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ABSTRACT 
Methods and systems are provided for generating images of 
a modality other than the modality of the sensor from which 
the image was acquired. For example, methods and systems 
described herein may acquire a temporal sequence of frame 
data captured by the image sensor. Once the temporal 
sequence of frame data is acquired, a desired imaging 
modality may be determined and a projection operation on 
the frame data may be performed. Based on the results of the 
projection operation, a post-capture emulation may be gen­
erated, corresponding to the desired imaging modality. An 
image may be outputted corresponding to the post-capture 
emulation. 
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SYSTEMS AND METHODS FOR 
IMPLEMENTING SOFTWARE-DEFINED 

CAMERAS 

CROSS-REFERENCE TO RELATED 
APPLICATION(S) 

[0001] The present application is based on, claims priority 
to, and incorporates herein by reference in its entirety for all 
purposes, U.S. Provisional Patent Application Ser. No. 
63/516,130, filed Jul. 27, 2023. 

STATEMENT OF GOVERNMENT SUPPORT 

[0002] This invention was made with govermnent support 
under 2107060 awarded by the National Science Founda­
tion. The govermnent has certain rights in the invention. 

TECHNICAL FIELD 

[0003] The systems, methods, embodiments, and novel 
concepts discussed herein relate generally to processing of 
data obtained by cameras and other similar sensors. In some 
respects, certain embodiments may achieve distinctly 
improved image generation and/or distinctly improved 
image modality emulation capabilities. 

BACKGROUND 

[0004] In the field of imaging (including, e.g., photogra­
phy and videography as well as associated sensing technolo­
gies and cameras), sensing technologies ( e.g., the sensor 
hardware that captures data of a scene) and the correspond­
ing processing of that data have developed hand-in-hand. As 
the need for more specialized forms of images has arisen, 
more complex and specialized sensing technologies 
emerged. In other words, the need for new types of images 
has driven development of new hardware to generate those 
images. 
[0005] The advent of digital cameras provided the ability 
to process captured data at the granularity of pixels and 
paved the way for modern computer vision. Optical, or 
"light field" cameras, by sampling the plenoptic function, 
allowed post-capture processing at the granularity of light 
rays, enabling functionalities such as refocusing photos 
after-capture. However, even the capabilities unlocked by 
digital camera sensing have, thus far, been limited to aug­
mentation or modification of an image capture in ways that 
still remain within the original image modality of the sensor. 
For example, conventional optical images can be modified 
in post processing to alter colors, improve focus, etc.-but 
the images still remain the same optical modality; in other 
words, modified conventional images are still conventional 
images. In the current state of the field, if a different 
modality is desired ( e.g., an event camera, a motion camera, 
a video compressive system, etc.), then a different camera 
must be used. In other words, for existing technologies the 
type of camera modality used to acquire an image dictates 
the type of image that can be obtained. Thus, where an 
application exists that would benefit from more than one 
type of camera modality, utilizing multiple cameras is the 
current standard. 
[0006] However, it may be advantageous to have a single 
camera that can emulate multiple types of cameras ( e.g., the 
camera's output can be reinterpreted as output of a different 
type of camera) without having to add multiple types of 
image sensors to the camera. 
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SUMMARY 

[0007] The following presents a simplified summary of 
one or more aspects of the present disclosure, in order to 
provide a basic understanding of such aspects. This sum­
mary is not an extensive overview of all contemplated 
features of the disclosure, and is intended neither to identify 
key or critical elements of all aspects of the disclosure nor 
to delineate the scope of any or all critical elements of all 
aspects of the disclosure nor to delineate the scope of any or 
all aspects of the disclosure. Its sole purpose is to present 
some concepts of one or more aspects of the disclosure in a 
simplified form as a prelude to the more detailed description 
that is presented later. 
[0008] These and other aspects of the disclosure will 
become more fully understood upon a review of the draw­
ings and the detailed description, which follows. Other 
aspects, features, and embodiments of the present disclosure 
will become apparent to those skilled in the art, upon 
reviewing the following description of specific, example 
embodiments of the present disclosure in conjunction with 
the accompanying figures. While features of the present 
disclosure may be discussed relative to certain embodiments 
and figures below, all embodiments of the present disclosure 
can include one or more of the advantageous features 
discussed herein. In other words, while one or more embodi­
ments may be discussed as having certain advantageous 
features, one or more of such features may also be used in 
accordance with the various embodiments of the disclosure 
discussed herein. Similarly, while example embodiments 
may be discussed below as devices, systems, or methods 
embodiments it should be understood that such example 
embodiments can be implemented in various devices, sys­
tems, and methods. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] FIG. 1 is a block diagram conceptually illustrating 
a system for reinterpreting images according to some 
embodiments. 
[0010] FIG. 2 is a block diagram conceptually illustrating 
a device for generating emulated-camera images according 
to some embodiments. 
[0011] FIG. 3 is a flow diagram illustrating an example 
process for generating varying types of images according to 
some embodiments. 
[0012] FIG. 4 is a flow diagram illustrating an example 
process for generating images emulating video compressive 
sensing according to some embodiments. 
[0013] FIG. 5 is a flow diagram illustrating an example 
process for generating images emulating an event camera 
according to some embodiments. 
[0014] FIG. 6 is a flow diagram illustrating an example 
process for generating images emulating a motion camera 
according to some embodiments. 
[0015] FIG. 7 illustrates certain concepts of device design, 
data flow, and output of an example embodiment. 
[0016] FIG. 8 illustrates an example of various output 
image results according to some embodiments. 
[0017] FIG. 9 is a conceptual illustration of 1, 2, and 4 
bucket binary masks, according to some embodiments. 
[0018] FIG. 10 is a plot of output of various settings of an 
emulated event camera capture according to some embodi­
ments. 
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[0019] FIG. 11 depicts example outputs of an emulated 
motion camera capture according to some embodiments. 
[0020] FIG. 12 depicts example outputs of an emulated 
motion camera capture according to some embodiments. 
[0021] FIG. 13 depicts example outputs of an emulated 
motion camera capture according to some embodiments. 
[0022] FIG. 14 depicts a set of example outputs of an 
emulated motion camera capture according to some embodi­
ments. 
[0023] FIG. 15 depicts example outputs of various 
embodiments implementing an emulated event camera cap­
ture according to some embodiments. 
[0024] FIG. 16 depicts example outputs of various 
embodiments implementing both an emulated event camera 
capture and an emulated video compressive sensing camera 
according to some embodiments. 
[0025] FIG. 17 is a graph showing bandwidth and power 
consumption for various features of the present disclosure, 
as implemented via a given hardware device. 

DETAILED DESCRIPTION 

[0026] The detailed description set forth below in connec­
tion with the appended drawings is intended as a description 
of various configurations and is not intended to represent the 
only configurations in which the subject matter described 
herein may be practiced. The detailed description includes 
specific details to provide a thorough understanding of 
various embodiments of the present disclosure. However, it 
will be apparent to those skilled in the art that the various 
features, concepts, and embodiments described herein may 
be implemented and practiced without these specific details. 
In some instances, well-known structures and components 
are shown in block diagram form to avoid obscuring such 
concepts. Likewise, while certain advantages of the systems 
and methods described herein are highlighted, it should be 
recognized that additional advantages may flow from use of 
these systems and methods even though not stated herein. 

Example Hardware Systems 

[0027] Certain techniques and advantages described 
herein can be achieved via a variety of different hardware 
configurations. For example, software instructions that oper­
ate on frame, or frame-like data, from a sensor could operate 
on a processor of the same device as the sensor, a locally 
connected device, or a remote resource. Thus, FIGS. 1 and 
2 below provide general examples of possible configurations 
of hardware implementing aspects of the disclosure. 
[0028] FIG. 1 shows a block diagram illustrating an 
example of a system 100 for generating images of various 
image modalities, from a single image sensor device. In 
other words, the system 100 can substitute for the use of 
multiple different cameras or sensor modalities, while still 
providing the capability of achieving imaging as though 
there were multiple different modalities. 
[0029] In some examples, a computing device 106 can 
obtain frame data from a sensor 102 (such as a camera) or 
other connected device via a communication network 104. 
In some examples, a frame ( e.g., the first frame, the second 
frame, etc.) of frame data 102 can include an image, a video 
frame, a single photon avalanche diode (SPAD) bit plane, an 
event frame, a depth map (with/without an image), a point 
cloud, or any other suitable frame data or frame-like data 
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(for case of reference, the term "frame data" will in some 
instances be used to refer to all of such data types). 

[0030] As depicted, the sensor 102 comprises a camera. As 
will be understood from the description herein, the sensor 
102 may be a standalone sensor, or may be a variety of types 
of cameras. For example, sensor 102 may be a SPAD sensor 
of a SPAD camera or may be a high-frame-rate optical/ 
CMOS camera. 

[0031] In some embodiments described herein, reference 
will be made to "photon data" and "SPAD sensors" for 
purposes of illustration. Sensors based on single photon 
avalanche diodes (SPADs) allow for extremely high frame 
rate detection. This attribute makes it possible to utilize 
SPAD sensors/cameras to emulate a wide range of imaging 
modalities such as exposure bracketing, video compressive 
systems, and event cameras. SPAD arrays can operate as 
extremely high frame-rate photon detectors (e.g., -100 kHz 
or more), producing a temporal sequence of binary frames 
called a photon-cube. However, one of skill in the art will 
appreciate that alternative camera/sensor modalities exist 
that can also capture extremely high frame rates, such as 
multiple 1000s, tens of thousands, hundreds of thousands, or 
even millions of frames per second or more. The frame data 
captured by these cameras may be optical data, photon data, 
point clouds, depth data, or the like. The massive amounts of 
frame data offered by such sensors/cameras improve the 
ability of the techniques described herein to generate images 
that appear as though they were captured by a different 
camera/sensor ( e.g., a capture by a SPAD sensor can be used 
to generate an image that appears as though it was captured 
by a different type/modality of sensor, such as an event 
camera). 

[0032] The computing device 106 can include a processor 
108. In some embodiments, the processor 108 can be any 
suitable hardware processor or combination of processors, 
such as a central processing unit (CPU), a graphics process­
ing unit (GPU), an application specific integrated circuit 
(ASIC), a field-programmable gate array (FPGA), a digital 
signal processor (DSP), a microcontroller (MCU), cloud 
resource, etc. 

[0033] The computing device 106 can further include, or 
be connected to, a memory 110. The memory 110 can 
include or comprise any suitable storage device(s) that can 
be used to store suitable data ( e.g., frame data, an image 
rendering model, etc.) and instructions that can be used, for 
example, by the processor 108. The memory may be a 
memory that is "onboard" the same device as the sensor that 
detects the frames, or may be a memory of a separate device 
connected to the computing device 106. Methods for rein­
terpreting frame data of sensor 102 into an image of a 
different modality may operate as its independent processes/ 
modules, such as a separate reinterpretation engine 112 that 
runs on the same processor 108 or a specialty processor 
(such as a GPU) that achieves greater efficiency in process­
ing the frame data through projection operations, as 
described below. The memory 110 can include any suitable 
volatile memory, non-volatile memory, storage, or any suit­
able combination thereof. For example, memory 110 can 
include random access memory (RAM), read-only memory 
(ROM), electronically erasable programmable read-only 
memory (EEPROM), one or more flash drives, one or more 
hard disks, one or more solid state drives, one or more 
optical drives, etc. 



US 2025/0039568 Al 

[0034] In further examples, computing device 106 can 
receive or transmit information ( e.g., receiving frame data 
from sensor 102, transmitting instructions to sensor 102, or 
transmitting images or image data to remote devices, etc.) 
and/or any other suitable system over a communication 
network 104. In some examples, the communication net­
work 104 can be any suitable communication network or 
combination of communication networks. For example, the 
communication network 104 can include a Wi-Fi network 
(which can include one or more wireless routers, one or 
more switches, etc.), a peer-to-peer network (e.g., a Blu­
etooth network), a cellular network ( e.g., a 3G network, a 4G 
network, a 5G network, etc., complying with any suitable 
standard, such as CDMA, GSM, LTE, LTE Advanced, NR, 
etc.), a wired network, etc. In one embodiment, communi­
cation network 104 can be a local area network, a wide area 
network, a public network (e.g., the Internet), a private or 
semi-private network (e.g., a corporate or university 
intranet), any other suitable type of network, or any suitable 
combination of networks. Communications links shown in 
FIG. 1 can each be any suitable communications link or 
combination of communications links, such as wired links, 
fiber optic links, Wi-Fi links, Bluetooth links, cellular links, 
etc. 
[0035] In further examples, computing device 106 can 
further include a display 118 and/or one or more inputs 116. 
In one embodiment, the display 118 can include any suitable 
display devices, such as a computer monitor, a touchscreen, 
a television, an infotainment screen, etc. to display the 
report. In further embodiments, and/or the input(s) 116 can 
include any suitable input devices ( e.g., a keyboard, a 
mouse, a touchscreen, a microphone, etc.). In yet further 
embodiments, the sensor 102 may be a camera that exports 
frame data to a remote resource 106, then receives emulated 
images from the resource 106 and displays them on a display 
118 of the camera itself. In such an instance the display 118 
and inputs 116 may be part of the camera 102. 
[0036] Referring now to FIG. 2, an example of an alter­
native configuration is shown, in which the processor that 
generates emulated images is located in the same device as 
the sensor that captures the frame data. FIG. 2 shows a block 
diagram illustrating an example 200 of systems/devices for 
image emulation by a so-called "software-defined camera" 
method. The integrated device 202 thus includes a processor 
108 that is a part of the device. As discussed above, the 
processor 108 can be any suitable hardware processor or 
combination of processors. The integrated device 202 can 
further include a memory 110. The memory 206 can include 
any suitable storage device(s) that can be used to store 
suitable data (e.g., frame data 210, a machine learning 
model, etc.) and instructions that can be used, for example, 
by the processor 204. In FIG. 2, the memory may be a 
memory that is "onboard" the same device as the sensor that 
detects the frame data. The memory 206 can include any 
suitable volatile memory, non-volatile memory, storage, or 
any suitable combination thereof, as described above. The 
memory and the processor may be connected via an internal 
bus or similar connection 212 that allows for processing of 
frame data without having to format the data for off-device 
transfer, which can be relatively slow compared to the frame 
rate of high-frame-rate cameras such as SPAD-based cam­
eras. 
[0037] In further examples, the integrated device 202 can 
further include a display 218 and/or one or more inputs 216. 
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The display 218 can include any suitable display devices, 
such as a small LCD or LED screen, a touchscreen, or 
separate display screen connected to the camera. The input 
(s) 216 of the device can include any suitable input devices 
(e.g., buttons, switches, a touchscreen, a microphone, etc.). 

Methods and Techniques 

[0038] As described herein, as frame data is captured by a 
given class/modality of sensor ( e.g., single photon detectors, 
called single photon avalanche diodes (SPADs)), it is now 
possible to emulate a wide range of imaging modalities such 
as exposure bracketing, video compressive systems, motion 
cameras and event cameras. A user has the flexibility to 
choose one (or multiple) of these functionalities, whether as 
a setting made prior to image capture or even post-capture. 
In the following discussion, several example processes and 
techniques will be discussed that will modify or reinterpret 
frame data from one type of camera or sensor, such as 
high-frame-rate captures, in order to generate images that 
emulate an image taken from a different type or modality of 
camera/sensor. One step in some of these processes is 
referred to as a "projection," in which certain modifications 
are made to frame data to allow them to be used to generate 
different image modalities. A projection can include various 
types of shifting, summing, and masking operations (and 
combinations thereof) performed on all or groups of discrete 
data frames (such as temporally sequential frames of a 
high-speed acquisition), as further described below. 

[0039] FIG. 3 is a flow diagram illustrating an example 
process 300 for generating emulated images (e.g., images 
reflecting a camera or sensor modality other than that of the 
actual camera or sensor that acquired the data from which 
the emulated images where made), in accordance with some 
aspects of the present disclosure. As described below, a 
particular implementation can omit some or all illustrated 
features/steps, may be implemented in some embodiments 
in a different order, and may not require some illustrated 
features to implement all embodiments. In some examples, 
an apparatus ( e.g., devices 106 or 202, processor 108 or 204 
with memory 110 or 206, etc.) in connection with FIG. 1 or 
FIG. 2, respectively, can be used to perform all or part of 
example process 300. However, it should be appreciated that 
other suitable processing hardware for carrying out the 
operations or features described below may perform process 
300. 

[0040] At step 302, the process 300 optionally determines 
a desired output image modality. For example, a user may 
select a given type of image that corresponds to a particular 
camera/sensor modality, such as: an event camera, a motion/ 
moving camera, a video compressive sensing camera, a 
spike camera, an ATIS event camera, a conventional optical 
camera, burst optical camera, or the like. In other embodi­
ments, a device may have a default setting that determines 
the image modality that will be generated. 

[0041] At step 304, the process 300 acquires data frames 
from an image sensor. For example, a camera or image 
sensor 102 or 210 may acquire data frames at a high frame 
rate. If not determined at step 302, the process 300 option­
ally determines a desired output image modality at step 306. 
In other words, after capture of the data frames, a user may 
be permitted to select an image modality that is the same as 
or different than the modality of the camera or image sensor 
102 or 210. This can be done via a user interface, such as a 
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display screen of a computing resource controlling process 
300, via buttons or other inputs of a camera, or other suitable 
means. 
[0042] At step 308 a data projection technique is per­
formed on the data according to the desired output image 
modality. For example, a projection technique as set forth in 
the example processes of FIGS. 4-6 may be employed. 
[0043] At step 310, an image is generated from the frame 
data after the projection operation has been performed. In 
other words, the projection operation is performed to trans­
form the frame data into data that can be reconstructed as a 
new type of image other than the type that would natively or 
customarily be produced by the camera or sensor that 
originally acquired the frame data. 
[0044] Finally, at step 312, the process 300 outputs an 
emulated image, according to the desired imaging modality. 
[0045] FIG. 4 is a flow diagram illustrating an example 
process 400 for generating video compressive sensing­
emulated images in accordance with some aspects of the 
present disclosure. As described below, a particular imple­
mentation can omit some or all illustrated features/steps, 
may be implemented in some embodiments in a different 
order, and may not require some illustrated features to 
implement all embodiments. In some examples, an appara­
tus (e.g., devices 106 or 202, processor 108 or 204 with 
memory 110 or 206, etc.) in connection with FIG. 1 or FIG. 
2, respectively, can be used to perform example process 400. 
However, it should be appreciated that other suitable pro­
cessing hardware for conducting the operations or features 
described below may perform process 400. 
[0046] At step 402, the process 400 determines that the 
desired emulation to be generated is that of a video com­
pressive sensing camera. For example, a user may choose 
this image modality, as described above. 
[0047] At step 404, the process 400 obtains t data frames 
from the high frame rate image sensor. In some embodi­
ments, the number of data frames may be a function of 
exposure time and frame rate of the camera. In other 
embodiments, the type of image to be generated may dictate 
that only a subset of the captured data frames used. 
[0048] At step 406, the process 400 designates k buckets. 
The value ofk may be 1, 2, 4, or other suitable numbers. As 
described in the examples sections below, each bucket 
serves to impose a mask, such as a binary mask, to compress 
data in the data frames. Thus, at step 408, the process 400 
generates a random mask for each "bucket." 
[0049] At step 410, the process 400 iteratively assigns 
each of the data frames t0 _n to a randomly selected bucket of 
the group k. At step 412, the process 400 applies the mask 
of each bucket to its assigned frames. For example, all 
frames assigned to a given bucket are modified to "mask" 
data in a given position within the data frame ( e.g., given 
pixels). At step 414, the process 400 generates images from 
the masked frames, as a typical compressive sensing image 
generation technique. 
[0050] FIG. 5 is a flow diagram illustrating an example 
process 500 for generating images that emulate images 
captured by event cameras, in accordance with some aspects 
of the present disclosure. As described below, a particular 
implementation can omit some or all illustrated features/ 
steps, may be implemented in some embodiments in a 
different order, and may not require some illustrated features 
to implement all embodiments. In some examples, an appa­
ratus (e.g., devices 106 or 202, processor 108 or 204 with 
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memory 110 or 206, etc.) in connection with FIG. 1 or FIG. 
2, respectively, can be used to perform example process 500. 
However, it should be appreciated that other suitable pro­
cessing hardware for conducting the operations or features 
described below may perform process 500. 
[0051] At step 502, the process 500 determines that the 
desired image modality of the image to be generated is that 
of an event camera. At step 504, the process 500 obtains 1 
data frames from a high frame rate image sensor. These steps 
may be performed as described above. 
[0052] At step 506, the process 500 computes the moving 
average of frames of the frame data. As described below in 
the examples sections, a moving average value of a given 
number of frames is computed. This may be done for an 
entire frame, or on a pixel-wise basis. The number of frames 
to be used in computing the average may be determined by 
a user or may be a function of the frame rate and data 
sparsity of the incoming frame data such that enough frames 
are grouped to provide meaningful averages. For SPAD­
based cameras, the value may simply be the incidence values 
of each pixel integrated over the group of frames for which 
the average is being calculated. For optical cameras, the 
value may include intensity values, RGB color values, or a 
combination thereof. 
[0053] At step 508, the computed moving average is 
compared to a reference value, when applying a scalar 
function. In other words, a reference value is determined 
(which may be a predetermined value or may be a function 
of baseline values calculated for the scene at issue). The 
moving average value and reference value may be modified 
by a scalar function, for smoothing or taking into account 
attributes of the physical sensor involved. Examples of such 
scalar functions are described below in the examples section. 
[0054] At step 510, the process 500 determines if the 
moving average is greater than the reference value. If the 
moving average is not greater than the reference value (512), 
the process iteratively continues measuring moving aver­
ages at step 506 along the time domain. If the moving 
average is greater than the reference values (514), the 
process continues to step 516. At step 516, an event identifier 
is generated. At step 518, images are generated from the 
event identifiers, per event camera image reconstruction 
techniques. 
[0055] FIG. 6 is a flow diagram illustrating an example 
process 600 for generating images from integrated frame 
data in accordance with some aspects of the present disclo­
sure. As described below, a particular implementation can 
omit some or all illustrated features/steps, may be imple­
mented in some embodiments in a different order, and may 
not require some illustrated features to implement all 
embodiments. In some examples, an apparatus (e.g., devices 
106 or 202, processor 108 or 204 with memory 110 or 206, 
etc.) in connection with FIG. 1 or FIG. 2, respectively, can 
be used to perform example process 600. However, it should 
be appreciated that other suitable processing hardware for 
conducting the operations or features described below may 
perform process 600. 
[0056] At step 602, process 600 determines that the 
desired image emulation modality is that of a motion cam­
era. For example, a motion camera may include a camera 
designed to acquire video or images while in motion, such 
as via a dolly or other similar means. In other words, a 
"motion camera" may include a moving camera and/or 
cameras designed for acquisitions while in motion. 
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[0057] At step 604, t data frames are obtained from a high 
frame rate image sensor (e.g., that is not a motion camera). 
At step 606, the process 600 determines a sensor trajectory 
(or sensor trajectories) to apply. As described below in the 
examples section, the sensor trajectories may be linear 
(across any of the three dimensions of a data frame cube 
resulting from a high-frame-rate exposure) in any direction, 
parabolic, a combination of the two, or a learned/acquired 
trajectory corresponding to actual motion of an object rep­
resented in the frame data. 
[0058] At step 608, the data frames are "shifted" in a 
spatio-temporal fashion according to the trajectory (or tra­
jectories). For example, sequential data planes of a SPAD 
sensor may be shifted according to a discretized trajectory r, 
such that each plane is moved relative to the preceding plane 
in an x,y manner. At step 610, the data is integrated in 
overlapping areas of frames. In other words, only those 
portions of the shifted frames that still "overlap" the other 
frames (in the temporal direction of the data frame cube) are 
integrated. At step 612, images are generated from the 
integrated frame data. 

Example Embodiments and Experimental Findings 

[0059] As case studies, the inventors emulated three dis­
tinct imagers: high-speed video compressive imaging; event 
cameras which respond to dynamic scene content; and 
motion projections which emulate sensor motion, without 
any real camera movement. However, it is to be recognized 
that additional imaging modalities are described herein and 
within the scope of this disclosure. Furthermore, the data 
presented below was generated from a SPAD camera, but it 
is to be understood that these examples should apply equally 
to other similar camera modalities capable of high-frame­
rate acquisition. 

Computing Photo-Cube Projections 

[0060] One way to obtain photon-cube projections is to 
read the entire photon-cube off the SPAD array and then 
perform computations off-chip. This strategy is adopted for 
the experiments described herein. Reading out photon-cubes 
requires an exorbitant data-bandwidth-up to 100 Gbps for 
a 1 MPixel array-that will further increase as large-format 
SPAD arrays are fabricated. 
[0061] An alternative is to avoid transferring the entire 
photon-cube by computing projections near sensor. As a 
proof-of-concept, photon-cube projections on UltraPhase, a 
programmable SPAD imager with independent processing 
cores that have dedicated RAM and instruction memory has 
been implemented. Computing projections on-chip reduces 
sensor readout and power consumption is shown herein. 

Implications: Toward a Photon-Level Software-Define 
Camera 

[0062] The photon-cube projections introduced herein are 
computational constructs that provide a realization of soft­
ware-defined cameras or SoDaCam. Being software-de­
fined, SoDaCam can emulate multiple cameras simultane­
ously without additional hardware complexity. SoDaCam, 
by going beyond baked in hardware choices, unlocks hith­
erto unseen capabilities-such as 2000 FPS video from 25 Hz 
readout; event imaging in very low-light conditions; and 
motion stacks, which are a stack of images where in each 
image, objects only in certain velocity ranges appear sharp. 
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[0063] Consider a SPAD array observing a scene. The 
arrival of photons at a pixel during exposure time texp can be 
modelled as a Poisson process: 

(1) 

[0064] where N is the number of photon arrivals, <I>(x) 
is the mean incident flux (number of photons per unit 
time), and n is the quantum efficiency of the SPAD 
sensor. During each exposure, a pixel detects at most 
one photon, returning a binary value B(x) such that 
B(x)=0 if the pixel receives no photons; otherwise, 
B(x)=l. Hence, B(x) is a Bernoulli random variable 
with 

(2) 

[0065] where rq is the dark count rate-the rate of 
spurious counts unrelated to incident photons. Suppose 
the SPAD captures a photon-cube comprising of T 
binary frames, {B,(x)hstsT· Then, the temporal sum 

(3) 

[0066] yields a maximum likelihood estimate (MLE) of 
<l>(x), given by <l>(x)=-log (1-sum (x)/T)/17texp -r/texv 

Projection of the Photon-Cube 

[0067] The temporal sum described in Eq. (3) is a simple 
instance of projections of a photon-cube. One observation is 
that it is possible to compute a wide range of photon-cube 
projections, each of which emulates a unique sensing modal­
ity post-capture-including modalities that are difficult to 
achieve with conventional cameras. For example, varying 
the number of bit-planes that are summed over emulates 
exposure bracketing, which is typically used for HDR imag­
ing. Compared to conventional exposure bracketing, the 
emulated exposure stack, being software-defined, does not 
require spatial and temporal registration, which can often be 
error-prone. Panels 82-86 in FIG. 8 show an example of an 
exposure stack (short, medium, and long exposures) com­
puted from a photon-cube. 

[0068] Going further, the complexity of the projections 
can be gradually increased. For example, consider a coded 
exposure projection that multiplexes bit-planes with a tem­
poral code: 

(1) 

[0069] where C, is the temporal code. An example of 
globally-coded exposures is the flutter shutter camera, 
which uses pseudo-random binary codes for motion­
deblurring. 
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[0070] More general coded exposures can be obtained via 
spatially-varying temporal coding patterns C, (x): 

(2) 

[0071] Panel 88 in FIG. 8 shows an example of spatially­
varying exposures that use a quad (Bayer-like) spatial pat­
tern and random binary masks. With photon-cubes, spa­
tially-varying coding can be performed without bulky spatial 
light modulators, similar to focal-plane sensor-processors. 
Moreover, multiple coded exposures can be simultaneously 
captured, which is challenging to realize in existing sensors. 
Coding patterns for video compressive sensing is described 
herein as well, such as illustrated in panel 89 of FIG. 8. 
[0072] Spatial and temporal gradients form the building 
blocks of several computer vision algorithms. Given this, 
another projection of interest is temporal contrast, i.e., a 
derivative filter preceded by a smoothing filter: 

(3) 

[0073] where D, is the difference operator, G could be 
exponential or Gaussian smoothing, and * denotes 
convolution. Due to their sparse nature, gradients form 
the basis of bandwidth- and power-efficient neuromor­
phic sensors such as event cameras. 

[0074] A more general class of spatio-temporal projec­
tions that lead to novel functionalities can be considered. For 
instance, computing a simple projection, such as the tem­
poral sum, along arbitrary spatio-temporal directions emu­
lates sensor motion during exposure time, but without mov­
ing the sensor. This can be achieved by shifting bit-planes 
and computing their sum: 

(4) 

[0075] where r is a discretized 2D trajectory that deter­
mines sensor motion. Outside a software-defined 
framework, such projections are hard to realize without 
physical actuators. Described herein are the capabilities 
of motion projections. 

[0076] In summary, embodiments of systems and methods 
that leverage photon-cube projections can be thought of as 
simple linear and shift operators that lead to a diverse set of 
post-capture imaging functionalities. These projections pave 
the way for future 'swiss-army-knife' imaging systems that 
achieve multiple functionalities (e.g., event cameras, high­
speed cameras, conventional cameras, HDR cameras) simul­
taneously with a single sensor. Finally, these projections can 
be computed efficiently in an online manner, which makes 
on-chip implementation viable. 

[0077] The extremely high temporal-sampling rate of 
SPADs and similar detectors makes them suitable for per­
forming the types of photon cube projections described 
herein. The temporal sampling rate allows for one or more 
aspects of sensor emulation, such as the discretization of 
temporal derivatives and motion trajectories. 
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Trade-Off Between Frame Rate and SNR 

[0078] In principle, photon-cube projections can be com­
puted using regular (CMOS or CCD based) high-speed 
cameras. Unfortunately, each frame captured by a high­
speed camera incurs a read-noise penalty, which increases 
with the camera's framerate. The read noise levels of 
high-speed cameras can be 10-30x higher than consumer 
cameras. Coupled with the low per-frame incident flux at 
high framerates, prominent levels of read noise result in 
extremely low SNRs. In contrast, SPADs do not incur a 
per-frame read noise and are limited only by the fundamen­
tal photon noise. Hence, to perform the post-capture soft­
ware-defined functionalities proposed here, SPADs may be 
used. 
Emulating Cameras from Photon-Cubes 
[0079] The concept of photon-cube projections, and its 
potential for achieving multiple post-capture imaging func­
tionalities are presented herein. As case studies, three imag­
ing modalities are demonstrated: video compressive sensing, 
event cameras, and motion-projection cameras. These 
modalities have been well-studied over several years; in 
particular, there exist active research communities around 
video compressive sensing and event cameras today. New 
variants of these imaging systems that arise from the soft­
ware-defined nature of photon-cube projections are also 
shown. 

Video Compressive Sensing 

[0080] Video compressive systems optically multiplex 
light with random binary masks, such as the patterns 92 in 
FIG. 9. As discussed in the previous section, such multi­
plexing can be achieved computationally using photon­
cubes. 

Two-Bucket Cameras 

[0081] One drawback of previous approaches for captur­
ing coded measurements is the light loss due to blocking of 
incident light. To prevent loss of light, coded two-bucket 
cameras capture an additional measurement that is modu­
lated by the complementary mask sequence (FIG. 9, 94). 
Such measurements recover higher quality frames, even 
after accounting for the extra readout. However, as described 
herein, two-bucket captures can be readily derived from 
photon-cubes, through a projection method that implements 
eq: video-comp with the additional mask sequence. 

Multi-Bucket Camera 

[0082] The idea of two-bucket captures to multi-bucket 
captures can be extended by accumulating bit-planes in one 
ofk buckets that is randomly chosen at each time instant and 
pixel location. Since multiplexing is performed computa­
tionally, no losses in photoreceptive area that hampers 
existing multi-bucket sensors are faced. Multi-bucket cap­
tures can reconstruct a large number of frames by better 
conditioning video recovery and provide extreme high­
speed video imaging. Item 96 in FIG. 9 shows the modu­
lating masks for a four-bucket capture. 

Event Cameras 

[0083] Next, the emulation of event-cameras is described, 
which capture changes in light intensity and are conceptu­
ally similar to the temporal contrast projection introduced in 
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Eq. 6. Physical implementations of event sensors generate a 
photoreceptor voltage V(x,t) with a logarithmic response to 
incident flux <l>(x,t), and output an event (x,t,p) when this 
voltage deviates sufficiently from a reference voltage V ref 

(x): 

I V(x, t) - V,ef(x)I > r, (1) 

[0084] where t is called the contrast-threshold and 
p=sign (V(x,t)-Vre/x)) encodes the polarity of the 
event. Once an event is generated, VreJx) is updated to 
V(x,t). Eq. 8, for a smoothly-varying flux intensity, 
thresholds a function of the temporal gradient, i.e., a, 
log(<I>(x,t)). 

[0085] To produce events from SPAD frames, an expo­
nential moving average (EMA) of the bit-planes is com­
puted, as µ,(x)=(l-B)B, (x)+~µ,_ 1 (x)-where µ,(x) is the 
EMA, ~ is the smoothing factor, and B, is a bit-plane. An 
event when µ,(x) deviates from µref (x) by at least t is 
generated: 

I h(µ,(x))- h(µ"1 (x)) I > r, (2) 

[0086] where h is a scalar function applied to the EMA. 
Eq. 9 thresholds temporal contrast, by observing the 
role played by the EMA and the difference operator. 

[0087] Setting h to be the logarithm of the flux MLE 
mimics Eq. 8. However, since the log-scale is used to 
prevent sensor saturation, a simpler alternative is to use the 
non-saturating response curve of SPAD pixels (h(x)=x). The 
response curve takes the form of 1-exp(-a<l>(,t)), where a 
is a flux-independent constant. Accordingly, this response 
curve avoids the underflow issues of the log function that 
can occur in low-light scenarios. 
[0088] FIG. 15 illustrates a comparison of brightness 
encoding functions, according to some example methods 
provided herein. While the log-MLE is comparable to using 
the SPAD's response curve at ambient light levels, at low 
flux levels the underflow issues associated with the log 
function occur. In FIG. 15, a denotes a sensor-determined 
and flux-independent constant. 
[0089] The SPAD's frame-rate determines the time-stamp 
resolution of emulated events. In FIG. 10, the events gen­
erated from a photon-cube acquired at a frame-rate of 96.8 
kHz are shown-resulting in a time-stamp resolution of 10 
us that is comparable to those of existing event cameras. 
[0090] A difference between an 'event' captured via the 
projection methods described herein (e.g., via a SPAD 
sensor) versions a traditional event camera, is the expression 
of temporal contrast, given by il)i, is now -cl, exp (-a<I>(x,t), 
instead of a, log(<I>(x,t). This difference poses no compat­
ibility issues for a large class of event-vision algorithms that 
utilize a grid of events or brightness changes. Finally, 
SPAD-events can be easily augmented with spatially- and 
temporally-aligned intensity information-a synergistic 
combination that has been exploited by several recent event­
vision works. 

Motion Projections 

[0091] Two useful trajectories when emulating motion 
cameras are described herein using Eq. 7. 
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[0092] The simplest sensor trajectory involves linear 
motion, with the parameterization r(t)=(bt+c) p for some 
constants b, c E R and unit vector p. As the set of panels 112 
in FIG. 11 shows, this can change the scene's frame of 
reference: making moving objects appear stationary and 
vice-versa. 
[0093] If motion is along p, parabolic integration produces 
a motion-invariant image-all objects, irrespective of their 
velocity, are blurred by the same point spread function 
(PSF), upto a linear shift. Thus, a deblurred parabolic 
capture produces a sharp image of all velocity groups (FIG. 
11, 114). The parabolic trajectory is given by r(t)=(at2+bt+c) 
p. a was chosen based on the maximum object velocity and 
b, c so the parabola's vertex lies at T/2. The PSF was readily 
obtained by applying the parabolic integration to a delta 
input. 
[0094] Additionally, the flexibility of photon-cubes 122 is 
leveraged to compute multiple linear projections, as seen in 
FIG. 12. This produces a stack of images where one velocity 
group 122, 124, 126, or 128, is motion-blur free at a 
time-or a 'motion stack', analogous to a focal stack. This 
novel construct can be used to compensate motion by 
blending stack images using cues such as blur orientation or 
optical flow. 

Hardware and Experimental Results 

[0095] A range of experiments was designed to demon­
strate the versatility of photon-cube projections: both when 
computations occur after readout, and when they are per­
formed near-sensor on-chip. All photon-cubes were acquired 
using a 512x256 SwissSPAD2 array, operated at a frame­
rate of 96.8 kHz. For the on-chip experiments, the Ultra­
Phase compute architecture was used to interface with 
photon-cubes from the SwissSPAD2. 

High-Speed Compressive Imaging 

[0096] In one experiment, a set of 80 frames was con­
structed from compressive snapshots that are emulated at 25 
Hz, resulting in a 2000 FPS video. Compressive snapshots 
were decoded using a plug-and-play (PnP) approach, PnP­
FastDVDNet. As FIG. 13 shows, it is challenging to recover 
a large number of frames from a single compressive mea­
surement 132. Using the proposed multi-bucket scheme 
(whether one 134, two 136, four 138, or eight 139 buckets) 
significantly improves the quality of video reconstruction. 

Motion Projections on a Traffic Scene 

[0097] FIG. 14 shows two traffic scenes 1402 and 1404 
captured using a 50 mm focal length lens and at 30 Hz 
emulation. When object velocity is known, a linear projec­
tion can make moving objects appear stationary. If only the 
velocity direction is known (e.g., road's orientation in fig: 
motion-recons), a parabolic projection provides a sharp 
reconstruction of all objects. Parabolic captures are 
deblurred using PnP-DnCNN. An improvement is offered by 
randomly sampling 8 linear projections along the velocity 
direction and blending them using the optical flow predicted 
by RAFT between two short-exposures. 

Low-Light Event Imaging 

[0098] FIG. 9 compares event-image visualizations of 
SPAD and that of a state-of-the-art commercial event sensor 
(Prophesee EVK4), across various light levels, with an 
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accumulation period of 33 ms. For a fair comparison, the 
Prophesee's events in 2x2 blocks are binned and a smaller 
aperture is used to account for the lower fill-factor of the 
SPAD. Event-generation parameters of both cameras at each 
light level are tuned. Low light induces blur and deteriorates 
the Prophesee's event stream. In contrast, SPAD-events 
continue to capture temporal gradients, due to the SPAD's 
low-light capabilities and its brightness-encoding response 
curve. 
[0099] The observations are in concurrence with recent 
works that examine the low-light performance of event 
cameras, and show that SPAD-events can provide neuro­
morphic vision in these challenging-SNR scenarios. 

Comparison to High-Speed Cameras 

[0100] As previously discussed, read-noise can impact the 
per-frame SNR of high-speed cameras. To demonstrate this 
impact, projections were computed using the 4 kHz acqui­
sition of the Photron Infinicam, a conventional high-speed 
camera, at a resolution of 1246x 240 pixels. The SwissS­
PAD2 162 and the Infinicam 164 is operated at ambient light 
conditions using the same lens specifications. As FIG. 16 
shows, read noise corrupts the incident signal in Infinicam 
164 and makes it impossible to derive any useful projec­
tions. The read noise could be averaged out to some extent 
if the Infinicam did not perform compression-on-the-fly, but 
compression is central to the camera's working and enables 
readout over USB. Using a larger aperture to admit more 
light 166 improves the quality of computed projections, but 
the video reconstruction and event image remain consider­
ably worse than corresponding outputs of the SPAD. 

Bandwidth and Power Implication 

[0101] Projections can also be obtained in a bandwidth­
efficient manner via near-sensor computations. Photon-cube 
projections are implemented on UltraPhase (FIG. 17, 172), 
a novel compute architecture designed for single-photon 
imaging. UltraPhase includes 3x6 processing cores, each of 
which interfaces with 4x4 pixels, and can be 3D stacked 
beneath a SPAD array. 
[0102] The readout and power consumption ofUltraPhase 
is measured when computing projections on 2500 bit-planes 
of the falling die sequence (FIG. 7). The projections include: 
VCS with 16 random binary masks, an event camera, a 
linear projection and a combination of the three. Projections 
are outputted at 12-bit depth and calculate metrics based on 
the clock cycles used for both compute and readout. As seen 
in 174 of FIG. 17, computing projections on-chip dramati­
cally reduces sensor-readout and power consumption as 
compared to reading out the photon-cube. Finally, similar to 
existing event cameras, SPAD-events have a resource foot­
print that reflects the underlying scene dynamics. 
[0103] In summary, the on-chip experiments show that 
performing computations near-sensor can increase the 
viability of single-photon imaging in resource constrained 
settings. Thus, the inventors' work can be recognized as a 
solution that provides a realization of reinterpretable soft­
ware-defined cameras at the fine temporal resolution of 
SPAD-acquired photon-cubes. The proposed computations, 
or photon-cube projections, can match and in some cases, 
surpass the capabilities of existing imaging systems. The 
software-defined nature of photon-cube projections provides 
functionalities that may be difficult to achieve in conven-
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tional sensors. These projections can reduce the readout and 
power-consumption of SPAD arrays and potentially spur 
widespread adoption of single-photon imaging in the con­
sumer domain. Finally, future chip-to-chip communication 
standards may also make it feasible to compute projections 
on a camera image signal processor. 

A Platform for Comparing Cameras 

[0104] Comparing imaging modalities can be difficult 
without ensuring that the sensor characteristics of their 
hardware realizations are similar, such as their quantum 
efficiency, pixel pitch and array resolution. By emulating 
their imaging models, SoDaCam can serve as a platform for 
hardware-agnostic comparisons. 
[0105] Besides comparing cameras, being software-de­
fined, SoDaCam can also make it significantly easier to 
develop new imaging models, and facilitate camera-in-the­
loop optimization by tailoring photon-cube projections for 
downstream tasks. This is an exciting future line of research. 

Example Methods and Algorithms 

[0106] The following describes several examples of meth­
ods and algorithms that can be used for emulation of various 
types of image modalities, as described above. Moreover, 
the following examples may specify algorithmic details or 
specific calculations/functions for achieving such emula­
tions. 

Multi-Bucket Capture Algorithm 

[0107] Algorithm 1 describes the emulation of J-bucket 
captures, denoted as Icodej(x) from the photon-cube B,(x) 
using multiplexing codes Cf (x), where lsjsJ. Both single 
compressive snapshots (or one-bucket captures) and two­
bucket captures can be emulated as special cases of Algo­
rithm 1, with J=l and J=2 respectively. In some examples, 
a system (such as a device falling within the disclosure of 
FIGS. 2 and 3) may capture frame data and perform an 
emulation process on the frame data using Algorithm 1. 

Algorithm 1 

Require: Photon-cube B,(x) 
Number of buckets J 
Multiplexing code 
Multiplexing code for j'h bucket, 1 ,; j ,; J, C/(x) 
Pixel locations X 
Total bit-plantes T 

Ensure: Multiplexed captures lcode/(x) 
function MULTIBUCKETEMULATION (B,(x), Cf (x)) 

Y1(x) - 0, 'ef j 
for x E X, 1 ,; j ,; J do 

lcode/(x) - lcode/(x) + B,(t) • C{(x) 
end for 

end for 
return lcode/(x) 
end function 

[0108] Mask sequences for video compressive sensing: 
For a single compressive capture (J=l), a sequence of binary 
random is used (i.e., Cf (x)=l with probability 0.5. For a two 
bucket capture, C,2 (x)=l-C,1 (x) is used, which is the 
complementary mask sequence. For J>2, at each timestep t 
and pixel location x, the active bycket is chosen at random: 
Cf (x)-1, j-Uniform (1,J). This is a direct generalization of 
the masking used for both one- and two-bucket captures. 
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Event-Generation Algorithm 

[0109] Algorithm 2 is an example algorithm for emulating 
events from photon-cubes. The contrast threshold t and 
exponential smoothing factoring ~ are the two parameters 
that determine the characteristics of the resulting event 
stream, such as its event rate (number of events per second). 
An initial time-interval T0 (typically 80-100 bit-planes) was 
used to initialize the reference moving average, with T0 

being smaller than T. The result of this algorithm is an 
event-cube, E, (x), which is a sparse spatio-temporal grib of 
event polarities-positive spikes are denoted by 1 and 
negative spikes by -1. From the emulated event-cube, other 
event representations can be computed such as: an event 
stream, {(x,t,p)}, where pE{-1,1} indicates the polarity of 
the event; a frame of accumulated events; and a voxel grid 
representation, where events are binned into a few temporal 
bins. In some examples, a system (such as a device falling 
within the disclosure of FIGS. 2 and 3) may capture frame 
data and perform an emulation process on the frame data 
using Algorithm 2. 

Algorithm 2 

Require: Photon-sube B,(x) 
Contrast threshold ~ 
Exponential smoothing factor, ~ 
Pixel locations X 
Initial time-interval T0 , for computing refernce moving average 
Total bit-planes T 

Ensure: Event-cube E,(x) that describes the spatio-temporal spikes 
function EVENTCAMERAEMULATION (B,(x), ~. ~- T0) 

E,(x) ;- 0, Vt, Vx 
forxEXdo 

Reference moving average, µre/x)f--0 
Current moving average, µ0(x);-0 
for 1 S:tS:T0 do 

µ,,/x) ,- ~µ,,/x) + (1 - ~)B,(x) 
end for 
for T0 ,; t,; T do 

µt(x) ,- ~µ,_ 1(x) + (1 - ~)Bt(x) 
if lµ,(x) - µ,,/x)I > ~ then 

E,(x) ,- sign(µ,(x) - µ,,/x)) 
µ,,/x) ,- µ,(x) 

end if 
end for 

end for 
return E,(x) 
end function 

Algorithm for Emulating Motion Cameras 

[0110] Algorithm 3 provides example algorithm for emu­
lating sensor motion from a photon-cube, where the sensor's 
trajectory is determined by the discretized function r. At each 
time instant t, the bit-planes are shifted by r(t) and accumu­
late d in Ishifr For pixels that are out-of-bounds, no accu­
mulation is performed. For this reasons, the number of 
summations that occur vary spatially across pixel locations 
x. The emulated shift-image is normalized by the number of 
pixel-wise accumulations N(x) to account for this. The 
function r can be obtained by discretizing any smooth 2D 
trajectory: by either rounding up or dithering, or by using a 
discrete line-drawings algorithm. In some examples, a sys­
tem (such as a device falling within the disclosure of FIGS. 
2 and 3) may capture frame data and perform an emulation 
process on the frame data using Algorithm 3. 
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Algorithm 3 

Require: Photon-cube B,(x) 
Discretized trajectory r(t) 
Pixel location X 
Total bit-planes T 

Ensure: Ishiflx) 

Jan. 30, 2025 

function MOTION CAMERAEMULATION (B,(x), r) 
l,hu>(x) f- 0, Vx 
forxEXdo 

Normalizer, N(x) ,- 0 
forlS:tS:Tdo 

if X + r(t) E X then 
N(x) ,- N(x) + 1 
I,hij>(x) < I,h;J>(x) + B,(x + r(t)) 

end if 
end for 
if N(x) > 0 then 

I,hij>(x) ,- I,hij>(x)/N(x) 
end if 

end for 
return I,hu>(x) 
end function 

[0111] As described above, two trajectories are consid­
ered: linear and parabolic. Linear trajectories are parameter­
ized by their slope: 

r(t) = +- flp, 

where v is the object velocity, p is a unit vector that 
describes the trajectory's direction, and T is the total 
number of bit-planes. Parabolic trajectories are param­
eterized by their maximum absolute slope, 

Vmax ( T)2 

Vmax: r(t) = T t- 2 p. 

To prevent tail-clipping, which are image artifacts 
introduced by the finite extent of the parabolic integra­
tion, v max can be chosen to be higher than the velocity 
of objects in the scene. Both linear and parabolic 
trajectories have a zero at t=T/2-which allows blend­
ing multiple linear projections without any pixel align­
ment issues. 

f T) Vmax ( T)2 

r(t) = '\t- 2 ppr(t) = T t- 2 p 

What is claimed is: 
1. A system for generating multiple modalities of images, 

comprising: 
an image sensor of a first imaging modality; 
a processor electrically coupled to the image sensor, the 

processor programmed to: 
receive frame data captured by the image sensor, the 

frame data comprising a temporal sequence of dis­
crete frames; 

determine a desired imaging modality; 
perform a projection operation on the frame data; 

based on results of the projection operation, generate a 
post-capture emulation corresponding to the desired 
imaging modality; and 
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output an image corresponding to the post-capture emu­
lation. 

2. The system of claim 1, wherein the processor is further 
programmed to compute the projection operation by per­
forming at least one of exposure bracketing, spatio-temporal 
summation, exposure coding, or temporal contrast filtering 
on at least a portion of the temporal sequence of discrete 
frames. 

3. The system of claim 1, wherein the desired imaging 
modality is video compressive sensing and is different than 
the first imaging modality. 

4. The system of claim 3, wherein the processor is further 
programmed to compute the projection operation by multi­
plexing at least some of the frame data in a frame-wise 
fashion via a multi-bucket capture approach, such that the 
discrete frames are each accumulated to a randomly chosen 
bucket of a group of k buckets. 

5. The system of claim 4, wherein k is four. 
6. The system of claim 1, wherein the processor and the 

image sensor are installed within a single device, such that 
the processor and image sensor are electrically coupled by a 
bus. 

7. The system of claim 6 wherein: 
the device is a camera; 
the first imaging modality is that of a high frame rate 

camera; 
the image sensor is the only image sensor of the camera; 

and 
the desired imaging modality is at least one of an event 

camera; a video compressive sensing camera; or a 
motion camera. 

8. The system of claim 6 wherein: 
the device is a sensor; and 
the first imaging modality is that of one or more single­

photon sensors. 
9. The system of claim 1 wherein the desired imaging 

modality is an event camera. 
10. The system of claim 9 wherein the projection opera­

tion is computed by thresholding temporal contrast of the 
frame data. 

11. The system of claim 10 wherein thresholding com­
prises computing a moving average of a plurality of values 
of discrete frames of the frame data, modifying the moving 
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average by a scalar function, and generating event data when 
the moving average deviates from a reference by a given 
threshold. 

12. The system of claim 1, wherein the projection opera­
tion is computed by performing an exposure bracketing on 
at least some discrete frames of the frame data. 

13. The system of claim 1, wherein the projection opera­
tion is computed using at least of one an off-sensor com­
puter, an in-pixel computer, a near sensor computer, and an 
application specific integration computer (ASIC). 

14. The system of claim 1, wherein the desired imaging 
modality is that of a motion camera. 

15. The system of claim 12, wherein the projection 
operation is computed by performing an integration along 
one or more trajectories within the frame data. 

16. The system of claim 12, wherein the image corre­
sponding to the post-capture emulation has a perspective 
that exhibits movement of the image sensor that did not 
actually occur during capture of the frame data. 

17. A method for acquiring images of varying modalities 
via a software-defined camera, the method comprising: 

providing a user interface associated with a camera that 
has a high frame rate sensor; 

receiving a user selection of a desired camera emulation 
from a list of possible camera emulations, the list 
including at least a first camera modality corresponding 
to the sensor and a second camera modality different 
than the first camera modality; 

capturing a set of frames via the sensor; 
determining at least one projection for the set of frames to 

produce at least one image that emulates an image from 
a camera of the second camera modality. 

18. The method of claim 17, further comprising comput­
ing a projection operation by performing at least one of 
exposure bracketing, spatio-temporal summation, exposure 
coding, or temporal contrast filtering on at least a portion of 
the temporal sequence of discrete frames. 

19. The method of claim 17, further comprising comput­
ing a projection operation by multiplexing at least some 
frame data in a frame-wise fashion via a multi-bucket 
capture approach. 

20. The method of claim 18, further comprising thresh­
olding a temporal contrast of frame data. 

* * * * * 




