc gcctgcggcc				420 480
		ggaggccgtg				540
		cgcgcgccac				600
		cgcgctggcg				660
		gggcaaggac				720
		cgcccatatc				780
		cgaggaggca				816
SEQ ID NO: FEATURE	15	moltype = Location/(AA length	= 271		
source		1271	Qualifiers			
Douroe		mol_type =	protein			
				us basilens:	ls	
SEQUENCE: 1	15	Ū	-			
MKPSAFDYLR	AETTQHALEA	LARGGEGARV	LAGGQSLMAV	LNMRLAQPQL	LIDISRTVEL	60
		VEWRRSLADE				120
		ARRRRVLPAA				180
		TVTDDAIALA QLSMRVIEEA		ETWPRLQGKD	LEQAINDFSW	240 271
KIGAQDDAIII	SAQIRRIDAR	QUSHICVIELA	IC .			2/1
SEQ ID NO: FEATURE	16	moltype = Location/G		ı = 579		
source		1579		13		
			= genomic DI - Cupriavid	wa 18 basilens:	i a	
SEQUENCE: 1	L6	organito	cupitavia	ib babiichb.		
		cgccgtttcc	ggcaagcccg	ccgaggtaat	gcagcgccag	60
		gacgctgaac				120
cgcgagctgc	tgtcggactt	cctgcgccac	gagctcggcg	ccaccggcac	ccatgtgggt	180
tgcgagcacg	gcgtctgcgg	cgcatgcacg	gtacgcgttg	acggcgttgc	cgcgcgctcg	240
		ggccgagcac				300
		cctgcaagaa				360
		cctgatgtcg cgacatgctg				420 480
		gctcgacgta				540
		ggaggcctgc		gegeaeggge	eegeeaegee	579
5 5 55 5	5	55 55 5	5 5			
SEQ ID NO:	17		AA length	= 192		
FEATURE		Location/G	Qualifiers			
source		1192				
		mol_type =	-	ıs basilens:	la	
SEQUENCE: 1	17	ordauraw =	- cupitavidi	re nastreus:	LD	
		EQRRITLTLN	GREBCGUCED	RELLCOPLPU	FLGATCTUVC	60
		CLMLAVQAEH				120
		PSEAQVRDML				180
AAGVDTQEAC						192
SEQ ID NO:	18	moltype =	DNA length	n = 1605		
FEATURE		Location/Q	-			
source		11605				

27

				-contir	nued	
			= genomic DI			
SEQUENCE : 3	19	organism :	= Cupriavidu	is basilens:	is	
	taggccgcac	cttcctgcaa	agcgtggagc	acaacccaca	cacqcccqcc	60
	gcgacctgat					120
	tgcgcgagat					180
aaccgctggg	aaatggccac	gctgcactgg	gcctgccagt	tcgccggcat	cgtgatggtg	240
	ggcgcgccaa					300
	tgttcgagcc					360
	gcattgcgct					420 480
	tcgcgctgca cgggcaccac					540
	cgctggcgca					600
	cgctctacca					660
gatggcctgt	tcgtctgcgt	gcggcgctgg	aacgccgggc	aggcgctcga	ggagatcaac	720
	tcagctgcct					780
	atgcctgcat					840
	gcctgctgcg					900 960
	catccgaggt ggcgcgccgg					1020
	atctggcggc					1080
	tcgagggcta					1140
	ttaccggcga					1200
	acgacatgat					1260
	cgctgcatcc					1320
	agaaggtggt					1380
	actgccgcgg					1440
	agattcccaa cgctggcccc					1500 1560
	cggacgccgc				eccedacece	1605
55 5		5 5 5	55	5		
SEQ ID NO:	19	moltype =		= 534		
FEATURE			Qualifiers			
source		1534				
		mol_type :	= protein = Cupriavidu	a bagilong		
SEQUENCE : :	19	organitsm .	- cupitaviu	is pasifells.	15	
	SVERSPHTPA	IVDGDLMLTY	AQWYERIRCV	ASGLREIGLA	PGDRLLAVLQ	60
	ACQFAGIVMV					120
	AGGSMSFASL					180
	NLYRHGERTL					240
	PTLYHDLLAD					300
	SVDQRATRKP DDANAKSLRD					360 420
	EVAVAGVPDP					480
	GKILRRKLSA					534
SEQ ID NO:	20	moltype =		n = 816		
FEATURE source		Location/9	Qualifiers			
Source			= genomic DI	NA.		
			= Cupriavid		is	
SEQUENCE: 2						
atgacccagg	caaccgagat	gatccatccc	gaccagcagc	ggctccagca	actcgacggc	60
	agatcgatgc					120
	tcgccatggc					180 240
	gcgtgcgcgt agggcttcct					300
	cggcgcgcgctg					360
	tcgagetgtc					420
	cggaacagaa					480
	tgggcatcgg					540
	cctatgagtg					600
gccgccaccg	atgcgctggt	cgacgagetg	cgcggcttct	cgccgctggc	gcagcgcacc	660
gccaagaagc	tgctcaacga	caccgaggac	gcgccgctgt	cgattgccat	cgagctggaa	720
gggcattgct	atagccgcct	gcgcagctcg	gacgatttcc	gcgaaggcgt	ggaagcette	780
cacggcaagc	gcaagccggc	gttccgcggc	agctga			816
	0.1			0.71		
SEQ ID NO:	21		AA length	= 271		
FEATURE			Qualifiers			
source		1271 mol_type :	= protein			
			= procein = Cupriavidu	us basilens:	is	
SEQUENCE : 2	21					
	DQQRLQQLDG	FSVEIDAGRE	RADIILHRPP	YNVIAMAARD	QLRAVIEALD	60
ADDRVRVIVL	RSQGEHFSSG	GDIKGFLEAS	PEHVSQLAWN	VAAPARCSKP	VIAANRGYCF	120

				-contir	nued	
GKQAYEWGIA	VECVADAELE	AATDALVDEL	RGFSPLAQRT	QKMVGIGRTK AKKLLNDTED		180 240
		HGKRKPAFRG		1050		271
SEQ ID NO: FEATURE	22	Location/	DNA lengtł Qualifiers	1 = 1350		
source		11350 mol_type :	= genomic DI	A		
SEQUENCE: 2	22	organism	= Cupriavidu	us basilensi	ls	
atggaagccg	tagcaaagaa			aggcgctgcc		60
				gatgggcgct ggctgttttt		120 180
cacgccatgc	tgtcgctggc	ggcggtgtat	gcgtcgtttg	ccgtgacgct	gctgatgcgg	240
0 00	00 0	00	0 0 0	atggccgcaa tcggcctact	00000 0 0	300 360
				tgcggctggt		420
				ccgaatcggt		480 540
				cgggtatcgg gggaagcgtt		600
				tgctcggcct		660
				cggccaaggg accgtggcgt		720 780
aacateetge	tcaccgtggg	cggtggcagc	gcctactacc	tgacctccgg	ctatctgccg	840
				ctgccgccat acctcagtac		900 960
				tgetgetgee		1020
				tgtatgccgt tgaacgaacg		1080 1140
				getttgeegt		1200
				aactgcccat		1260
	ttggcgacaa		ctggtgggtg	cgttcatcgt	tccggagacg	1320 1350
SEQ ID NO: FEATURE	23	Location/	AA length Qualifiers	= 449		
source		1449 mol_type :				
SEQUENCE: 2	2	organism	= Cupriavidu	us basilensi	ls	
-		NRQVFGAVAA	SCMGWALDLF	DLFILLFVAP	VIGRLFFPSE	60
				VVAVTGVGLS WRGAVSGLVG		120 180
-	-			NSLEESPLWK		240
	-			TFLKVVVKAS		300
				QWMPAAPDTT MPTFASLCAS		360 420
	LVGAFIVPET					449
SEQ ID NO:	24		DNA length	n = 7206		
FEATURE source		Location/0 17206	Qualifiers			
			= genomic DI			
SEQUENCE: 2	24	organism	= Cupriavidu	us basilensi	LS	
				aagccgcgcc		60
				acacggaccg tcgccaagcg		120 180
gagcgcgcgg	cgttcttccg	ccggcctggc	ggccacgccg	ttccggtcgt	gagcgggttc	240
				ccgaggccgg aggtggccca		300 360
				gcaagctgtt		420
				gcctggccat		480
				aggtgcatgc accgtgcggc		540 600
				cgctcaccat		660
				ccggggcatt		720 780
				tgccggccaa aagggccctt		840
cccaagtact	acagcagcgc	cgagccgcgc	gaggtcatcc	aggtcgacgc	cgtcacgcac	900
				tggagcacct		960 1020
				gcagccatcc tgtacgtaaa		1020
aagcgcgagg	gcgaagcgaa	gaacgtcatt	ctcgcggcgt	ttggcgcgca	ctacgacatc	1140
				acccggccga tgatcgccgg		1200 1260
geegeegega	Congelleda	ggeagaceag	gacerggrgg	cgacegeegg	99090a99990	1200

tcaatactca	accectecae	gaccgtcgcc	gccaaceteg	ccggcat.cga	caatecegag	1320	
		cgccaagatg				1380	
		cgtgcggatt				1440	
		gcactgggaa				1500	
		ttgtcggtat				1560	
		gcaacctgga				1620	
		cccaggaact				1680	
		tgcgcgatat				1740	
		cgccgtgctc				1800	
		cccgcgcgccgc				1860	
		ccccgctgaa				1920	
		tgatgccgcc				1980	
		acaccgtggg				2040	
		ggtcgggcct				2100	
		tcccggccgg				2160	
		atgccgggct				2220	
		ageegateeg				2280	
						2340	
		tcgtcggcag				2400	
		gcgcgggcac				2460	
		tgctggtggt				2520	
		acacceteaa				2520	
		tgaccaacgg				2580	
		ccggcaagat					
		tgttcgagcg				2700	
		tgctgaccga				2760	
		tgcctttcgt				2820	
		cgtcgcttgc				2880	
		cctggcacgg				2940	
		cgcagatcaa				3000	
		tgcgtcccga				3060	
		agtggaagca				3120	
		attgacaagg				3180	
		cggcgggtcc				3240	
		cgcgctgatc				3300	
		cagctatccg				3360	
tggccatcgc	tgcaagcccg	cgccgtggca	ggggggcaggt	ccaaggtcta	cgagcagggg	3420	
		cagcatcaac				3480	
		gttgggcgcg				3540	
		cgatgtggat				3600	
ggaccggtgc	cgatccgccg	catcctgccg	caggcttggc	cgccgttctg	cacggagttt	3660	
gcgcaagcga	tgggccgcag	cggcctgtcc	gagetggeeg	accagaacgc	ggagttcggc	3720	
gatggctggt	ttccggccgc	cttctcgaac	ctggatgaca	aacgggtttc	gaccgccatc	3780	
gcctatctcg	acgcggatac	gcgccggcgg	gtcaatctgc	ggatctatgc	cgagacaacg	3840	
gtgcgcaagc	tcgtcgtatc	cggccgggaa	gcgcgtgggg	tgatcgccat	ccgggccgat	3900	
gggtcgcggc	tggcgctgga	cgccggggag	gtcatcgtgt	ccgcgggcgc	cttgcagtcg	3960	
		ggggatcggc				4020	
gaggtcgtag	ccgaccggcc	cggcgttggc	cgcaatctcc	aggatcatcc	ggcgctgacg	4080	
ttctgccagt	tcctcgcgcc	ccagtaccgc	atgccgctct	cgcgccggcg	cgccagcatg	4140	
acggcggcgc	gcttctcatc	ggaggtgcca	ggcggcgagg	cgtcggacat	gtacctgtcc	4200	
agttccacgc	gggcgggctg	gcatgcactc	ggtaatcggc	tcggcctctt	cttcctgtgg	4260	
tgcaatcggc	cattctcgcg	cgggcaggtt	cgccttgcgg	gagcccagcc	ggatatgccg	4320	
cccgtggtgg	agctcaacct	gctcgacgac	gagcgggatc	tgcggcgcat	ggtggccggc	4380	
gtacgcaagt	tggtgcagat	cgtgggtgcg	tcggccttgc	atcagcatcc	gggtgatttc	4440	
ttccccgcta	cgttttcgcc	gcgcgtcaag	gcgctgagcc	gcgtgagccg	cggcaatgcg	4500	
ttgctcacag	agttgctggg	ggcagtgctt	gatgtctcgg	ggccgctgcg	cagaagcctg	4560	
atcgcgcgct	ttgtcacggg	cggggcaaac	ctggccagcc	tgctggcgga	tgagtccgcg	4620	
ctggagggct	tcgtgcgtca	gagcgtcttc	ggggtctggc	atgccagcgg	cacttgccgg	4680	
atgggcgcgc	atgcggaccg	gagcgcggtg	acggatgcgg	cgggccgcgt	tcacgatgtt	4740	
ggcaggctgc	gcgtcgtaga	cgcctctctg	atgccgcggc	tgccgacggc	caataccaac	4800	
atccccacca	tcatgctcgc	ggaaaagatt	gccgacacca	tgcaggccga	gcgccgcgca	4860	
gtccggccgg	catcgagcga	agttgcccat	ccgggttgaa	gaccgcagcg	caaatccacg	4920	
ctgaagaacg	aagctgcacg	atggcgcgcc	accggcggct	ggaacgagga	gataacgatg	4980	
aaatacgatg	acgaaatccg	cgcgcgctct	taccgcttcc	gcgacgaata	tgtcgccgcc	5040	
		cgaattgcat				5100	
		gaaactgcaa				5160	
		gaactgggcc				5220	
		cgcgatctat				5280	
		gtacaaaggc				5340	
						5400	
		tgtgctggcg					
		ctatatcgcg				5460	
		gtcgcacatc				5520	
		cctgcacgtc				5580	
		cccgatctgc				5640	
		gatgcaaggg				5700	
cagccggcgg	cgcctgacac	cctgcggatc	tcctcggcca	cgatcgcgac	cagcgcaacg	5760	
gctgccgggg	cggcaaggca	ccgcccgcgc	gacaaccctg	ccgtcatgat	ccaagcagag	5820	

attcaaatca	aatcaaaqqa	qacaacaatq	gaagccgtag	caaaaaaqcq	tacagagacg	5880
			cgccaggtgt			5940
			ctgttcatcc			6000
			gcgatgctgt			6060
tcgtttgccg	tgacgctgct	gatgcggcca	ctcggctcgg	cgatcttcgg	ctcttatgcc	6120
gaccgccacg	gccgcaaggg	ggcgatggtg	gttgccgtca	ctggcgttgg	cttgtccacg	6180
			caggtggggc			6240
			gtgggtggcg			6300
			cdcddddccd			6360
			tccattacct			6420
			tggcgctgca			6480
			tcgctggagg			6540
			gttgagaacc			6600
			atcctgctca			6660 6720
			ttcctcaaga agcgttggcg			6780
			aagcgagcct			6840
			cggatgtccg			6900
			ctgggcagca			6960
			atccgtgcca			7020
			ccgacctttg			7080
			ttcgtcgcgg			7140
			ggccgccttg			7200
cggtag						7206
SEQ ID NO:	25	moltype =	DNA length	n = 1494		
FEATURE		Location/	Qualifiers			
source		11494				
			= genomic D1			
		organism :	= Cupriavidu	us basilens:	is	
SEQUENCE: 2						
			agegegtege			60
			cacctcggca			120
			ctcgcagccg			180
			ggccacgccg			240
			atgggcgtgc			300 360
			ccggtgagcg			420
			gtggacctgc			420
			atcactgcag caccgcatcc			400 540
			gatgcgttct			600
			ggtgtcgatc			660
			ttggagatcg			720
			gatgtgcgtg			780
			cgcgagatgg			840
			gaggtcatcc			900
			ccggcggaga			960
gcgattccgc	gcgaggcgac	cttgctggcg	catctgcagc	gcagccatcc	cggggtgcag	1020
gatgtgcatc	tgtcggtggg	cggcgtatgc	cggtaccact	tgtacgtaaa	gctcgacaag	1080
aagcgcgagg	gcgaagcgaa	gaacgtcatt	ctcgcggcgt	ttggcgcgca	ctacgacatc	1140
aagcaggtgg	tcgtggtgga	taccgatgtc	gacgtccacg	acccggccga	ggtggaatgg	1200
gccgtcgcga	cccgcttcca	ggcagaccag	gacctggtgg	tgatcgccgg	ggcgcagggc	1260
			gccaacctcg			1320
			gggctggacg			1380
			cccggcgagt			1440
ctggtgtcgg	tcgacccatc	gcactgggaa	tcgtatctcg	gcgaaggagc	ttga	1494
CEO TO NO	26	maltuma	AA Jamesta	407		
SEQ ID NO:	26		AA length	= 497		
FEATURE source		1497	Qualifiers			
source		mol type :	- protein			
			= procern = Cupriavidu	us hagilens	is	
SEQUENCE : 2	26	or Sourcour .	Capitavia	~~ NGSIICIID.		
		CDI.TI.PCWI.P	HIGNTDRIAA	TDEDVALEUT	LAAVAKRLDG	60
					PVSEVAQGEA	
					HRIQVHAADR	
					LEIAGALHGA	
				-	EVIQVDAVTH	
					RYHLYVKLDK	
					DLVVIAGAQG	
					PGESTIDLQA	
LVSVDPSHWE		I UNCOLCAVIA	SUDAIREVAI	AAUALIKAKI	I GESTIDLQA	480 497
LVSVDPSHWE	S I LGEGA					49/
SEQ ID NO:	27	moltrmo	DNA longet	0 - 50 <i>4</i>		
SEQ ID NO: FEATURE	41		DNA length	1 = 394		
		Location/9 1594	Qualifiers			
source		1				

		-continued	
orga	type = genomic DNA nism = Cupriavidus	basilensis	
SEQUENCE: 27 atggtcagcc agagacgcat cattg gtcaatctcc tcaaggcgat gcgca gcgtccggca tgctcaccgc gaccc cttgccgacg tagtgcataa cgtgc gtgaccgagg gcatggtggt cgcgc gggtttccg acaacctgct gaccc ctggtggtgg tggcgcgcg accc gccaccgaga tgggcgcgat cgtga agcatcgagg atgtggtcaa tcaca cacgacacgc tggtcagccg ctggt	acctg gacggcgtcg ag aggaa ctcggcatca ag gcgat attggcgcag cg gcgtg tcgatgaaga ca gcgcc gcggacgtgg tg cgctg aacctcgcg ac tgccg cccgtgcccg cc ccgtg ggccgcatcc tg	ytegeaeet eategtgteg yegeagega aetegaggea ygtggeeag eggetettte uetagegte ggtggeeaae yeteaagga geggegge eetgegeaa eatgetgeae ettetaete geategage ygaeetgtt eeagategag	60 120 180 240 300 360 420 480 540 594
FEATURE Loca source 11 mol_	ype = AA length = tion/Qualifiers 97 type = protein nism = Cupriavidus		
SEQUENCE: 28 MVSQRRIIVG ISGASGAAIG VNLLK LADVVHNVRD IGAAVASGSF VTEGM LVLVARETPL NLAHLRNMLH ATEMG HDTLVSRWSG LAHDFAG	VVAPC SMKTLASVAN GF	SDNLLTRA ADVVLKERRR	60 120 180 197
FEATURE Loca source 19 mol_	type = genomic DNA		
SEQUENCE: 29 atgaaaact ggctogcca tgc gcgcaagget ateccaecaa gccg gdggtggaca acaageceg cgc gdggtgggaca acaageceg cgc gdgecegatg gctacaecet gctg tataagtege tgccgtacg caece tagecgatg ceettgtggt gtc aaceaectg ceatggget gtc gcagaegga gcaegecet gtc gccagecga gcaegecet getg gccggetag aceettgt gt gccagecga gcaegecet getg atecaegga gcaegettg getg gcagegttge ceetagget gtc gccggetag aceettgt ateggeaagg agesettge getg ateggaagga aatggeget tga SEQ ID NO: 30 molt FEATURE Loca source 13 mol	<pre>nism = Cupriavidus ggctc gctttgctgt tg tccgc atcgtggtgc cg gcagc aggctcaccg ca gcacc atcatcggca cc tggtg cagttcccct tc aggact agctcaccg cg acgac agtgccggta cg aggac agtgccggca tc ccgat ctggccggca tc tcacag agtgccggca cc acggc attgtccggc gg tcaca gacggcgctgc gc ccgac ggcggcagcc ct agcag gtggtacatg ac ype = AA length = tion/Qualifiers 20 type = protein nism = Cupriavidus TKPIR IVVPYPGGF ND TLLVV QFPFGANPWL YK TPGKI NYGSSGSSS NH VLPFV RSGKVRALAV AD</pre>	petcaeggg gettgeceat gtaecegee eggegette ageetgggg ceageeegge eggtgeeaa teeetggee ggtgeeaa teeetggee ggtgeeag eggetegte aeeggeegg eggetegtee geaggtega agtggeete gaeggeegg agtggeete ggeeggeae geeeeegga aeeggegga tgtgegeaa geeegaet etetgegtt ggeeggeeat eeettgeaa 320 basilensis TLARIVGS RLTAAWGQPV (SLPYDTLK DFTPVILAGE HLAMALFER SAGITLAQVP DRSRFASLA TVPTMAESGL	60 120 180 240 300 360 420 480 540 600 720 780 840 900 960 963
IGKEMAKWKQ VVHDAAIPLQ SEQ ID NO: 31 molt	ype = DNA length = tion/Qualifiers		320
mol_	type = genomic DNA nism = Cupriavidus	basilensis	
argatacge egaggageg ttteg gtactggeea ategeetge geagg ategatacge egeeggaege tgtge ttetaeggtg aceggtatat etgge teeaaggtet aegageagg geege geaaacegeg ggetgeege egaet tegtggeagg atgtgetgee gtaet ageeegetge aeggeageea egae	acceg gecateegeg te eggeg gagateeteg ac eateg etgeaageee ge teatg ggeggegget ee aegat gagtgggeeg eg teege egeettgage ge	egegetgat egaggggggg eagetatee gatgecettg egeegtgge agggggeagg eageateaa egtgeaggee gttgggege gteeggetgg egatgtgga ttaeggeaae	60 120 180 240 300 360 420 480

				-0011011	iucu	
ccaccattet	acacagaatt	tgcgcaagcg	atggggggga	acaacetate	caaactaacc	540
		cgatggctgg				600
		cgcctatctc				660
		ggtgcgcaag				720
		tgggtcgcgg				780
		gcccgccatc				840
		cgaggtcgta				900
		gttctgccag				960
tcgcgccggc	gcgccagcat	gacggcggcg	cgcttctcat	cggaggtgcc	aggcggcgag	1020
		cagttccacg				1080
ctcggcctct	tcttcctgtg	gtgcaatcgg	ccattctcgc	gcgggcaggt	tcgccttgcg	1140
ggagcccagc	cggatatgcc	gcccgtggtg	gagctcaacc	tgctcgacga	cgagcgggat	1200
		cgtacgcaag				1260
		cttccccgct				1320
		gttgctcaca				1380
		gatcgcgcgc				1440
		gctggagggc				1500
		gatgggcgcg				1560
		tggcaggctg				1620
		catccccacc				1680
atgcaggccg	agegeegege	agtccggccg	gcatcgagcg	aagttgeeea	tccgggttga	1740
CEO TO NO.	20	maltrma -	NA longth	- 570		
SEQ ID NO:	32		AA length	= 579		
FEATURE		Location/9	Juailliers			
source			- protoin			
		mol_type :	= procern = Cupriavid	ia bogilong	ia	
SEQUENCE: 3	22	organism	= cupriavid	is pasitens.	15	
-		VLANRLSQDP	ATRUALTECC		ETL DOVDMDL	60
		SKVYEQGRVM				120
		SPLHGSHGPV				180
		KRVSTAIAYL				240
-		SAGALQSPAI				300
		SRRRASMTAA				360
		GAQPDMPPVV				420
		RVSRGNALLT				480
-		HASGTCRMGA				540
LPTANTNIPT						
		PIQAERRAVRE	ASSEVANPG			579
						579
SEQ ID NO:		moltype =	DNA lengtl	n = 702		579
SEQ ID NO: FEATURE		moltype = Location/6	DNA lengtl	n = 702		579
SEQ ID NO:		moltype = Location/0 1702	DNA lengtl Qualifiers			579
SEQ ID NO: FEATURE		<pre>moltype = Location/0 1702 mol_type =</pre>	DNA lengt] Qualifiers = genomic DJ	NA	ic	579
SEQ ID NO: FEATURE source	33	<pre>moltype = Location/0 1702 mol_type =</pre>	DNA lengtl Qualifiers	NA	is	579
SEQ ID NO: FEATURE source SEQUENCE: 3	33	<pre>moltype = Location/0 1702 mol_type = organism =</pre>	DNA lengt] Qualifiers = genomic D] = Cupriavid	NA 18 basilens:		
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg	33 33 atgacgaaat	<pre>moltype = Location/(1702 mol_type = organism = ccgcgcgcgcgc</pre>	DNA lengt] Qualifiers = genomic DI = Cupriavid tcttaccgct	NA us basilens: tccgcgacga	atatgtcgcc	60
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg	33 33 atgacgaaat cgtggtatcg	<pre>moltype = Location/(1702 mol_type : organism : ccgccgcgcgc cggcgaattg</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct	NA 15 basilens: tccgcgacga tcacgctgct	atatgtcgcc gttcaccggc	60 120
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg	33 atgacgaaat cgtggtatcg cctggtgcgc	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgcgc cggcgaattg gatgaaactg</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavid tcttaccgct catctggcct caagcaccga	NA 15 basilens: tccgcgacga tcacgctgct cgctggcgca	atatgtcgcc gttcaccggc gtggctcgcg	60 120 180
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg gcggtgattg atcgtgccaa	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaactg cgggaactgg</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct caagcaccga gccgagtggg	NA 15 basilens: tccgcgacga tcacgctgct cgctggcgca ccgcgcgcaccg	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg	60 120 180 240
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga	33 atgacgaaat cgtgggtatcg cctggtgcgc tcttcttgct cgcgcttgtt	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc ggtgaactg gatgaactg cgggaactgg cagcgcgatc</pre>	DNA lengt Qualifiers = genomic DI = Cupriavidu tcttaccgct catctggcct caagcaccga gccgagtggg tataaacggc	NA is basilens: tccgcgacga tcacgctgct cgctggcgca ccgcgcaccg attgcgcggt	atatgtegee gtteacegge gtggetegeg etatatattg geateatege	60 120 180 240 300
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atggtgattg atggtgcaa catcgaccga ttctttacac	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcgcttgtt atctgacgct	<pre>moltype = Location/0 1702 mol_type organism = ccgcgcgcgc cggcgaattg gatgaaactg cgggaactgg cagcgcgatc tgagtacaaa</pre>	DNA lengtl Qualifiers = genomic DD = Cupriavidu tcttaccgct caagcaccg gccgagtggg tataaacggc ggccagaagc	NA is basilens: tccgcgacga tcacgctgct cgctggcgca ccgcgcaccg attgcgcggt actggcgcgc	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt	60 120 180 240
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcgcttgtt atctgacgct cgccggtagc	<pre>moltype = Location/d 1702 mol_type a organism a ccgccgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa cttgggtacaaa</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct catctggcct caagcaccga gccgagtggg tataaacggc ggccagaagc ggcggccgtac	NA is basilens: tccgcgacga tcacgctgct cgctggcgca actgcgcggt actgcgcggt cgttcgcgct	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc	60 120 180 240 300 360
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gcgacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgccctttg ttggggttct	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgccggtagc cgaagaacgc	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcgcgcc cggcgaattg gatgaaactg cgggaactgg cagcgcgatc tgagtacaaa cttgtgctg gggctatatc</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tettaceget catetggeet caageacega gecgagtggg tataaaegge ggeeagaage ggeeggaegta	NA Ls basilens: tcacgctgacga tcacgctgct cgctggcgca cggcgcaccg attgcgcggt actggcgcgc cgttcgcgct cgatggcggc	atatgtcgcc gttgcaccggc ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg	60 120 180 240 300 360 420
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcctttg ttggggttct atgtacgagg	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcgcttgtt atctgacgct cgccggtagc cgaagaacgc gcctgcatac	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaaactg cgggaactgg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccgct caacgcaccga gccgagtggg tataaacggc ggccagaagc gcggcgtac gcgcgtacg acccggaaaa	NA 13 basilens: tcagcgacga cgctggcgca cggtgcgca attgcgcggt actggcgcg cgttcgcggc gccactgct	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg	60 120 180 240 300 360 420 480
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgacagag ccgttcgtgg	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaagc cgaagaagc gcctgcatac ggaccgtgcg	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaactgc cgggaactgg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgctgcac</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccgct caagcaccga gccgagtggg tataaacggc ggccagaagc ggcgagcgtaa gcggctgatga atcacggaaa gtcacggaaa	NA is basilens: tccgcgacga tcacgctgct cgctggcgca attgcgcggt actggcgcgc cgttcgcggt cgatggcggc gccactgct acgatgctgg	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 300 360 420 480 540
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg accgtcgagaact	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcgctgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtcgc tcaacctgac	<pre>moltype = Location/d 1702 mol_type organism = ccgcgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac gcgcctgcac cttcccgatc</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct caagcaccga gccgagtggg tataaacggc ggccagaag ggcggccgtac ggccgtgatga atcacggaaa gtcaccgcacc	NA is basilens: tcacgctgacga ccgctggcgca actggcgcacg attggcgcgc cgttcgcgcg cgttcgcgcg gcccactgct acgatgccgc gcccactgct tgttcggcac	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 300 360 420 480 540 600
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg accgtcgagaact	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcgctgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtcgc tcaacctgac	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaactgc cgggaactgg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgctgcac</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct caagcaccga gccgagtggg tataaacggc ggccagaag ggcggccgtac ggccgtgatga atcacggaaa gtcaccgcacc	NA is basilens: tcacgctgacga ccgctggcgca actggcgcacg attggcgcgc cgttcgcgcg cgttcgcgcg gcccactgct acgatgccgc gcccactgct tgttcggcac	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 300 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg accgtcgagaact	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag	<pre>moltype = Location/0 1702 mol_type organism = ccgcgcgactg gatgaactg cgggaactg cagcgcatc tgagtacaaa ctttgtgtg gggctatatc gcgtcgcac gcgcctgcac cccgatgcaa</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct caagcaccga gccgagtggg tataaacggc ggccagaag ggcggccgtac ggccgtgatga atcacggaaa gtcaccgcacc	NA tcagcgacga cgatggcgca attgcgcggca attgcgcggt actggcgcgc cgttcgcggc gcccactgct acgatcctga tgttcggcac a	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 300 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg ccgttcgtgg acgccagaact	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag	<pre>moltype = Location/0 1702 mol_type organism = ccgcgcgactg gatgaactg cgggaactg cagcgcatc tgagtacaaa ctttgtgtg gggctatatc gcgtcgcac gcgcctgcac cccgatgcaa</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccggct caagcaccga gccgagtggg tataaacggc gcgccgtac gcgccgtacg accacggaaa gtcacggataa gtcacggataa gtcacggataa gtcacggataa gtcacggataa gtcacggataa AA length	NA tcagcgacga cgatggcgca attgcgcggca attgcgcggt actggcgcgc cgttcgcggc gcccactgct acgatcctga tgttcggcac a	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg ccgtcgtgg acgcagaact gtgccacacg SEQ ID NO:	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgctgcac gcgcctgcac ctcccgatgcaa moltype =</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccggct caagcaccga gccgagtggg tataaacggc gcgccgtac gcgccgtacg accacggaaa gtcacggataa gtcacggataa gtcacggataa gtcacggataa gtcacggataa gtcacggataa AA length	NA tcagcgacga cgatggcgca attgcgcggca attgcgcggt actggcgcgc cgttcgcggc gcccactgct acgatcctga tgttcggcac a	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg ccgtccgtgg acgcagaact gtgccacacg SEQ ID NO: FEATURE	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag	<pre>moltype = Location/0 1702 mol_type a organism a ccgcgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac gcgctgcac cttcccgatc cccgatgcaa</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct caagcaccga gccgagtggg tataaacggc ggccagaagc gcggccgtac gcggccgtac gtcacgcaa gtcacgcaac gggcaggggt AA length Qualifiers	NA tcagcgacga cgatggcgca attgcgcggca attgcgcggt actggcgcgc cgttcgcggc gcccactgct acgatcctga tgttcggcac a	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg ccgtccgtgg acgcagaact gtgccacacg SEQ ID NO: FEATURE	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgcttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgccc cggcgaattg gatgaaactg cgggaactgg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgcctgcac ctcccgatc cccgatgcaa moltype = Location/0 1233 mol_type =</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct caagcaccga gccgagtggg tataaacggc ggccagaagc gcggccgtac gcggccgtac gtcacgcaa gtcacgcaac gggcaggggt AA length Qualifiers	NA is basilens: tcacgcgacga cgcgcgcaccg attgcgcggt actgcgcgcg cgttcgcggc gcccactgct acgatcctga tgttcggcac a g = 233	atatgtcgcc gttgactcgg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc gcgcagcgat	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg ccgtccgtgg acgcagaact gtgccacacg SEQ ID NO: FEATURE	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgccc cggcgaattg gatgaaactg cgggaactgg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgcctgcac ctcccgatc cccgatgcaa moltype = Location/0 1233 mol_type =</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavide tcttaccgct caagcaccga gccgagtggg tataaacggc gcggccgtac gcggccgtac gcggccgtac gcgccgaaa gtcacgcatc tgcgacacgg ggcaggggt AA length Qualifiers = protein	NA is basilens: tcacgcgacga cgcgcgcaccg attgcgcggt actgcgcgcg cgttcgcggc gcccactgct acgatcctga tgttcggcac a g = 233	atatgtcgcc gttgactcgg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc gcgcagcgat	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg ccgtcgtgg acgcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccgttgtt atctgacgct cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcggaattg gatgaactg cagcgcgaatcg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gcgcctgcac cccgatgcaa moltype = Location/0 1233 mol_type = organism =</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccgct caacgcaccga gccgagtggg tataaacggc gcgcgtac gcgctgatga atcacggaaa gtcacgcatc tgcggcagtac gggcaggggt AA length Qualifiers = protein = Cupriavidu	NA tccgcgacga tcacgctgctgct cgctggcgca cggcgcaccg attgcgcggt actggcgcgc cgttcgcgt actggcgcg gccactgct acgatcctga tgttcggcac ag = 233 us basilens:	atatgtcgcc gttgactcgg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc gcgcagcgat	60 120 180 240 360 420 480 540 600 660
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg acgtcagagg acgtcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcggttgt cgcggtagc gcctgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34	<pre>moltype = Location/0 1702 mol_type a organism a ccgcgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac gcgctgcac cttcccgatc acccgatgcaa moltype = Location/0 1233 mol_type a organism a</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct caagcaccga gccgagtggg tataaacggc ggccgtac ggccgtaca atcacggaaa gtcaccgaaaa gtcaccgaaaa gtcaccgaaaa gtcacggacag gggcaggggt AA length Qualifiers = protein = Cupriavidu	NA is basilens: tccgcgacga cgctggcgca cggtggcaccg attggcgcgc cgttcggcgc gccactgct acgatggcggc gccactgct acgatcctga tgttcggcac ag = 233 us basilens:	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc gcgcagcgat	60 120 180 240 300 420 480 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtcgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg ccgtcgtgg acgcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgcggttgt cgacgagacgc ggacggtgg tcaacctgac aggtgcgaag 34 syrFRDEYVA AEWAAHRYIL	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgcc cggcgaattg gatgaaactg cgggaactgg gggctatatc gcggctgcc cttcccgatgcac cttcccgatgcaa moltype = Location/d 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct caagcaccga gccgagtggg tataaacggc gcgccgtac gcggccgtac gcgccgtag atcacggaa gtcacgcac gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR	NA us basilens: tccgcgacga cgctggcgca ccgctggcgca cgttcgcggt actggcgcgc gccactgct acgatgcgcgc gccactgct acgatcctga tgttcggcac ag = 233 us basilens: GVIAWCAMKL FFTHLTLEYK	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gccgatggcc gcgcagcgat	60 120 180 240 360 420 480 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gcgacaccctg ggggtgattg atcgtgccaa catcgacga ttctttacac ccgccctttg ttggggttct atgtacgagg ccgtcgtgg acgagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc ggaccgtgatac ggaccgtgaag aggtgcgaag 34 34 syrFRDEYVA AEWAAHRYIL AAVPFALVIG	<pre>moltype = Location/d 1702 mol_type = organism = ccgcgcgcgcc cggcgaattg gatgaaactg cgggaactgg gggctatatc gcggctgcc cttcccgatgcac cttcccgatgcaa moltype = Location/d 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct caagcaccga gccgagtggg tataaacggc ggccgtatga atcacggaa gtcacggatga gtcacgcatc tgcgacacgc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL	NA is basilens: tcacgcgacga cgctggcgca cgctggcgcg attgcgcggc cgttggcggc gccactgct acgatcctga tgttcggcac ag = 233 Is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 480 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gcgacaccctg ggggtgattg atcgtgccaa catcgacga ttctttacac ccgccctttg ttggggttct atgtacgagg ccgtcgtgg acgagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc ggaccgtgatac ggaccgtgaag aggtgcgaag 34 34 syrFRDEYVA AEWAAHRYIL AAVPFALVIG	<pre>moltype = Location/d 1702 mol_type = organism = ccgccgcgccc cggcgaattg gatgaaactg cgggaactgg gggctatatc gcgcctgccc ctcccgatc cccgatgcaa moltype = Location/d 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct caagcaccga gccgagtggg tataaacggc ggccgtatga atcacggaa gtcacggatga gtcacgcatc tgcgacacgc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL	NA is basilens: tcacgcgacga cgctggcgca cgctggcgcg attgcgcggc cgttggcggc gccactgct acgatcctga tgttcggcac ag = 233 Is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source Sequence: atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg cgtcgtgg gcgcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL PFVGTVRLH	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgccc cggcgaattg gatgaaactg cgggaactgg cagcggatc tgagtacaaa ctttgtgctg gggctatatc gcgcctgcac cccgatgcac cccgatgcaa moltype = Location/1 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccgct catctggcct catctggcct cagcagatggg tataaacggc ggccgatag gcgctgatga atcacggaaa gtcacgcatc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD	NA is basilens: tccgcgcacga cgctggcgca cgctggcgcg cgttggcggc gccactggt acggtgcggc gccactgct acgatcctga tgttcggcac ag = 233 Is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gcgacaccctg ggggtgattg atcgtgccaa catcgacga ttctttacac ccgccctttg ttggggttct atgtacgagg ccgtcgtgg acgagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaaactg cagcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac gcgctgcac cttcccgatc anoltype = Location/0 1233 mol_type = arpaNWYRGEL HRPTRLFSAI LGPSKNAGYI TQNFNLTFPI moltype =</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct catctggcct catgcaccga gccgacgatga atcacggaa atcacggaa gtcacgcacc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA lengtl	NA is basilens: tccgcgcacga cgctggcgca cgctggcgcg cgttggcggc gccactggt acggtgcggc gccactggt acgatcctga tgttcggcac ag = 233 Is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg acgtcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PFFAPVAFVL PFVGTVRRLH SEQ ID NO: FEATURE	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcgcgcc cggcgaattg gatgaaactg cggcgcgatc tgagtacaaa ctttgtgctg gggctatatc gctgtcgcac gcgcctgcac cttcccgatc anoltype = Location/0 1233 mol_type = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0</pre>	DNA lengtl Qualifiers = genomic DI = Cupriavidu tcttaccgct catctggcct catctggcct cagcagatggg tataaacggc ggccgatag gcgctgatga atcacggaaa gtcacgcatc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD	NA is basilens: tccgcgcacga cgctggcgca cgctggcgcg cgttggcggc gccactggt acggtgcggc gccactggt acgatcctga tgttcggcac ag = 233 Is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source Source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa catcgaccga ttcttacac ccgcccttg ttggggtct atgtacgagg acgagaact gtgccacacg SEQ ID NO: SEQUENCE: 3 MKYDDEIRAR IVPIFLLGRW PPFAPVAFVL PFVGTVRRLH SEQ ID NO:	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgccc cggcgaattg gatgaaactg cggcactgt gggctatatc gcgcctgccc cttcccgatc cccgatgcaa moltype = Location/0 1233 mol_type = arganism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0 11359</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct catctggcct catctggcct gccgatggg tataaacggc gcggccgtac gcggccgtac gcggccgtac gcggccgtac gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA length Qualifiers	NA 15 basilens: tcagcgacga tcagcggcga cggcggcaccg attgcggggg actggcggc cgttggcggc gccactgct acgatcgcggc acgatcctga tgttcggcac ag = 233 IS basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ h = 1359	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gccgacgatg gccgacggat gccgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg ggggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggtct atgtacgagg acgtcagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PFFAPVAFVL PFVGTVRRLH SEQ ID NO: FEATURE	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc gcctgcatac ggaccgtgcg tcaacctgac aggtgcgaag 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgcgc cggcgaattg gatgaaactg cgggaactgg gggctatatc gcgcctgcac cttccgatc cccgatgcaa moltype = Location/0 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0 11359 mol_type =</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct cadgcaccga gccgagtggg gccgagagg gccgcgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac gcgccgtac tccgacaccc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA length Qualifiers = genomic DJ	NA is basilens: tcacgcgacga cgcgcgcaccg attgcgcggc cgttggcgcg gcccactgct acgatgcggc gcccactgct acgatcctga tgttcggcac ag = 233 us basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ h = 1359 NA	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gcgcagcgat gctgatggcc gcgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source SEQUENCE: 3 atgaaatacg gccaccctg gcggtgattg atcgtgccaa catcgaccga ttctttacac ccgcccttg ttggggttct atgtacgagg acgtagaact gtgccacacg SEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PFPAPVAFVL PFVGTVRRLH SEQ ID NO: FEATURE source	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc cgaagaacgc ggacggtagc cgaagaacgc ggacggtaga 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA 35	<pre>moltype = Location/0 1702 mol_type = organism = ccgccgcgcgc cggcgaattg gatgaaactg cgggaactgg gggctatatc gcgcctgcac cttccgatc cccgatgcaa moltype = Location/0 1233 mol_type = organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0 11359 mol_type =</pre>	DNA lengt) Qualifiers = genomic DJ = Cupriavidu tottaccgct catctggcct catctggcct gccgatggg tataaacggc gcggccgtac gcggccgtac gcggccgtac gcggccgtac gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA length Qualifiers	NA is basilens: tcacgcgacga cgcgcgcaccg attgcgcggc cgttggcgcg gcccactgct acgatgcggc gcccactgct acgatcctga tgttcggcac ag = 233 us basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ h = 1359 NA	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gcgcagcgat gctgatggcc gcgcagcgat	60 120 180 240 360 420 430 540 600 660 702
SEQ ID NO: FEATURE source Source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa ttctttacac ccgcccttg ttggggtct atgacgag accagacag sEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL PFVGTVRLH SEQ ID NO: FEATURE source SEQUENCE: 3	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc gcctgcatac ggaccggcaga 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA 35	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaaactg gatgaaactg gaggtactatc gctgtcgcac gcgctgcac cttcccgatc cccgatgcac organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0 11359 mol_type = organism = ccation/0</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct catctggcct cadgcaccga gccgagtggg ggccgagac ggccgtgatga atcacggaaa gtcacggac gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA lengtl Qualifiers = genomic DJ = Cupriavidu	NA is basilens: tccgcgcacga cgcgcgcaccg attgcgcgcg cgttcgcggc gccactggt acgatgcggc gccactget acgatcctga tgttcggcac ag = 233 is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ h = 1359 NA is basilens:	atatgtcgcc gttcaccggc gtggctcgcg ctatatattg gcatcatcgc cttgttgttt ggtgatcggc gtactacctg ggaccggatg gctgatggcc gcgcagcgat	60 120 180 240 300 420 480 540 600 660 702
SEQ ID NO: FEATURE source Source SEQUENCE: 3 atgaaatacg gccacccctg ggggtgattg atcgtgccaa ttctttacac ccgcccttg ttggggtct atgacgag accagacag sEQ ID NO: FEATURE source SEQUENCE: 3 MKYDDEIRAR IVPIFLLGNW PPFAPVAFVL PFVGTVRLH SEQ ID NO: FEATURE source SEQUENCE: 3	33 atgacgaaat cgtggtatcg cctggtgcgc tcttcttgct cgccggtagc gcctgcatac ggaccggcaga 34 34 SYRFRDEYVA AEWAAHRYIL AAVPFALVIG VTHHDPELMA 35	<pre>moltype = Location/0 1702 mol_type = organism = ccgcgcgcgc cggcgaattg gatgaaactg gatgaaactg gaggtactatc gctgtcgcac gcgctgcac cttcccgatc cccgatgcac organism = ATPAWYRGEL HRPTRLFSAI LGFSKNAGYI TQNFNLTFPI moltype = Location/0 11359 mol_type = organism = ccation/0</pre>	DNA lengtl Qualifiers = genomic DJ = Cupriavidu tcttaccgct catctggcct catctggcct cadgcaccga gccgagtggg ggccgagaa atcacggaaa gtcacgcatc tgcgacaccc gggcaggggt AA length Qualifiers = protein = Cupriavidu HLAFTLLFTG YKRHCAVHHR ALMTMAAYYL CDTLFGTRSD DNA lengtl Qualifiers = genomic DJ = Cupriavidu	NA is basilens: tccgcgcacga cgcgcgcaccg attgcgcgcg cgttcgcggc gccactggt acgatgcggc gccactget acgatcctga tgttcggcac ag = 233 is basilens: GVIAWCAMKL FFTHLTLEYK MYEGLHTLSH VPHEVRSPMQ h = 1359 NA is basilens:	atatgtcgcc gttcaccggc gtdgctcgcg ctatatattg gcatcatcgc gtgtgttgtt ggtgatcggc gctgatggcc gcgcagcgat gctgatggcc gcgcagcgat	60 120 180 240 300 420 480 540 600 660 702

aatcqccaqq	tatttaatac	cgtgacggcg tcgtgcatgg gatgggcgct ggacctgttc	120
		cgtggcgccc gtgatcggca ggctgttttt cccgtcggag	180
		ggcggtgtac gcgtcgtttg ccgtgacgct gctgatgcgg	240
ccactcggct	cggcgatctt	cggctcttat gccgaccgcc acggccgcaa gggggcgatg	300
		tggettgtee acggeggegt teggeetget geegaeggtg	360
		gccagcettg tttateetge tgeggetggt geagggeate	420
		atccacccac accatcggta ccgaatcggt gcccccgtcc	480
		getggteggt ggeggtggeg egggtategg ggeaetgetg	540 600
		gatgaccgcg ctgtttccgg gggaagcgtt cgacgcctgg ctccggcatc atcagctcgg tgctcggcct gttcatcttc	660
		gctgtggaag cagttgcagg cggccaaggg gcacgccgcg	720
		cgtgatette tecegecagt accgtggegt cetettegte	780
		cggtggcagc gcctactacc tgacctccgg ctatctgccg	840
accttcctca	agatcgtggt	aaaggcaccg gcggggggcct ccgcggccat cctgatggcc	900
		ggettegata ettgeeggte aceteageae getgattggt	960
		gatcggcgcc ttgaacgtgg tgctgctgcc gttgatctac	1020
		ggatgtcacc acacttggcc tgtatgccgt ggcgctggcg	1080
		cgccccgatc ctcattttcc tgaacgaacg gtttcccacc	1140 1200
		eggeetgtea tggaatateg getttgeeat eggeggeatg gtgegeeage acceeegeeg acctgeeaaa agtgetgggg	1260
		tgccatttac ctggccggtg cggcgatcgt tcctgagacc	1320
		cagccagccc gagcggtag	1359
5555			
SEQ ID NO:	36	moltype = AA length = 452	
FEATURE		Location/Qualifiers	
source		1452	
		<pre>mol_type = protein</pre>	
anounnan		organism = Cupriavidus basilensis	
SEQUENCE: 3		NRQVFGAVTA SCMGWALDLF DLFILLFVAP VIGRLFFPSE	60
		PLGSAIFGSY ADRHGRKGAM VVAVTGVGLS TAAFGLLPTV	120
		FVGGVVASTH TIGTESVPPS WRGAVSGLVG GGGAGIGALL	180
		GWRCMFFSGI ISSVLGLFIF NSLEESPLWK QLQAAKGHAA	240
		NILLTVGGGS AYYLTSGYLP TFLKIVVKAP AGASAAILMA	300
SSVGVIVASI	LAGHLSTLIG	RKRAFLLIGA LNVVLLPLIY QRMSAVPDVT TLGLYAVALA	360
		SIRATGTGLS WNIGFAIGGM MPTFASLCAS TPADLPKVLG	420
IFVAVVTAIY	LAGAAIVPET	AGRLGEVSQP ER	452
CEO ID NO.	27	moltime - DNA longth - 20	
SEQ ID NO: FEATURE	37	moltype = DNA length = 29	
FEATURE	37	Location/Qualifiers	
	37	Location/Qualifiers 129	
FEATURE	37	Location/Qualifiers	
FEATURE source SEQUENCE:	37	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct	
FEATURE source SEQUENCE:		Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct	29
FEATURE source SEQUENCE: ccgctcgagg	37 tgttccagga	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc	29
FEATURE source SEQUENCE: ccgctcgagg SEQ ID NO:	37 tgttccagga	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30	29
FEATURE source SEQUENCE: : ccgctcgagg SEQ ID NO: FEATURE	37 tgttccagga	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers	29
FEATURE source SEQUENCE: ccgctcgagg SEQ ID NO:	37 tgttccagga	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130	29
FEATURE source SEQUENCE: : ccgctcgagg SEQ ID NO: FEATURE	37 tgttccagga	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA	29
FEATURE source SEQUENCE: ccgctcgagg SEQ ID NO: FEATURE source	37 tgttccagga 38	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130	29
FEATURE source SEQUENCE: : ccgctcgagg SEQ ID NO: FEATURE source SEQUENCE: :	37 tgttccagga 38	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct	29 30
FEATURE source SEQUENCE: : ccgctcgagg SEQ ID NO: FEATURE source SEQUENCE: :	37 tgttccagga 38 38	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct	
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO:	37 tgttccagga 38 38 ccaaccagca	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31</pre>	
FEATURE source SEQUENCE: CCGCtCGAGG SEQ ID NO: FEATURE SOURCE: ACGCCTGCTG SEQ ID NO: FEATURE	37 tgttccagga 38 38 ccaaccagca	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers</pre>	
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO:	37 tgttccagga 38 38 ccaaccagca	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131	
FEATURE source SEQUENCE: CCGCtCGAGG SEQ ID NO: FEATURE SOURCE: ACGCCTGCTG SEQ ID NO: FEATURE	37 tgttccagga 38 38 ccaaccagca	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA</pre>	
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: Acgcctgctg SEQ ID NO: FEATURE source	37 tgttccagga 38 38 ccaaccagca 39	Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131	
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE:	37 tgttccagga 38 38 ccaaccagca 39	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct</pre>	30
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE:	37 tgttccagga 38 38 ccaaccagca 39	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA</pre>	
FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE:	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: SEQ ID NO: FEATURE source SEQUENCE: SEQUENCE: tgctggttgg	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a</pre>	30
FEATURE source SEQUENCE: : ccgctcgagg SEQ ID NO: FEATURE source SEQUENCE: : acgcctgctg SEQ ID NO: FEATURE source SEQUENCE: : tgctggttgg SEQ ID NO:	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO: FEATURE source SEQUENCE: tgctggttgg SEQ ID NO: FEATURE	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO: FEATURE source SEQUENCE: tgctggttgg SEQ ID NO: FEATURE	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO: FEATURE source SEQUENCE: tgctggttgg SEQ ID NO: FEATURE	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt 40	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: SEQUENCE: SEQUENCE: SEQUENCE: FEATURE source SEQUENCE: SEQUENCE:	37 tgttccagga 38 38 ccaaccagca 39 cagcaggcgt 40	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA organism = synthetic construct</pre>	30
FEATURE source SEQUENCE: FEATURE source SEQUENCE: acgcctgctg SEQ ID NO: FEATURE source SEQUENCE: tgctggttgg SEQ ID NO: FEATURE source SEQUENCE: source	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA organism = synthetic construct ggccagca</pre>	30 31
FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : SEQUENCE : SEQUENCE : tgctggttgg SEQ ID NO: FEATURE source SEQUENCE : cccaagcttc SEQ ID NO:	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA organism = synthetic construct ggccagca moltype = DNA length = 28</pre>	30 31
FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : acgcctgctg SEQ ID NO: FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : cccaagcttc SEQ ID NO: FEATURE	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA organism = synthetic construct ggccagca moltype = DNA length = 28 Location/Qualifiers</pre>	30 31
FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : SEQUENCE : SEQUENCE : tgctggttgg SEQ ID NO: FEATURE source SEQUENCE : cccaagcttc SEQ ID NO:	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 moltype = DNA length = 28 Location/Qualifiers 128 </pre>	30 31
FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : acgcctgctg SEQ ID NO: FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : cccaagcttc SEQ ID NO: FEATURE	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 mol_type = other DNA organism = synthetic construct ggccagca moltype = DNA length = 28 Location/Qualifiers 128 moltype = DNA length = 28 Location/Qualifiers 128 moltype = DNA length = 28 Location/Qualifiers 128 moltype = Other DNA organism = synthetic construct</pre>	30 31
FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : acgcctgctg SEQ ID NO: FEATURE source SEQUENCE : SEQ ID NO: FEATURE source SEQUENCE : cccaagcttc SEQ ID NO: FEATURE	37 tgttccagga 38 ccaaccagca 39 39 cagcaggcgt 40 40 agtcgtcgaa 41	<pre>Location/Qualifiers 129 mol_type = other DNA organism = synthetic construct ccagcagtc moltype = DNA length = 30 Location/Qualifiers 130 mol_type = other DNA organism = synthetic construct ggtgcttcat moltype = DNA length = 31 Location/Qualifiers 131 mol_type = other DNA organism = synthetic construct tggatcactg a moltype = DNA length = 28 Location/Qualifiers 128 moltype = DNA length = 28 Location/Qualifiers 128 </pre>	30 31

		-concinded	
cccaagcttg tagacg	tgca gcacgctg		28
SEQ ID NO: 42	moltype = DNA lengt	h = 32	
FEATURE	Location/Qualifiers		
source	132		
	mol_type = other DNA		
SEQUENCE: 42	organism = synthetic	construct	
	tgga acatgagata gc		32
SEQ ID NO: 43	moltype = DNA lengt	h = 29	
FEATURE	Location/Qualifiers		
source	129 mol type = other DNA		
	organism = synthetic		
SEQUENCE: 43			
caactgcctt tagccg	agta agegacaee		29
SEQ ID NO: 44	moltype - DNA lengt	h = 29	
FEATURE	moltype = DNA lengt Location/Qualifiers	11 - 29	
source	129		
	mol_type = other DNA	<u>.</u>	
	organism = synthetic	construct	
SEQUENCE: 44 ccgctcgagg cagtgc	rdad dtdtcdaad		29
codecodada cadedo	egag gegeegaag		23
SEQ ID NO: 45	moltype = DNA lengt	h = 1344	
FEATURE	Location/Qualifiers		
source	11344 mol type = genomic D	NΔ	
	organism = Pseudomon		
SEQUENCE: 45	-	-	
	gcat caagacactg ggatcgttgg		60
	ctgc cgaggetttt tecagegaat cega getgetggae aagggetatg		120 180
	acct gcatggcggc tacaacgacg		240
	gcgc gcatctggac ttgcagaaga		300
	tcac cgagcgaagc ggtcgcaacc		360
	agtt cagctcggtg caggaggtgt ggat caagcagaag tacttcgacg		420 480
	gcga ggacttcaac agcttccctt		540
ttctgcggct cgcagg	tggg caactgggtg ggcggcatct	ggtacaactg gccggtcagc	600
	tgaa gtacaacatc acgccggagt		660
	ccaa cctggaaacc ggcaacggct tgcc ggtggaagcg gtgtggtcgc		720 780
	gtta ctactacage acggecaagg		840
	aggc gctgacaggt gaagccttca		900
	cgca gcagcaggtc actgcccatg		960 1020
	actt caccgtgcac gacaaggcca tcta caaaggcgct ttcgacgccc		1020
	ttca tgtgaatgac gacgtgaaga		1140
	acga ttacgacaac cctggtttcg		1200
	acta cggcttccac gttaccaact gccc tggcggggtg gacgaggtgg		1260 1320
ttgaagattc agtcgt		ataacgeget ggregetgge	1344
5 5 5 5	5		
SEQ ID NO: 46	moltype = AA length	u = 447	
FEATURE source	Location/Qualifiers 1447		
source	mol type = protein		
	organism = Pseudomon	as putida	
SEQUENCE: 46			
-	ALVG SSGTQAAEAF SSESKWMTGD ARYS DQFALGAHLD LQKILGWHDA		
	GQTW RLTQMWIKQK YFDGALDVKF		
	NPVS QWALRVKYNI TPEFFVQVGA		
	NGLP GEYRLGYYYS TAKADDVYDD		
	VNRG LSLFANFTVH DKATNVVDNY		
	ELLN AQSGINDYDN PGFVPLQRTE	YNAELYYGFH VTNWLTVRPN	
LQYIKSPGGV DEVDNA	LVAG LKIQSSF		447
SEQ ID NO: 47	moltype = DNA lengt	h = 909	
FEATURE	Location/Qualifiers		
source	1909		
	mol_type = genomic D		
	organism = Pseudomon	as putida	

SEQUENCE: 47		
~	actgegggee teacceetgg acgegettea gegetggetg	60
	cagcatgttc atcgtcctgg tgggcttcta cggctacatc	120
ctctggacct tcgtgctgtc	cttcaccacc tcgacctttc tgcccaccta caagtgggcg	180
	tctgttcgac aacgaccgct ggtgggtggc gagcaagaac	240
	gttcatcgcc atcagcctgg ccatcggtgt gttgctggcg	300
	ccgtcgcgag ggcttcattc gcaccattta cctgtacccc	360
	caccggcacg gcctggaagt ggctgctcaa cccgggcatg	420
	cgactggggc tgggagggct ttcgcctgga ctggctgatc	480 540
	ttgcctggtg atcgcggccg tgtggcaggc ttcgggcttc	600
	cggettgegt ggegtegaee egtegateat eegegetgeg geegegeate taetggaeeg tggtgetgee eageetgege	660
	gatgatecte tegeacattg ceateaagag ettegaeetg	720
	cggcccgggt tactcctccg acttgccggc catgttcatg	780
	cggccagatg ggcatgggct cggccagcgc catcctgatg	840
	cctcgtgcct tacctgtact cggagctgcg gagcaaacgc	900
catgcatag		909
SEQ ID NO: 48	moltype = AA length = 302	
FEATURE	Location/Qualifiers	
source	1302	
	mol_type = protein	
	organism = Pseudomonas putida	
SEQUENCE: 48		
	PKLVLAPSMF IVLVGFYGYI LWTFVLSFTT STFLPTYKWA	60
	LLLFGGLFIA ISLAIGVLLA VLLDQRIRRE GFIRTIYLYP	120
	GLDKLLRDWG WEGFRLDWLI DPDRVVYCLV IAAVWQASGF	180
	QMDGASLPRI YWTVVLPSLR PVFFSALMIL SHIAIKSFDL	240
	YSFTFSRGQM GMGSASAILM LGAILAILVP YLYSELRSKR	300
HA		302
SEQ ID NO: 49	maltuma DNA longth 1100	
FEATURE	moltype = DNA length = 1188 Location/Qualifiers	
source	11188	
source	mol type = genomic DNA	
	organism = Pseudomonas putida	
SEQUENCE: 49		
	cctgccgcct cgttttctcg cagccgccat cgccagcttt	60
	CULCUCCUAA UCCUAUALCA LUCLULACUA CAAUUACCAU	120
	cgtcgccgaa gccgagatca tgctgtacga caaggaccag ctatatcaac gccttctacg tcaacagcga ggtcgaccgt	120 180
acgacgtttt ccaccgatgg	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt	
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac	180
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc	180 240
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag	ctatatcaac geettetaeg teaacagega ggtegaeegt eegeeagteg egggtgaaga tgggettett geeeaaetae geaggtggat gaeetgaaae teggegeege tgeetegtte tgaaaceaae ggeaeegaea eegeeatega egtgegeeag	180 240 300
acgacgtttt ccaccgatgg gagggggagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc	180 240 300 360
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat	ctatatcaac geettetaeg teaacagega ggtegaeegt eegeeagteg egggtgaaga tgggettett geeeaactae geaggtggat gaeetgaaae teggegegeg tgeetegtte tgaaaceaae ggeaeegaea eegeeatega egtgegeeag eeeegagtgg ggegaggtge tgateggeaa ggaetteggg	180 240 300 360 420
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggcaa ctgttcgccc gatccaacat gacacctgg ggctggtgga	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag ccccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg cctgctcgac gaactgctgg ccggttatgg ccaggtcagc	180 240 300 360 420 480
acgacgtttt ccaccgatgg gagggggagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat gacacctgg ggctggtgga ccatacccgt tccctacctc	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag ccccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg cctgctcgac gaactgctgg ccggttatgg ccaggtcagc cggcggcggg gtgtcgttcg gcaacattgg cagcggtta	180 240 300 360 420 480 540
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat gacaccctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgtt tgaaaccaac ggcaccgac ccgccatcga cggcgcgg ccccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg cctgctcgac gaactgctgg ccggttatgg ccaggtcagc acagatcacc taccgtacgc ccgtgatgga gggcctacgg	180 240 300 360 420 480 540 600
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat gacaccctgg ggctggtgga ccataccgt tccctacctc gttgcggtgg gcatcatgga taccaggaaa acccacgac	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag ccccgagtgg ggcgaggtg tgatcggcaa ggacttcggg cdgctcgac gaactgctgg ccggttatgg ccaggtcag acagatcacc taccgtacgc ccgtgatgg ggcctacgg cccggtggac accaacgac gcagcccgac ggacaggta	180 240 300 420 480 540 600 660 720 780
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggttca acatgggcaa tggtaacca tcacgacag ttctatggca cgtggccaa ctgttcgccc gatccaacat gacacctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa accacgcac cagatctaca gttgggtcaa gaaacgatca cttccaaggg	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgg tgcctcgtt tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa gacttcggg cctgctcgac gaactgctgg ccggttatgg ccaggtcagc cgggggggg gtgtcgttcg gcaacattgg ggcgctacgg cccggtggac accaacgac gcggccgac cggaaggcg ccgggtgga atcacctacc agttcgacc cggtaggcg cggacgttac cagactccg acattcga cggtaggcg ggtggggg atcacctacc agttcgacc cggtaggcg gggggggg atcacctacc actcgaccgac cggtaggcg cggaagttac cagacctcgg acaatattga ctccacgtta ggtgggttac ggggtgcag caaagatgg cggctgtcg	180 240 300 420 480 540 600 660 720 780 840
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcacgacag ttctatggca cggtggcaa ctgttcqccc gatccaacat gacaccctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaaa acccacgca cagatctaca gttgggtcaa gaaacgatca cttccaaggg ctgaccggct cggggttcca	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgac ccgcaccga cggcgggg cccgatgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcgggg gtgtcgttcg gcaacattgg caggtgac acagatcacc taccgtacgc cggtagga gacctacga gaacgccga cggagggg atcacctac gagtcgacc cggtaggg ccggtgga accaacgac gcagccgac cggaaggcg cggagttac cagacccga cagaatggc gggcggtta cagacctgg caacattgg cggtgggg ggccaaaggc atcaaccga caaagtgg cggctggg ggccaaagg atcaaccga tctcaccggt gggggttac ggggtgcag caaagtgg cggctggtg	180 240 300 420 480 540 600 660 720 780 840 900
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat gacacctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgac cagatctaca gttgggtcaa gaacgatca cttccaaggg ctgaceggtt tgcgcaatg	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgcg tgcctcgtc tgaaaccaac ggcaccgac ccgccatcga cggccggg ccccgagtgg ggcgaggtg tgatcgtcag ccaggtcagc ccggcgggg gtgtcgttcg gcaacattgg cagcggtac acagatcacc taccgtacgc cgtgatgga ggcctacgg cccggtggac accaacgaca gcagcccgac cggaaggcg cggaggtac cagacctcg acaatactg ccggtggcg ggcgagttac ggggtgcagg caatactga cccaggtgg ggcgaggtac ggggtgcg caatactga cccaggtgg ggccaaggc ggggtgcg tcttcacc acatccc cggaggcgag accaccgac cggaaggcg ggcagttac ggggtgcagg caatactga cccacggtg ggccaaggc atcaaccgac tcttcacca ggtgggttac ggggtgcagg caatactga caatgccgc cgacagtga agcacccg tcttcacca caatgccgg ggccaaggc atcaaccga tcttcacca caatgccgg ggccaaggc aggtacacg tcttcacca caatgccgg cgacagtga ggctacctg tcttcacca	180 240 300 420 480 540 600 660 720 780 840 900 960
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatggcaa tggtaacca tcaacgacag ttctatggca cggtggcaa ccgttcgcc gatccaacat gacacctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgac cagatctac gttgggtcaa gaaacgatca cttccaaggg ctgaccggtt tgcgtacag gaaccggttt tgcgcaatg	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgac ccgccatcga cgtgcgccag ccccgagtgg ggcgaggtg tgatcgtcag ccaggtcagc cggcggcggg gtgtcgtcg ccagttatg ccaggtcagc acagatcacc taccgtacge cgtgatgga gggctacgg cccggtggac accaacgaca gcagcccgac cggaaaggcc ggagagcga atcaactacc agttcgacct cggtggcg ggccaattac cagacctcg acatatcg cggtggcg ggcgagttac ggggtgcg acatactg ccggtggcg ggccagtga gggtgcgt acaacatcg cggtggcg ggccagtac cagacctcg acatactg cggtggcg ggccaaggc atcaaccgt tcttcaccaa caatgccgg ggccaagga ggctacctg tgcaggct gtacagttc ggacagtga acaaccag acaagatgg cggctggtcg ggccaaggc atcaaccga tcttcaccaa caatgccgc ggacagtga ggctacctg tgcaggct gtacagttc	180 240 300 420 480 540 660 720 780 840 900 960 1020
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tgggtaacca tcaacgacag ttctatggca cggtggccaa ctgttcgccc gatccaacat gacaccctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgcac cagatctaca gttgggtcaa gaaacgatca cttccaaggg ctgaccggct cggggttcca gaccagtt tgcgcaatgt ggcaagaacc gcgtggcgct	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgcag ccccgagtgg ggcgaggtg tgatcgtcag ccaggtcagc ccggcgggg gtgtcgttcg gcaacatgg cagcggtag acagatcacc taccgtacgc ccgtgatgga ggcctacgg cccggtggac accaacgaca gcagcccgac cggaaaggcc ccggaggcgg atcacctacc agttcgacct cggtggcgc ggcagttac cagacctcgg caatactga ctccacggta ggcgagtac ggctgcgg caatactga ctccacggta ggccaaaggc atcaaccga caatactga ccacggtgg ggccaaaggc atcaaccga tctcacca caatactga ccgaagtga ggctaccgg tactacgg ggccaatgg ggtatcgtcg tctcacca caatactga ggtcggttac ggcaccacg tactacga caatactga ggccaaaggc atcaaccga tctcaccac caatactga ggccaatgg ggtacctgc tgcagggct gtacaagttc ggccaatgg ggtaccacg tctcacca caatgccgg ggccaaaggc atcaaccg tccacggt caatactga ggccaaagg atcaccacg tccacggt gtacaagttc ggccaatgg ggtaccacg tcacaggtc gacagtgt ggccaaagtg ggcaccaag acgatggca cggtgggtt	180 240 300 420 480 540 600 660 720 780 840 900 900 960 1020 1080
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggttca acatgggcaa tggtaacca tcacgacag ttctatggca cgtggccaa ctgttcgccc gatccaacat gacacctgg ggctggtgga ccataccgt tccctactc gttgggtgg gcatcatgga taccaggaa acccacgca cagatctaca gttgggtcaa gaaccggtt tgcgaagg ctgaccggc cgggttcca ggcaggtt tgcgaaga cgacaccg gcggggct ggcaagaacc gcgacgaga	ctatatcaac goottotaog toaacagoga gytogacogt cogocagtog ogggtgaaga tyggottott goocaactac goaggtggat gaoctgaaac toggogoog tyootogto tgaaaccaac ggoacogaac cogocatoga ogtgogoog cocogatog gyogagyto tgatogoaa gaocttoggg cotgotoga gaactgotgg coggttatgg coaggtcago coggogogg gytogtotg goaacattgg ggoctacog cogggtgga accaacgac gogocgac cogaaggoog coggagoga atoacotac gatogacat coggtggoog gyoggttac cagactog acatatog cogotggoog ggogagtac accaacgac gotgocgac cogaaggoog ggoggggg atoactacog acatatog cogaggoga atoacotac gatogacat cogotggoog ggocaaaggo atoacotg tottoacoa caatgocogc gacagtgat ggotacotg tottoacoa caatgocogc gacaaggo atoacotg tottoacoa caatgocogc gacagtgg ggotacotg tottoacoa caatgocogc gaccaggg ggotacotg tocatagga coggotgtt gaccogggg tyggocotg tocatgacat caacgacaa gatogogt gtgogotg tocatgacat caacgacaa caaccagtt tocatogac ggoatgacac cagtgocga	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggttca acatgggcaa tggtaacca tcacgacag ttctatggca cgtggccaa ctgttcgccc gatccaacat gacacctgg ggctggtgga ccataccgt tccctactc gttgggtgg gcatcatgga taccaggaa acccacgca cagatctaca gttgggtcaa gaaccggtt tgcgaagg ctgaccggc cgggttcca ggcaggtt tgcgaaga cgacaccg gcggggct ggcaagaacc gcgacgaga	ctatatcaac gccttctacg tcaacagcga ggtcgaccgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgttc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgcag ccccgagtgg ggcgaggtg tgatcgtcag ccaggtcagc ccggcgggg gtgtcgttcg gcaacatgg cagcggtag acagatcacc taccgtacgc ccgtgatgga ggcctacgg cccggtggac accaacgaca gcagcccgac cggaaaggcc ccggaggcgg atcacctacc agttcgacct cggtggcgc ggcagttac cagacctcgg caatactga ctccacggta ggcgagtac ggctgcgg caatactga ctccacggta ggccaaaggc atcaaccga caatactga ccacggtgg ggccaaaggc atcaaccga tctcacca caatactga ccgaagtga ggctaccgg tactacgg ggccaatgg ggtatcgtcg tctcacca caatactga ggtcggttac ggcaccacg tactacga caatactga ggccaaaggc atcaaccga tctcaccac caatactga ggccaatgg ggtacctgc tgcagggct gtacaagttc ggccaatgg ggtaccacg tctcacca caatgccgg ggccaaaggc atcaaccg tccacggt caatactga ggccaaagg atcaccacg tccacggt gtacaagttc ggccaatgg ggtaccacg tcacaggtc gacagtgt ggccaaagtg ggcaccaag acgatggca cggtgggtt	180 240 300 420 480 540 600 660 720 780 840 900 900 960 1020 1080
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcacgacag ttctatggca cggtggcaa ctgttcgcc gatccacat gacaccctgg ggctggtgga ccatacccgt tccctacctc gttgcggtgg gcatcatgga taccaggaaa acccagcac cagatctaca gttgggtcaa gaaacgatca cttccaaggg ctgaccggct cggggttcca gaaccggttt tgcgcaatgt ggcaagaacc gcgtggcgct ggcagcggcg cggactacga ctgaactgg tggccgata aacgaagaca ccgatactt	ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcge tgcctcgtc tgaaaccaac ggcaccgac ccgcacga cgtgcgccag cccgatgg ggcgaggtgc tgatcggcaa ggactccgg ccggcgggg gtgtcgttcg gcaacattgg caggtgac acagatcacc taccgtacgc ccgtgatgga gggcctacgg ccgggtggac accaacgaca gcagcccgac cggacggcg ggcgagttac cagacctcg agtcggccg ggcgagttac ggggtgcag acaatactga ctccacggta gggcgagttac ggggtgcag caaagtgg cggctaggc ggccaaggc atcaaccgt tcttcaccaa caatgccgc cgacagtga agaccacg tgcaggcc gacagtcg ggccaaggc atcaaccg caaagtgg cggctgtcg ccgacagtga gggtgcag caaagtgg cggctgtcg ggccaaggc gggtgcag caaagtgg cggctgtcg caacacggt ggccaagg caagacgca cggtgggc cgacagtga gggtgcag caaagtgg cggctgttc gacccgggg gtggcggt tccatggca caaggaca caacagtt tccatcgacg ggcagaca caatggcga caacagtt tccatcgacg gcatgaca cagtgcga tgcggtggg gcggtgta cctggtag	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcaacgacag ttcatggca cggtggcaa ccatacccg ggctggtgga ccatacccg ggctggtgga ccatacccg tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgac cagatctaca gttgggtcaa gaaccggtt tgcggatgg gcaagagc cgggtgcgt ggcaagaacc gcgtggcgt ggcaagaac gcgtggcgt stggaactgg tggccgata aacgaagaca ccgatactt SEQ ID NO: 50	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgcg tgcctcgtc tgaaaccaac ggcaccgac ccgcacgac ggactcgga cccgagtgg ggcgaggtg tgatcggcaa ggactcgga ccggcggcgg gtgtcgttcg gcaacattg ccaggtgaac acagatcacc taccgtacgc ccgtgatgga gggctacgg cggaggtga accaacgac gcagcccgac cggaaaggc cggaggtac cagacctcg acaatactg tccacggtg ggccaaggc gggtgcaggta caasatgg cggtggcg ggcagttac ggggtgcagg acaatactg ccacggtgg ggccaaggc atcaaccgt tcttcacca caatgccgg ggccaaggc agaccaagg acaatactg ccacggtg ggccaaggc agggtgcagg acaatactg ccacggtg ggccaaggc gggtgcagg caasatgg cggctggtc ggacagtga gggtaccgg caasatgg cggctggtc ggccaaggc acaaccgg ccaggaggca ccaggtcggt ggccaaggg gggtaccgg caasatgg cggtggtc ggacagtga gggtaccgg caasatgg cggtgggt ggccaaggg gggtaccgg ccaggaggca ccggtgggt ggccaaggg gggtgtg ccggtgga caacacggtt tccatcgac caggtgcggt ggcggtggg gcggtgtg ccggtagaca tgcggtggg gcggtgttg cctggtag</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcaacgacag ttctatggca cggtggcaa ccgttcgcc gatccaacat gacacctgg ggctggtgga ccataccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgca cagactaca gttgggtcaa gaacgatca cttccaaggg ctgaccggtt tgcgcatgt ggcaagaacc gcgtggcgct ggcagcggc cggactacga ctgaaactg tggccgata aacgaagac ccgatacctt SEQ ID NO: 50 FEATURE	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgcg tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggactccgg ccggcgggg gtgtcgttcg ccaggtcagc ccggcggggg gtgtcgtcg ccgtgatgga gggcctacgg ccggtggac accaacgaca gcagcccgac cggaaaggcc cggagagcgag atcacctace agttcgacct cggtgggcg ggccagttac cagacctcg acaatactga ccccggtgg ggccaggtac ggggtgcg tctctcaca cattcgacg ggcgagtac acaacgaca gcagcccgac cggaaggcg ggccaggtac cagacctcg acaatactga ccccggtgg ggccaatagc agggtgcagg caaagatgg cggctggtcg ggccaatagc atcaaccga tcttcacca cattcg ggccggtgg aggctactgc tgcagggct gtacagttc gaccgggg gtgggcgtg tccatgaca caggcgggt ggccaatgg aggccaagg acgatggca cgacagtga ggcgcdgt tccatgacat caacgacaac caaccagtt tccatcgacg gcctggtaa tccggtggg gcggtgtta cctggtaa tgcggtggg gcggtgtta cctggtaa</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcaacgacag ttcatggca cggtggcaa ccatacccg ggctggtgga ccatacccg ggctggtgga ccatacccg tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgac cagatctaca gttgggtcaa gaaccggtt tgcggatgg gcaagagc cgggtgcgt ggcaagaacc gcgtggcgt ggcaagaac gcgtggcgt stggaactgg tggccgata aacgaagaca ccgatactt SEQ ID NO: 50	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcgggg gtgtcgttcg gcaacattgg caggtgtac acagatcacc taccgtacga ggacccagg ccggaggag accactga cgtgatgga ggcctacgg ccggaggag accaccgac ggagccgg cggaggta accaacgac gcagccgac cggagggcg ggccaaagga atcacctacc agttcgacct cggtggcg ggccaaagga gggtcacgg caaagatgg cggctgtcg ggccaagga gggtcaccgg tgcaacattg caacagttc ggccaggg gggtgcagg caaagatgg cggctggtcg ggccaaagga agaccagg acgatggcaa caatgccgg cgacagtgat gggtacctg tgcagggca caacaggt ggtgcacgg caaagatgg gaccaagga gggtgcagg acgatggcaa caaccagtt tccatcgacg ggcatgaca tgcggtgggc gcggtgttg cctggtag tgcggtggg gcggtgttg cctggta tgcggtggg gcggtgttg cctggta taccation/Qualifiers 1395</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcaacgacag ttctatggca cggtggcaa ccgttcgcc gatccaacat gacacctgg ggctggtgga ccataccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgca cagactaca gttgggtcaa gaacgatca cttccaaggg ctgaccggtt tgcgcatgt ggcaagaacc gcgtggcgct ggcagcggc cggactacga ctgaaactg tggccgata aacgaagac ccgatacctt SEQ ID NO: 50 FEATURE	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcge tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtg tgatcgtcg ccaggtcagc cgggggggg gtgtcgtcg gcaacattgg cagcggtac acagatcacc taccgtacge ccgtgatgga gggcctacgg ccggatgac accaacgaca gcagcccgac cggaaggcg cggagggg atcacctacc agttcgacct cggtggcgg ggccaaggt accaaccgat cgtcacge cggaaggcg ggccaagge atcaaccgat cttcaccaa caatgccggc ggccaagge atcaaccgt tcttcaccaa caatgccggc caacaggt ggcgactt tccatcgaca cggtggcgg ggccaagge ggggggtgt tccatgaca cagtggcgg ggccaagge gggggggg tccacgg cgaaggtcg tgccggggg gtgcgtgt ccaagatgg cacaggtgat accaaccgat cttcaccaa caatgccggc ggccaagge gggggtgt ccatgacat cagtgcggt gaccaggg ggggggtgt ccatgaca cagtgcggt tgcgggggg gcgggtgttg cctggtaa tgcggtggg gcggggtgta cctggtaa tgcggtggg gcggggtgtg tacctggta tgcation/Qualifiers 1395 mol_type = protein</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcacgacag ttctatggca cgtggccaa ctgttegccc gatccaacat gacacctgg ggctggtgga ccataccqt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgcac cagatctaca gttgggtcaa gaaccggtt tgcgggttcca gaaccggtt tgcgcagta ggcaggagc gggactacga ctgaacggc cggactacga accgaaac ccgatacctt SEQ ID NO: 50 FEATURE source	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcgggg gtgtcgttcg gcaacattgg caggtgtac acagatcacc taccgtacga ggacccagg ccggaggag accactga cgtgatgga ggcctacgg ccggaggag accaccgac ggagccgg cggaggta accaacgac gcagccgac cggagggcg ggccaaagga atcacctacc agttcgacct cggtggcg ggccaaagga gggtcacgg caaagatgg cggctgtcg ggccaagga gggtcaccgg tgcaacattg caacagttc ggccaggg gggtgcagg caaagatgg cggctggtcg ggccaaagga agaccagg acgatggcaa caatgccgg cgacagtgat gggtacctg tgcagggca caacaggt ggtgcacgg caaagatgg gaccaagga gggtgcagg acgatggcaa caaccagtt tccatcgacg ggcatgaca tgcggtgggc gcggtgttg cctggtag tgcggtggg gcggtgttg cctggta tgcggtggg gcggtgttg cctggta taccation/Qualifiers 1395</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggcttca acatgggcaa tggtaacca tcacgacg ttcatggca cggtggcaa ccatacccg ggctggtgga ccatacccg ggctggtgga ccatacccg tccctacctc gttgcggtgg gcatcatgga taccaggaaa acccagcac cagatctaca gttgggtcaa gaaccggtt tgcgcagtg gcaagagcc cggggttcca ggcaggagcg cggactacga ctgaaccgg tgccgagt gcaagagaca ccgatactt SEQ ID NO: 50 FEATURE source SEQUENCE: 50	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgac ccgcacga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggactccgg ccggcgggg gtgtcgttcg gcaacattgg caggtgtac acagatcacc taccgtacgc ccgtgatgga gggcctacgg ccggaggag acacacgaca gcagcccgac cggaaggcg cggaggtac cagacctgg acaatactga ctccacggta ggtgggttac ggggtgcag caaagtgg cggctggcg ggccaaggc atcaaccgat tcttcaccaa caatgccggc ggacagtga atcaaccgt tcttcaccaa caatgccggc cgacagtgg dggtacctgc tgcagggcc gacagtcg ggccaaaggc atcaaccga cggaggcac cgacagtcg cgacagtga gggtgcag caaagtgg cggctgtcg ggccaaaggc atcaaccgt tcttcaccaa caatgccggc gacagtgg gggggtgt tccatggcaa cggtgcggt gaccagggg gggggtgta cctggtaa tccatcggc gggtgttga cctggtaa tgcggtgggc gcggtgttga cctggtaa tgcggtgggc gcggtgttg taccation/Qualifiers 1395 mol_type = protein organism = Pseudomonas putida</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1020 1188
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggctca acatgggcaa tggtaacca tcacgacg ttcatggca cggtggcaa ccgttcgcc gatccacat gacacctgg ggctggtgga ccataccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgac cagatctaca gttgggtcaa gaaccggtt tgcgcaggg ggcagggc cgggtgcgt ggcaagaacc gcgtggcgct ggcaagaaca ccgatactt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MHNNNKHLPP RFLAAAIASF	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcge tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtg tgatcgtcg ccaggtcagc cgggggggg gtgtcgtcg gcaacattgg cagcggtac acagatcacc taccgtacge ccgtgatgga gggcctacgg ccggatgac accaacgaca gcagcccgac cggaaggcg cggagggg atcacctacc agttcgacct cggtggcgg ggccaaggt accaaccgat cgtcacge cggaaggcg ggccaagge atcaaccgat cttcaccaa caatgccggc ggccaagge atcaaccgt tcttcaccaa caatgccggc caacaggt ggcgactt tccatcgaca cggtggcgg ggccaagge ggggggtgt tccatgaca cagtggcgg ggccaagge gggggggt tccatgaca cagtgcggt gaccagggg gggggggt tccatgaca cagtgcggc tgacagtgat ggcacctacg tcttcaccaa caatgccggc gaccaggg ggggggtgt tccatgacat cagcgacag tgcgggggg gcgggtgttg ccggtagaca caaccagtt tccatcgacg ggcatgaca taccgggg ggggggtgtga cctggtaa tgcggtgggc gcggtgttga cctggtaa tgcggtggge gcggtgttga tc.395 mol_type = protein</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ttaggttca acatgggcaa tggtaacca tcacgacgg ttctatggca cggtggcaa ctgttcgcc gatccaacat gacacctgg ggctggtgga ccataccgt tccctactc gttgcggtg g gcatcatgga taccaggaa acccaccac gaacgatca cttccaaggg ctgaccggc cgggttcca gaaacggtt tgcgcaaga ggcaggcg cggactacga ctgaaactgg tggccgata gaaacgagac ccgatactt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MENNNKHLPP RFLAAAIASF EGEQFDRRQS RVKMGFLPNY	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcggggg gtgtcgttcg gcaacattgg ccaggtcagc acagatcacc taccgtacgc ccgtgatgga gggcctacgg cggaggtgac accaacgaca gcagcccgac cggaaaggcc gggcggtgac accaacgaca gcagcccgac cggaaaggcc gggcggttac cagacctcgg acaatactga ctccacggta ggccaaggc atcaaccag caacattgg cggtggcg ggccaaggc atcaaccgt tcttcaccaa caatgccgg ggccaaggc gggtgtcg tggacggtc gtacagttc ggccaaggc ggggtgtcg cggatggca cagaccagg ccggtggtac cagacccgg caacattgg cgdctggtcg ggccaaaggc atcaaccgt tcttcaccaa caatgccggc ggacagtgat ggctacctgc tgcagggct gtacagttc gtccgtgggc gcggtgttga cctggtaa tccacggtg ggcggtgtga cctggtaa tccacggtga cctggtcgta tccation/Qualifiers 1395 mol_type = protein organism = Pseudomonas putida SALGLSSVAE AEIMLYDKQ TTFSTDGYIN AFYVNSEVDR</pre>	180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1188
acgacgtttt ccaccgatgg gagggcgagc agttgaccg taggtaacca tcaacgacag ttggtaacca tcacgacg gacagctcga cgtggccaa ctgttcgccc gatccaacat gacaccctgg ggctggtgga ccataccgg tccctacctc gttgcggtgg gcatcatgga taccaggaa accacgcac cagatctaca gttgggtca gaaccggtt tgcgaagg ctgaccggc cgggttcca ggcagcagcg cgggtgtc ggcaggagcg cggactacga aacgaagaca ccgatacctt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MHNNNKHLPP RFLAAAIASF EGEQFDRQS RVKMGFLPNY FYGTVANPEW GEVLIGKDFG	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaac tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgac ccgcacga cgtgcgccag cccgagtgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcgggg gtgtcgttcg gcaacattgg cagcggtac acagatcacc taccgtacga ggacccacga cggagggag accacgac ggcagccgac cggagggcg ccggaggag accaccgac agtcgacc cggtgggcg ggcagttac cagacctcgg acaatatga ctccacggta ggtgggttac ggggtgcagg caaagatgg cggctggcgg cggcagtga accaacgac gtcgacac cggtggcgg cggcagtga ggctacctgc tgcaggccg ggccaaagga atcacctacc ttcaccaa caatgccggc cgacagtga ggctacctg tgcagggca cggctggtcg gaccaggg gggtgcagg caaagatgg cggctggtcg gaccaggg ggcgcgtgt tccatgacat caacgacaa tgcggtgggc gcggtgttga cctggtaa moltype = AA length = 395 Location/Qualifiers 1395 mol_type = protein organism = Pseudomonas putida SALGLSSVAE AEIMLYDKDQ TTFSTDGYIN AFYVNSEVDR LGFNMGKQVD DLKLGARASF WVTINDSETM GTDTAIDVRQ</pre>	180 240 300 420 480 540 600 720 780 840 900 960 1020 1080 1140 1188
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggctca acatgggcaa tggtaacca tcacgacg ttotatggca cggtggcaa ctgttegccc gatccaacat gacacctgg ggctggtgga ccataccgt tccctacctc gttgcggtgg gcatcatgga taccaggaa acccacgca cagatctaca gttgggtcaa gaacggtt tgcgggtgc ggcaggagc gggtgggt ggcaggagc gggtgggct ggcaggagc gggactacga ctgaacggt tggccgata saccgatac ccgatacctt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MHNNKHLPP RFLAAAIASF EGEQFDRRQS RVKMGFLPNY FYGTVANPEW GEVLIGKDFG PYPFTSQIT YRTPVMEGLR	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaca tcggcgcgg tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgagtgg ggcgaggtg tgatcgtcag ccaggtcagc cgggggggg gtgtcgttcg gcaacattgg cagcggtac acagatcacc taccgtacg cgtgatgga gggcctacgg ccggatgga accaacgac gcagccgac cggaaggcg ggcgaggg atcactacc agttcgacct cggtggcgg ggcgaggtac caaccgacg caaagatgg cggctggg ggccaaggc atcaaccgac gttcacca caatgccgg cggcagttac cagacctgg caaagatgg cggctggtcg ggccaaaggc atcaaccgat tcttcaccaa caatgccggc gaccaggt ggtcgctgt tccatgaca cagtcggcgg taccggggg ggggtgttg ccggtaggac accaacgaca ggtgggttac ggggtgcagg caaagatgg cggctggtcg ggccaaaggc atcaaccgt tcttcaccaa caatgccggc caacagtgat ggcgcctgt tccatgaca cagtgcggtt gacccgggg gcggtgttg cctggtag tgcggtggg gcggtgttg cctggtag tacsgggt gtggcgctg tccatgacat cagtgcggt tgcggtggg gcggtgttg cctggtaa tgcggtggg gcggtgtga cctggtaa tgcggtggg gcggtgtga cctggtaa tgcggtggg gcggtgtga cctggtaa tgcggtggg gcggtgtga cctggtaa tgcggtggg gcggtgtga cctggtaa tgcggtggg gcggtgtga ccggtagg tgcgataacaccaga tgcggtggg gcggtggggg tgcgatgaa tgcggtggggggggggggg</pre>	180 240 300 420 480 540 600 720 780 840 900 900 1020 1080 1140 1188
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggctca acatgggcaa tggtaacca tcacgacg ttcatggca cgtggccaa ccgtgcgcc gatccacat gacaccctgg ggctggtgga ccatacccgt tccctaccc gttgcggtgg gcatcatgga taccaggaa acccacgca cagatctac gttgggtcaa gaaccggct cggggttcca gaaccggtt tgcgcagg gcgacggcg cggactacga ctgaaccgg cggactacga ctgaaactgg tgccgagta aacgaagaca ccgatacctt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MHNNNKHLPP RFLAAAIASF EGEQFDRRQS RVKMGFLPNY FYGTVANPEW GEVLIGKDFG PYPFPTSQIT YRTPVMEGLR	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcge tgcctcgtc tgaaaccaac ggcaccgaca ccgccatcga cgtgcgccag cccgatgg ggcgaggtgc tgatcggcaa ggacttcggg ccggcgggg gtgtcgttcg gcaacattgg caggtgac acagatcacc taccgtacge ccgtatgga gggcctacgg ccggaggag acacctacc agtcgacct cggtggcgg ggtgggtac accaacgaca gcagcccgac cggaaggcg cggaagtgac accaacgaca gcagcccgac cggaaggcg ggccaaagge atcaacctacg tcttcaccaa caatgccggc ggccaaagge atcaaccgt tcttcaccaa caatgccggc gaccaggt ggtggctgt tccatgaca cggtcggttg gaccaagge ggggggtgtga ccaaggtgca caagacag tgcgggggg ggggggtgtga ccaaggacga caagacgg sacagtgat ggctacctgc tgcagggct gtacaagtc gtcggtggg aggcacacgg acgatggcaa caatgccggc gacaaggg ggggggtgtga ccagggacgaa caatgccgg tgcgggggg gcggggtgtga cctggtaa tgcggtggg gcggggtgtga cctggtaa tgcggtggg gcggggtgtga cctggtaa tgcggtggg gcggggtgtga cctggtaa tgcggtggg gcggggtgttga cctggtaa tgcggtggg gcggtgttga cctggtaa tgcgntggg gcggtgttga cctggtaa tgcggtggg gcgtgtga cggtaggacg cagtggacg tgcggtggg gcggtgtga cctggtaa tgcgntacga ggacgacgg tggtggacgg cggtggta tgcgntagga tcatggacg cggtaggacg tgcggtggg gcgggggg tgcgacgga ccggtaggacg tgcggtggg tgcgtggacg tgcggacgacga tcatggacg tgcggacgacgacgacgacgacgacgacgacgacgacgacg</pre>	180 240 300 420 480 540 600 720 780 840 900 960 1020 1080 1140 1188
acgacgtttt ccaccgatgg gagggcgagc agtttgaccg ctaggctca acatgggcaa tggtaacca tcacgacg ttcatggca cgtggccaa ccgtgcgcc gatccacat gacaccctgg ggctggtgga ccatacccgt tccctaccc gttgcggtgg gcatcatgga taccaggaa acccacgca cagatctac gttgggtcaa gaaccggct cggggttcca gaaccggtt tgcgcagg gcgacggcg cggactacga ctgaaccgg cggactacga ctgaaactgg tgccgagta aacgaagaca ccgatacctt SEQ ID NO: 50 FEATURE source SEQUENCE: 50 MHNNNKHLPP RFLAAAIASF EGEQFDRRQS RVKMGFLPNY FYGTVANPEW GEVLIGKDFG PYPFPTSQIT YRTPVMEGLR	<pre>ctatatcaac gccttctacg tcaacagcga ggtcgacgt ccgccagtcg cgggtgaaga tgggcttctt gcccaactac gcaggtggat gacctgaaac tcggcgcge tgcctcgtc tgaaaccaac ggcaccgac ccgcacga cggcggcgg cccgatgg ggcgaggtgc tgatcggcaa ggactccgg ccggcgggg gtgtcgttcg gcaacatgg caggtgac acagatcacc taccgtacgc ccgtgatgga gggcctacgg ccggaggag acacacgaca gcagcccgac cggaaggcg cggaggtac cagacctgg acaatatgg cugcgtgg cggcagttac cagacctgg acaatatgg cugcggcg ggccaaaggc accaacgaca gcagccgac cggaaggcg ggccaaaggc atcaaccgac tctcaccagta ggtgggtac ggggtgcgg caaagatgg cggctggcg cgacagtgat ggctacctgc tgcagggcc gtacagtc ggccaaggc gtggggtgt tccatgaca caatgccggc ggccaaggc gggggtgtg ctcatgg caaagatggc caacagtg tccatcg tcttcaccaa caatgccggc ggccaaggc gggggtgtg ccggtagaca cggtgggtt gacccggggg gggggtgtg cctggtaa tgcggtgggc gcggtgttg cctggtaa tgcggtgggc gcggtgttg cctggtaa soltype = AA length = 395 Location/Qualifiers 1395 mol_type = protein organism = Pseudomonas putida SALGLSSVAE AEIMLYDKDQ TTFSTDGYIN AFYVNSEVDR LFARSNILLD ELLAGYGQVS DTLGLVDGG VSFGNIGSGY VAVGIMDPVD TNDSSPTGKA YQENPRTESE ITYQPDLGGA ETITSKGVGY GVQAKMGGWS LTGSGPQAKG INPFFTNNAG GKNRVALSYG KTKDDGNGAV GSGADYETRG VALFHDINDN</pre>	180 240 300 420 480 540 600 720 780 840 900 900 1020 1080 1140 1188

1. A recombinant microorganism comprising one or more modifications with respect to a corresponding microorganism not comprising the one or more modifications, wherein the one or more modifications comprise 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or each of:

- a functional deletion of a glucokinase gene present in the corresponding microorganism;
- a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism;
- a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism;
- a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfE of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfT1 of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfH' of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and
- a recombinant gene encoding HmfT2 of *Cupriavidus* basilensis or a homolog thereof.

2. The recombinant microorganism of claim 1, wherein the one or more modifications comprise each of:

- a functional deletion of a glucokinase gene present in the corresponding microorganism; and
- a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism; and
- a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism.
- 3. The recombinant microorganism of claim 2, wherein:
- the glucokinase gene is glk of *Pseudomonas putida*, glk of *Escherichia coli*, glk of *Enterobacter hormaechei*, or a homolog of any of the foregoing;
- the quinoprotein glucose dehydrogenase gene is gcd of *Pseudomonas putida*, gcd of *Escherichia coli*, gcd of *Enterobacter hormaechei*, or a homolog of any of the foregoing; and
- the carbohydrate transporter gene is oprB-II of *Pseudomonas putida* or a homolog thereof.
- **4**. The recombinant microorganism of claim **2**, wherein: the glucokinase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of

SEQ ID NOS:2 and 8;

- the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:4 and 10; and
- the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:6, 46, 48, and 50.

5. The recombinant microorganism of claim **4**, wherein the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:6.

6. The recombinant microorganism of claim **5**, further comprising a functional deletion of one, two or three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes each encode a protein comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NOS:46, 48, and 50.

7. The recombinant microorganism of claim 5, further comprising a functional deletion of three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes encode:

- a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:46;
- a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO: 48; and

a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:50.

8. The recombinant microorganism of claim **1**, wherein the one or more modifications comprise one or more of:

- a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfE of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfT1 of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfH' of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and
- a recombinant gene encoding HmfT2 of *Cupriavidus* basilensis or a homolog thereof.

9. The recombinant microorganism of claim **1**, wherein the one or more modifications comprise each of:

- a recombinant gene encoding HmfA of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfB of *Cupriavidus basilensis* or a homolog thereof;

- a recombinant gene encoding HmfC of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfD of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfE of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfT1 of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfF of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfG of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfH' of *Cupriavidus* basilensis or a homolog thereof;
- a recombinant gene encoding HmfH of *Cupriavidus basilensis* or a homolog thereof;
- a recombinant gene encoding HmfS of *Cupriavidus basilensis* or a homolog thereof; and
- a recombinant gene encoding HmfT2 of *Cupriavidus* basilensis or a homolog thereof.
- 10. The recombinant microorganism of claim 9, wherein:
- the HmfA of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:13;
- the HmfB of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:15;
- the HmfC of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:17;
- the HmfD of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:19;
- the HmfE of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:21;
- the HmfT1 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:23;
- the HmfF of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:26;
- the HmfG of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:28;
- the HmfH' of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:30;
- the HmfH of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:32;
- the HmfS of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:34; and
- the HmfT2 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:36.
- 11. The recombinant microorganism of claim 1, wherein the recombinant microorganism is an aerobic bacterium.
- **12.** The recombinant microorganism of claim **1**, wherein the recombinant microorganism is from a genus selected from the group consisting of *Pseudomonas, Escherichia*, and *Enterobacter*.

- **13**. The recombinant microorganism of claim **1**, wherein: the one or more modifications comprise:
 - a functional deletion of a glucokinase gene present in the corresponding microorganism, wherein the glucokinase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:2;
 - a functional deletion of a quinoprotein glucose dehydrogenase gene present in the corresponding microorganism, wherein the quinoprotein glucose dehydrogenase gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:4;
 - a functional deletion of a carbohydrate transporter gene present in the corresponding microorganism, wherein the carbohydrate transporter gene encodes a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:6;
 - a recombinant gene encoding HmfA of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfA of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:13;
 - a recombinant gene encoding HmfB of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfB of *Cupriavidus* basilensis or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:15;
 - a recombinant gene encoding HmfC of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfC of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:17;
 - a recombinant gene encoding HmfD of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfD of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:19;
 - a recombinant gene encoding HmfE of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfE of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:21;
 - a recombinant gene encoding HmfT1 of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfT1 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:23;
 - a recombinant gene encoding HmfF of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfF of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:26;
 - a recombinant gene encoding HmfG of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfG of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:28;
 - a recombinant gene encoding HmfH' of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfH' of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:30;
 - a recombinant gene encoding HmfH of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfH

of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:32;

- a recombinant gene encoding HmfS of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfS of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:34; and
- a recombinant gene encoding HmfT2 of *Cupriavidus* basilensis or a homolog thereof, wherein the HmfT2 of *Cupriavidus basilensis* or the homolog thereof comprises an amino acid sequence with at least 95% sequence identity to SEQ ID NO:36;
- the recombinant microorganism is recombinant *Pseudomonas putida;*
- the corresponding microorganism is native *Pseudomonas putida*;
- the recombinant microorganism exhibits reduced consumption of a carbohydrate with respect to the corresponding microorganism; and
- the recombinant microorganism exhibits increased consumption of a substituted furan with respect to the corresponding microorganism.

14. The recombinant microorganism of claim 13, further comprising a functional deletion of three additional carbohydrate transporter genes present in the corresponding microorganism, wherein the additional carbohydrate transporter genes encode:

a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:46;

a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO: 48;

a protein comprising an amino acid sequence with at least 95% sequence identity to SEQ ID NO:50.

15. A method of decreasing an amount of a substituted furan in a medium, the method comprising contacting the medium with the recombinant microorganism of claim 1 for a time sufficient to decrease the substituted furan in the medium.

16. The method of claim **15**, wherein the substituted furan is selected from the group consisting of furfural and hydroxymethylfurfural.

17. The method of claim 15, wherein the medium comprises lignocellulosic biomass hydrolysate.

18. The method of claim **15**, wherein the contacting is performed under aerobic conditions.

* * * * *