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(57) ABSTRACT 

A system and method are provided for generating at least 
one confidence map indicating the accuracy of a quantitative 
map generated from magnetic resonance (MR) data acquired 
from a subject. The method includes accessing at least one 
of proton density fat fraction (PDFF) or R2 * maps of a 
region of interest (ROI) of a subject produced using chemi­
cal-shift encoded magnetic resonance (MR) data acquired 
from the ROI in the subject, generating at least one confi­
dence map that indicates an accuracy of the at least one of 
the PDFF or R2 * maps, and outputting at least one of (i) the 
at least one confidence map or (ii) a corrected PDFF or R2 * 
map that is corrected using the at least one confidence map. 
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SYSTEM AND METHOD FOR CONFIDENCE 
MAPS FOR QUANTITATIVE MAPPING 

WITH MAGNETIC RESONANCE IMAGING 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH 

[0001] NIA 

BACKGROUND 

[0002] The field of the disclosure is systems and methods 
for magnetic resonance imaging (MRI). More particularly, 
the disclosure relates to systems and methods for creating 
confidence maps for quantitative maps produced using mag­
netic resonance imaging. 
[0003] When a substance, such as human tissue, is sub­
jected to a uniform magnetic field (polarizing field B0 ), the 
individual magnetic moments of the nuclei in the tissue 
attempt to align with this polarizing field, but precess about 
it in random order at their characteristic Larmor frequency. 
If the substance, or tissue, is subjected to a magnetic field 
(excitation field B1) that is in the x-y plane and that is near 
the Larmor frequency, the net aligned moment, M2 , may be 
rotated, or "tipped", into the x-y plane to produce a net 
transverse magnetic moment, Mxy A signal is emitted by the 
excited nuclei or "spins", after the excitation signal B1 is 
terminated, and this signal may be received and processed to 
form an image. 
[0004] When utilizing these "MR" signals to produce 
images, magnetic field gradients (Gx, Gy, G2 ) are employed. 
Typically, the region to be imaged is scanned by a sequence 
of measurement cycles in which these gradients vary accord­
ing to the particular localization method being used. The 
resulting set of received MR signals are digitized and 
processed to reconstruct the image using one of many 
well-known reconstruction techniques. 
[0005] To do so, the signals are often weighted in different 
ways to give preference to or consider different sub-signals 
or so-called contrast mechanisms. Two basic "contrast 
mechanisms" commonly utilized in MR imaging are the 
spin-lattice (or longitudinal or T1) relaxation time or spin­
spin ( or transverse or T 2 ) relaxation time. The T 1 and T 2 

contrast mechanism are the two most important relaxation 
mechanisms commonly exploited to provide soft tissue 
contrast in clinical MRI examinations. Both T 1- and 
T 2 -weighted acquisitions play a ubiquitous role in almost 
every clinical MRI exam and are important for a variety of 
applications including lesion detection, characterization, 
treatment monitoring, and many other applications. How­
ever, there are a variety of other mechanisms for eliciting 
contrast in MRI, including transverse relaxivity rate (R2 *). 
Specifically, R2 * is the inverse of T 2 *, which is a quantity 
related to T 2 , but includes dephasing effects. That is, T 2 * is 
a quantity related to spin-spin relaxation and, in addition, 
relating magnetic field inhomogeneities and susceptibility 
effects. 
[0006] These contrast mechanisms can be manipulated by 
selecting particular imaging parameters utilized while per­
forming a pulse sequence to acquire MR data, so that the 
images reconstructed form the MR data reflect a particular 
weighting toward the preferred contrast mechanism that best 
illustrate the underlying anatomy or pathology that is the 
focus of the clinical analysis. Since the fundamentals of the 
pulse sequence and the imaging parameters dictate the 
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contrast weighting, a variety of different pulse sequences 
and variations on pulse sequences have been developed. 

[0007] Beyond controlling these contrast mechanisms for 
purposes of creating anatomical images, which convey 
qualitative information about the illustrated anatomical 
structures via the relative contrast in the images, there have 
been concerted efforts to elicit quantitative information from 
MR data. For example, instead of qualitative images, some 
have created quantitative maps using MR data. 

[0008] As examples, quantitative T 1 and T 2 mapping have 
gained attention as a promising approach for the diagnosis 
and evaluation of various diseases. Proton density fat­
fraction (PDFF) and R2 * estimated using quantitative 
chemical shift-encoded MRI (CSE-MRI) are well-estab­
lished quantitative biomarkers of liver fat content. As such, 
CSE-MRI methods are FDA-approved to evaluate diseases 
such as non-alcoholic fatty liver disease and liver iron 
overload. More recently, R2 * mapping with CSE-MRI been 
shown to be reproducible across vendors and calibrated to 
liver iron concentration (LIC, mgFe/g dry). 

[0009] Despite these efforts, reliable estimation of PDFF 
and R2 * remains a challenge because of confounding fac­
tors, such as low signal-to-noise ratio (SNR), high iron 
content, inhomogeneous main magnetic field (B0 ), and 
motion. For example, Colgan T J, Zhao R, Roberts N T, 
Hernando D, Reeder SB. Limits of Fat Quantification in the 
Presence of Iron Overload. J Magn Reson Imaging 2021; 
54(4):1166-1174 investigated the reliability of PDFF esti­
mation in the presence of high R2 *, showing that PDFF 
measurements may be unreliable above R2* of-500 s- 1 and 
-800 s- 1 at 1.5T and 3.0T, respectively. 

[0010] With low SNR, PDFF estimates demonstrate not 
only high variability but also bias, due to an asymmetric 
noise probability density at low SNR. Phase errors caused by 
hardware imperfections and concomitant field gradients, 
also introduce bias and poor reliability of PDFF and R2* 
estimation. Further, water-fat swapping can occur in areas of 
high B0 inhomogeneity, such as the liver dome. Despite 
sophisticated methods aimed at preventing water-fat swaps, 
such swaps remain a challenge, even with commercial 
methods. Incorrect estimation of the B0 field results from a 
natural ambiguity in the water and fat signals in water 
(fat)-dominant pixels, leading to incorrect estimation or 
quantification of both PDFF and R2 *. Ghosting of adipose 
tissue signal into the liver can also lead to inaccurate 
estimation of PDFF and R2 *. 

[0011] Unbiased estimation of PDFF and R2 * is needed 
clinically for accurate diagnosis, staging, and treatment 
monitoring. For example, differentiation of normal liver 
from biopsy-based grade 1 hepatic steatosis occurs at a 
PDFF threshold of-5.4-6.4%. Unfortunately, most commer­
cial and investigational CSE-MRI methods simply provide 
reconstructed PDFF and R2 * maps without any guidance on 
regions with valid PDFF and/or R2 * fitting. Regions with 
inadequate or corrupted estimates of PDFF or R2 * are often 
not apparent, even to experienced human analysts. 

[0012] Algorithms that segment the liver are emerging and 
hold promise for automated PDFF and R2 * analysis, making 
automated identification of valid regions necessary. Without 
automated methods to exclude invalid regions of PDFF and 
R2 * maps, the performance of fully automated analysis of 
PDFF and R2 * mapping may be limited. 
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[0013] Therefore, there is a continuing need to provide 
accurate and understandable PDFF and R2 * maps that can be 
used for clinical diagnosis and care. 

SUMMARY 

[0014] The present disclosure overcomes the aforemen­
tioned drawbacks by providing systems and methods for to 
generating confidence maps that identify regions in quanti­
tative maps (such as, for example, PDFF and R2 * maps) that 
are valid for subsequent analysis by clinicians and/or auto­
mated algorithms. As such, clinical care is substantially 
improved by providing clinicians with the information 
needed to be certain that quantitative maps can be trusted, 
either for clinician analysis or automated processing. 
[0015] In accordance with one aspect of the disclosure, a 
magnetic resonance imaging (MRI) system is provided that 
includes a magnet system configured to generate a polariz­
ing magnetic field about at least a portion of a subject 
arranged in the MRI system and a plurality of gradient coils 
configured to apply magnetic gradients to the polarizing 
magnetic field. The MRI system further includes a radio 
frequency (RF) system configured to apply an excitation 
field to the subject and acquire MR image data from the 
subject and a computer system. The computer system is 
programmed to control the plurality of gradient coils and the 
RF system to perform a multi-echo gradient echo pulse 
sequence to acquire chemical-shift encoded magnetic reso­
nance (MR) data from a region of interest (ROI) in the 
subject and estimate at least one of proton density fat 
fraction (PDFF) or R2* in the ROI using the MR data. The 
computer system is further programmed to generate at least 
one confidence map that indicates an accuracy of the esti­
mate of the at least one of the PDFF or R2* in the ROI. The 
system also includes a display to display one of (i) the at 
least one confidence map or (ii) a PDFF or R2* map 
corrected using the at least one confidence map. 
[0016] In accordance with another aspect of the disclo­
sure, a method is provided for generating at least one 
confidence map indicating the accuracy of a quantitative 
map generated from magnetic resonance (MR) data acquired 
from a subject. The method includes accessing, using a 
computer system, at least one of a proton density fat fraction 
(PDFF) map or R2* map produced from the MR data and 
processing, using the computer system, the at least one of the 
PDFF map or R2* map using a threshold to identify spatial 
locations in the PDFF map or R2* map with at least one of 
poor quality of signals for PDFF or R2* measurements or 
water-fat swaps. The method further includes communicat­
ing, using the computer system, a report including at least 
one of (i) the spatial locations with poor quality of signals 
for PDFF or R2* measurements or water-fat swaps or (ii) a 
PDFF or R2* map corrected using the spatial locations with 
poor quality of signals for PDFF a or R2* measurements or 
water-fat swaps. 
[0017] In accordance with yet another aspect of the dis­
closure, a non-transitory, computer-readable storage 
medium is provided having stored thereon instructions that, 
when executed by a computer processor, causes the com­
puter processor to carry out steps. The steps includes access­
ing at least one of proton density fat fraction (PDFF) or R2* 
maps of a region of interest (ROI) of a subject produced 
using chemical-shift encoded magnetic resonance (MR) data 
acquired from the ROI in the subject, generating at least one 
confidence map that indicates an accuracy of the at least one 
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of the PDFF or R2* maps, and outputting at least one of (i) 
the at least one confidence map or (ii) a corrected PDFF or 
R2 * map that is corrected using the at least one confidence 
map. 
[0018] The foregoing and other aspects and advantages of 
the invention will appear from the following description. In 
the description, reference is made to the accompanying 
drawings, which form a part hereof, and in which there is 
shown by way of illustration a preferred embodiment of the 
invention. Such embodiment does not necessarily represent 
the full scope of the invention, however, and reference is 
made therefore to the claims and herein for interpreting the 
scope of the invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0019] FIG. 1 is a block diagram of an exemplary mag­
netic resonance imaging (MRI) system configured in accor­
dance with the present disclosure. 
[0020] FIG. 2 is a graphic representation of an exemplary 
pulse sequence for directing the MRI system of FIG. 1 in 
accordance with the present disclosure. 
[0021] FIG. 3 is a graphical flow chart setting forth some 
non-limiting steps of a method for generating confidence 
maps in accordance with the present disclosure. 
[0022] FIG. 4A is a graph showing a successful water­
dominant fitting using a multi-peak signal model. 
[0023] FIG. 4B is a graph showing an unsuccessful water­
dominant fitting using a multi-peak signal model. 
[0024] FIG. 4C is a graph showing a successful fat­
dominant fitting using a multi-peak signal model. 
[0025] FIG. 4D is a graph showing an unsuccessful fat­
dominant fitting using a multi-peak signal model. 
[0026] FIG. SA is a plot showing a set of PDFF and R2* 
thresholds for NMRSE at 1.5T. 
[0027] FIG. 5B is a plot showing a set of PDFF and R2* 
thresholds for NMRSE at 3.0T. 
[0028] FIG. 6Ais a plot showing a probability of water-fat 
swapping as a function of PDFF and R2 * for 1.5T. 
[0029] FIG. 6B is a plot showing a probability of water-fat 
swapping as a function of PDFF and R2 * for 3.0T. 
[0030] FIG. 7 A is a plot of bias in percentage of R2 * 
measurement as a function of field gradient and R2 * show­
ing that, at lower value ofR2 , a relatively small field gradient 
could provide non-negligible bias. 
[0031] FIG. 7B is a plot of bias in percentage of R2 * 
measurement as a function of field gradient and R2 * show­
ing a medium value of R2 . 

[0032] FIG. 7C is a plot of bias in percentage of R2 * 
measurement as a function of field gradient and R2 * show­
ing that, at a high-R2 * range, bias could be neglected 
regardless of the field gradient. 
[0033] FIG. 8 is a set of box plots for PDFF and R2* 
showing the median, first/third quartile, and minimum/ 
maximum values for each vial in a phantom study. 

DETAILED DESCRIPTION 

[0034] Referring now to FIG. 1, a magnetic resonance 
imaging (MRI) system 100 is provided that may be config­
ured, programmed, or otherwise utilized in accordance with 
the present disclosure. The MRI system 100 includes an 
operator workstation 102, which will typically include a 
display 104, one or more input devices 106 (such as a 
keyboard and mouse or the like), and a processor 108. The 
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processor 108 may include a commercially available pro­
grammable machine running a commercially available oper­
ating system. The operator workstation 102 provides the 
operator interface that enables scan prescriptions to be 
entered into the MRI system 100. In general, the operator 
workstation 102 may be coupled to multiple servers, includ­
ing a pulse sequence server 110; a data acquisition server 
112; a data processing server 114; and a data store server 
116. The operator workstation 102 and each server 110, 112, 
114, and 116 are connected to communicate with each other. 
For example, the servers 110, 112, 114, and 116 may be 
connected via a communication system 140, which may 
include any suitable network connection, whether wired, 
wireless, or a combination of both. As an example, the 
communication system 140 may include both proprietary or 
dedicated networks, as well as open networks, such as the 
internet. 

[0035] The pulse sequence server 110 functions in 
response to instructions downloaded from the operator 
workstation 102 to operate a gradient system 118 and a 
radiofrequency (RF) system 120. Gradient waveforms to 
perform the prescribed scan are produced and applied to the 
gradient system 118, which excites gradient coils in an 
assembly 122 to produce the magnetic field gradients Gx, Gy, 
G

2 
used for position encoding magnetic resonance signals. 

The gradient coil assembly 122 forms part of a magnet 
assembly 124 that includes a polarizing magnet 126 and a 
whole-body RF coil 128. 

[0036] RF waveforms are applied by the RF system 120 to 
the RF coil 128, or a separate local coil (not shown in FIG. 
1), in order to perform the prescribed magnetic resonance 
pulse sequence. Responsive magnetic resonance signals 
detected by the RF coil 128, or a separate local coil, are 
received by the RF system 120, where they are amplified, 
demodulated, filtered, and digitized under direction of com­
mands produced by the pulse sequence server 110. The RF 
system 120 includes an RF transmitter for producing a wide 
variety of RF pulses used in MRI pulse sequences. The RF 
transmitter is responsive to the scan prescription and direc­
tion from the pulse sequence server 110 to produce RF 
pulses of the desired frequency, phase, and pulse amplitude 
waveform. The generated RF pulses may be applied to the 
whole-body RF coil 128 or to one or more local coils or coil 
arrays. 

[0037] The RF system 120 also includes one or more RF 
receiver channels. Each RF receiver channel includes an RF 
preamplifier that amplifies the magnetic resonance signal 
received by the coil 128 to which it is connected, and a 
detector that detects and digitizes the I and Q quadrature 
components of the received magnetic resonance signal. The 
magnitude of the received magnetic resonance signal may, 
therefore, be determined at any sampled point by the square 
root of the sum of the squares of the I and Q components: 

M= ✓l2+Q2; Eqn. 1 

[0038] and the phase of the received magnetic reso­
nance signal may also be determined according to the 
following relationship: 
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Eqn. 2 

[0039] The pulse sequence server 110 also optionally 
receives patient data from a physiological acquisition con­
troller 130. By way of example, the physiological acquisi­
tion controller 130 may receive signals from a number of 
different sensors connected to the patient, such as electro­
cardiograph (ECG) signals from electrodes, or respiratory 
signals from a respiratory bellows or other respiratory 
monitoring device. Such signals are typically used by the 
pulse sequence server 110 to synchronize, or "gate," the 
performance of the scan with the subject's heartbeat or 
respiration. 

[0040] The pulse sequence server 110 also connects to a 
scan room interface circuit 132 that receives signals from 
various sensors associated with the condition of the patient 
and the magnet system. It is also through the scan room 
interface circuit 132 that a patient positioning system 134 
receives commands to move the patient to desired positions 
during the scan. 

[0041] The digitized magnetic resonance signal samples 
produced by the RF system 120 are received by the data 
acquisition server 112. The data acquisition server 112 
operates in response to instructions downloaded from the 
operator workstation 102 to receive the real-time magnetic 
resonance data and provide buffer storage, such that no data 
are lost by data overrun. In some scans, the data acquisition 
server 112 does little more than pass the acquired magnetic 
resonance data to the data processor server 114. However, in 
scans that require information derived from acquired mag­
netic resonance data to control the further performance of 
the scan, the data acquisition server 112 is programmed to 
produce such information and convey it to the pulse 
sequence server 110. For example, during prescans, mag­
netic resonance data are acquired and used to calibrate the 
pulse sequence performed by the pulse sequence server 110. 
As another example, navigator signals may be acquired and 
used to adjust the operating parameters of the RF system 120 
or the gradient system 118, or to control the view order in 
which k-space is sampled. 

[0042] The data processing server 114 receives magnetic 
resonance data from the data acquisition server 112 and 
processes it in accordance with instructions downloaded 
from the operator workstation 102. Such processing may, for 
example, include one or more of the following: reconstruct­
ing two-dimensional or three-dimensional images by per­
forming a Fourier transformation of raw k-space data; 
performing other image reconstruction techniques, such as 
iterative or backprojection reconstruction techniques; apply­
ing filters to raw k-space data or to reconstructed images; 
generating functional magnetic resonance images; calculat­
ing motion or flow images; and so on. 

[0043] Images reconstructed by the data processing server 
114 are conveyed back to the operator workstation 102. 
Images may be output to operator display 112 or a display 
136 that is located near the magnet assembly 124 for use by 
attending clinician. Batch mode images or selected real time 
images are stored in a host database on disc storage 138. 
When such images have been reconstructed and transferred 
to storage, the data processing server 114 notifies the data 
store server 116 on the operator workstation 102. The 
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operator workstation 102 may be used by an operator to 
archive the images, produce films, or send the images via a 
network to other facilities. 
[0044] The MRI system 100 may also include one or more 
networked workstations 142. By way of example, a net­
worked workstation 142 may include a display 144, one or 
more input devices 146 (such as a keyboard and mouse or 
the like), and a processor 148. The networked workstation 
142 may be located within the same facility as the operator 
workstation 102, or in a different facility, such as a different 
healthcare institution or clinic. The networked workstation 
142 may include a mobile device, including phones or 
tablets. 
[0045] The networked workstation 142, whether within 
the same facility or in a different facility as the operator 
workstation 102, may gain remote access to the data pro­
cessing server 114 or data store server 116 via the commu­
nication system 140. Accordingly, multiple networked 
workstations 142 may have access to the data processing 
server 114 and the data store server 116. In this manner, 
magnetic resonance data, reconstructed images, or other data 
may be exchanged between the data processing server 114 or 
the data store server 116 and the networked workstations 
142, such that the data or images may be processed remotely 
by a networked workstation 142. This data may be 
exchanged in any suitable format, such as in accordance 
with the transmission control protocol (TCP), the internet 
protocol (IP), or other known or suitable protocols. 
[0046] The above-described MRI system of FIG. 1 can be 
used to implement a variety of pulse sequences to effectuate 
desired imaging studies. Furthermore, the systems and/or 
computers or processors described above can be pro­
grammed to carry out image or map reconstructions and/or 
derive a variety of clinically-desired metrics or measures. 
One category of pulse sequence is the gradient echo (GRE) 
sequence and variations thereof, such as spoiled gradient 
echo (SGRE) acquisitions. Referring to FIG. 2, one non­
limiting example of a pulse sequence 200 in accordance with 
the present disclosure is provided. In particular, the pulse 
sequence 200 of FIG. 2 is a GRE pulse sequence designed 
in accordance with the present disclosure. That is, as will be 
described, a multi-echo spoiled gradient echo pulse 
sequence can be used to provide simultaneous confounder­
corrected estimation of PDFF and R2 * values and/or a 
confidence map. 
[0047] The pulse sequence 200 of FIG. 2 begins with a 
radio frequency (RF) pulse 202, followed by slice and phase 
encoding achieved using respective slice-selective gradients 
204, 206 and phase-encoding gradients 208, 210. In particu­
lar, following excitation of the nuclear spins in the imaging 
slice prescribed by the slice encoding gradients 204, 206, 
phase encoding gradients 208, 210 are applied to spatially 
encode the elicited echoes 212. A series of readout gradients 
214 are also applied starting with a dephasing gradient lobe 
216 followed by the readout encoding 218 to spatially 
encode the echo 212 along a second, orthogonal direction in 
the prescribed imaging slice. Finally, a spoiler gradient 220 
is applied. On selected passes or repetitions of the pulse 
sequence 200, the pulses may be varied. 
[0048] As described above, proton density fat-fraction 
(PDFF) and transverse relaxivity rate (R2 *) acquired using 
a pulse sequence 200 such as described with respect to FIG. 
2 to perform quantitative chemical shift-encoded MRI 
(CSE-MRI) studies are valuable biomarkers of diffuse liver 
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disease. For MR elastography in the liver region, several 
automated algorithms have been proposed. However, such 
analysis can be readily undermined by costly "call-backs" of 
the patient when the resulting data is unreliable. 
[0049] That is, reliable PDFF and R2 * quantification or 
estimation remains challenging due to confounding factors 
such as low SNR, high iron (high R2 *), inhomogeneous 
magnetic field (B0), and phase errors. In addition, water-fat 
swaps commonly occur in water- or fat-dominant pixels. 
Further, severe magnetic field inhomogeneities can lead to 
focally elevated and unreliable R2* and even PDFF esti­
mates. Thus, a quantitative PDFF or R2 * map may not 
clearly show the regions with inadequate or corrupted mea­
surements, and there is a lack of guidance in current CSE­
MRI methods, for objective identification of invalid regions 
of the maps. 
[0050] Despite the plethora of compounding confounding 
or corrupting factors, the present disclosure is able to tell 
clinicians ( or computerized analysis systems or algorithms) 
the amount of confidence that should be placed in a given 
measurement. As a non-limiting example, the systems and 
methods provided herein have identified a variety of sce­
narios that can lead to biased or incorrect values and 
provides systems and methods or communicating the 
amount of confidence that should be placed in a given value, 
even when multiple confounding or corrupting factors are 
present together compounding the obscurity of the measure. 
[0051] As one non-limiting example, multiple scenarios 
have been identified that can lead to biased estimation or 
high variability of PDFF and/or R2 * values. As some non­
limiting examples, these scenarios can include (i) low SNR 
of underlying source images; (ii) moderate iron overload 
leading to invalid PDFF estimation, but valid R2 * estima­
tion; (iii) severe iron overload, leading to both invalid PDFF 
and R2 * estimation; (iv) extraneous phase or amplitude 
errors in complex CSE-MRI methods; (v) water-fat/fat­
water swapping; and/or (vi) tissues adjacent to areas of high 
susceptibility, such as metallic implants. Furthermore, as 
will be described, the present disclosure recognizes that 
PDFF and/or R2 * measures in pixels suffering from bias or 
high variability can be excluded from subsequent analysis 
and reporting. 
[0052] The present disclosure recognizes that PDFF and 
R2 * measures exhibit increased variability and bias when 
SNR is low. CSE-MRI images have independent additive 
noise, resulting in variability in both signal magnitude and 
phase. Thus, whether using complex CSE-MRI data (mag­
nitude and phase), magnitude only CSE-MRI data (discard­
ing phase of the signal), or hybrid CSE-MRI data (a com­
bination of complex and magnitude data or a combination of 
the resulting magnitude fitting and complex fitting), poor 
SNR in underlying echo images can lead to high variability 
and bias in PDFF and R2 * maps. Noise does not propagate 
linearly in PDFF and R2 * maps, making it difficult for 
experts to determine when SNR is sufficient. 
[0053] The present disclosure further recognizes that sig­
nal decay caused by moderate iron overload worsens SNR in 
later echoes at higher echo time (TE) values. Though SNR 
may be adequate to estimate R2 * reliably, water-fat separa­
tion and, therefore, PDFF estimation may be difficult. In the 
spectral domain, increasing R2 * leads to line-width broad­
ening and, when sufficiently severe, merges water and fat 
into an inseparably broad peak. More severe iron overload 
results in insufficient SNR to estimate either R2 * and PDFF. 



US 2025/0102607 Al 

[0054] The present disclosure recognizes that phase or 
amplitude errors may be caused by a variety of sources, 
including eddy currents, concomitant gradients, or spurious 
phase or amplitude errors. Such phase or amplitude errors 
can lead to biased estimates of both PDFF and R2 *. Suc­
cessful strategies have been proposed to address eddy cur­
rents and concomitant gradients. However, it can be chal­
lenging to identify incompletely corrected or other spurious 
phase- or amplitude-related PDFF and R2 * estimation 
errors. Phase and amplitude errors lead to anatomically 
accurate and visibly plausible PDFF and R2 * maps, but with 
large quantitative errors not easily appreciated visually. 
[0055] The present disclosure further recognizes that 
water-fat swapping occurs in regions with relatively high B0 

inhomogeneity, such as the liver dome. Swaps lead to bias 
in not only PDFF estimate, but also R2 * because the spectral 
model of water (single-peak) and fat (multi-peak) are not the 
same. A pixel with a water-fat swap will inappropriately fit 
signal to the wrong spectral model, and the multi-peak 
interference of fat with itself will lead to an apparent under­
( over-) estimation of R2 *. Water-fat swaps are generally 
easy for expert human analysts to identify, although this is 
generally impractical to implement when using automated 
segmentation algorithms. 
[0056] Further still, signal dephasing in tissue adjacent to 
sources of severe focal susceptibility, such as metallic 
implants and or abrupt tissue-air interfaces, can lead to 
over-estimation of R2 *, and bias in PDFF. 
[0057] In one, non-limiting example, a 6-peak model may 
be used to generate an estimate of PDFF and R2 * from MR 
data acquired using a multi-echo spoiled gradient echo pulse 
sequence, such as described above with respect to FIG. 2. 
[0058] In this context, multiple species of fat can be 
addressed as: 

Eqn. 3 

[0059] where Pw and pf are the complex signal ampli­
tude of water and fat components, aP and f P are relative 
amplitudes and frequencies for pth peak of fat such that 
Lp=I 

6 aP=l, 'JI is the "complex field map" that includes 
off-resonance frequency 'Jlo (Hz) and R2* (s-1

), defined 
as: 

Eqn.4 

[0060] where PDFF is defined as: 

PDF F = --1!:L!_ . 
Eqn. 5 

IPwl + IP1I 

[0061] PDFF and R2 * can be estimated using iterative or 
non-linear estimation algorithms. Since this problem is 
non-convex, challenges such as inhomogeneous B0 fields, 
low SNR, high R2 *, and water-fat swaps, can result in 
inaccurate estimation of PDFF and/or R2 *. 
[0062] Inaccurate PDFF or R2 * undercut the ability to use 
this information clinically. That is, in these situations, not 
only can the information be inaccurate, but there is no way 
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for the clinician to identify or determine and distinguish 
inaccurate information from accurate information. To over­
come this problem, the present disclosure provides systems 
and methods to create confidence maps that identify inap­
propriate or inaccurate estimations of PDFF and R2* under 
a wide variety of scenarios, including all of those described 
above. 
[0063] In one non-limiting example, to develop confi­
dence maps, three classes can be identified. The first class 
can be defined by situations where poor SNR and/or phase 
(or amplitude) errors of the acquired signals are a potential 
source of inaccuracies. This first class can apply to all six 
scenarios above. The second class can be defined by a failure 
of B0 estimation, which applies to the fifth scenario 
described above-water-fat swapping. The third class can be 
defined by an overestimation of R2 * due to severe local 
susceptibility, which applies to the sixth scenario described 
above-tissues adjacent to areas of high susceptibility. 
[0064] Using this construct, multiple confidence maps can 
be generated. For example, referring to FIG. 3, a process 300 
for producing a confidence map in accordance with the 
present disclosure may produce multiple confidence maps, 
which may be delivered as a report and/or outputting indi­
vidually or together. 
[0065] Referring to FIG. 3, at a first stage 302, multiple 
source echo images are acquired. As used herein, acquiring 
multiple source echo images may include acquiring MR data 
from a subject, such as using the MRI system of FIG. 1 and 
a pulse sequence such as described with respect to FIG. 2. 
Alternatively, acquiring multiple source echo images may 
include accessing MR data or MR images stored on a 
computer system or in a memory of a computer system. 
Regardless of the source of the data or images, PDFF and 
R2 * maps are reconstructed using a CSE-MRI algorithm 
with multi-peak signal modeling. 
[0066] The first stage 304 can include multiple processing 
steps that can be performed in parallel or series. For 
example, at process block 306, masks (C 1 PDFF' C 1 R 2 *) can 
be used to identify areas with poor quality of signals for 
PDFF and R2 * measurements, which can be calculated 
based on the normalized root-mean-square error (NRMSE). 
Cramer-Rao Lower Bound, and Monte-Carlo simulation can 
provide confidence threshold of NRMSE. 
[0067] More particularly, the first mask can identify areas 
with poor quality signals for estimation of C 1 PDFF and 
C 1 R 2*. Confidence maps can be based on the" NRMSE 
between the measured signal and CSE-MRI signal model, in 
the least-squares sense (i.e., L2 norm). Any NRMSE value 
above a pre-determined threshold criteria may be utilized. A 
process for determining the threshold using Cramer-Rao 
Lower Bound (CRLB) and Monte-Carlo analyses will be 
described below. 
[0068] At process block 308, the NRMSE for signal fitting 
with and without off-resonance shifts (±3.4 ppm) can be 
compared to detect water-fat swapping (C2 ). That is, the 
NRMSE can also be used to assess water-fat swaps gener­
ated using forced water-fat swaps, by comparing each fit 
with signal models that have off-resonance frequencies to 
enforce a water-fat swap, and estimating the probability of 
a water-fat swap. Note that PDFF and R2 * can share the 
same mask for water-fat swaps, hence Cir)=C2 PDFF(r)=C2 -w. • • 
[0069] Furthermore, at process block 310, to exclude areas 
with strong R2 * decay due to susceptibility effect, suscep-
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tibility effect masks (C3 PDFF and C3 R 2 *) can be calculated 
based on the local B0 gradient. For 'example, severe local 
susceptibility caused by metallic implants or air-tissue inter­
faces, can be evaluated using the local spatial gradient of the 
B0 inhomogeneity ('Jf0 ) to generate C 3 ,PDFF and C 3 ,R2 *. 

[0070] Finally, in addition to these specific confidence 
map focused on scenarios i-iv produced at process block 
306, the confidence map focused on scenario v produced at 
process block 308, and/or the confidence map focused on 
scenario vi produced at process block 310, overall confi­
dence maps for PDFF and R2 * can be derived by using the 
binary AND 312 combination of C 1, C2 , and C3 . As one 
non-limiting example, the overall confidence maps for 
PDFF and R2 * can be determined through the binary AND 
operation as: 

Eqn. (6) 

CR2' (r) = C1,R2' (r) I\ C2(r) I\ c,,R2,(r); 

[0071] where A represents the AND operator and noting 
that Cir)=C2 PDFF(r)=C2 R 2 *(r) for water-fat swaps. 
The resulting ~onfidence imps for PDFF and R2 * maps 
indicate areas with high and low reliability for ROI­
based analysis. Thus, as illustrated, multiple classes of 
confidence maps can be generated, as illustrated at 314. 
Therefore, the systems and methods provided herein 
can produce confidence map(s) for PDFF and R2 * maps 
generated using CSE-MRI. Confidence maps can be 
based on NRMSE values, in combination with masking 
for the presence of water-fat swaps and areas of high 
local magnetic susceptibility. 

[0072] At process block 316, the system or algorithm may 
create any of a variety of outputs. For example, the confi­
dence maps may be individually compiled to generate a 
report. Additionally or alternatively, the confidence maps 
may be combined. Additionally or alternatively, the confi­
dence maps may be output to a reconstruction process for the 
quantitative maps, which may include elastograms. 
[0073] The systems and methods provided herein can be 
used to predict the presence of water-fat swaps and this 
information may be incorporated into the PDFF and R2 * 
map reconstruction, which can obviate the need to mask 
regions of water-fat swaps. Additionally or alternatively, the 
confidence maps may be incorporated into an automated 
map production or analysis system, such as to supplement or 
supplant expert analysis, such as described below. 

Evaluation for Quality of Acquired Signal 

[0074] The reliability of PDFF and R2 * estimates can be 
evaluated using the NRMSE between the measured and 
fitted signals and non-linear least squares estimation. This 
method evaluates the agreement between the measured and 
modeled complex signal, defined as: 

NRMSE = ! '\'N (y" - y")2 · 
j> Un=l N ' 

Eqn. (7) 

[0075] where Y; and Yn are the measured and estimated 
complex signals at nth echo and y is the mean value of 
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the measured signals. NRMSE is a convenient metric to 
provide a confidence threshold, defined as: 

{ 
1 if NRMSE(r) :s r 

Ci(r) = 0 if NRMSE(r) > r; 
Eqn. (8) 

[0076] where r is the spatial coordinate of the map and 
t is a predetermined threshold value, above which the 
signals from voxel at position r do not adequately fit the 
signal model to be considered reliable. 

[0077] The threshold t can vary with PDFF and R2 *, as 
well as pulse sequence parameters, most notably first echo 
time (TE1), echo spacing (LlTE) and echo train length. In one 
configuration, the values of r was studied as a function of 
PDFF, R2 *, TE 1, and LlTE using the CRLB and Monte-Carlo 
simulations, as described below, for a fixed echo train length 
of six. 

Detection of Water-Fat Swapping 

[0078] Water-fat swapping is a well-known challenge with 
CSE-MRI caused by incorrect estimation of the B0 field map 
resulting from fitting to a local minimum, particularly in 
water- or fat-dominant pixels. Swaps are commonly seen in 
the liver dome but can occur anywhere. Since swapping 
leads to highly biased estimates of both PDFF and R2 *, it 
can be important to exclude these regions. 
[0079] Water-fat swapping often occurs two ways with 
CSE-MRI. For PDFF values below 50%, when a swap 
occurs, the estimated field map ('Jf0 ) is estimated at +3.4 ppm 
higher than the true B0 field, corresponding to the methylene 
peak of fat. This results in overestimation of PDFF, and is 
common with typical PDFF values observed in the liver. 
When PDFF exceeds 50% and a swap occurs, the estimated 
field map is underestimated by -3 .4 ppm, which corresponds 
to the water peak, and PDFF is underestimated. 
[0080] That is, referring to FIGS. 4A-4D, there are two 
general scenarios that cause water-fat swapping with multi­
peak signal modeling. Referring to FIG. 4A, for 
PDFF<50%, the estimated off-resonance frequency is over­
estimated, when with a water-fat swap caused by an error in 
B0 estimation, as shown in FIG. 4B. Referring to FIG. 4C, 
for PDFF>50%, off-resonance and PDFF is underestimated, 
with a water-fat swap, as show in in FIG. 4D. The over- or 
under-estimation of off-resonance leads to an increased 
NRMSE since a residual component of fitting remains, since 
the spectral models of water (single peak) and fat (multi­
peak) are different. 
[0081] When swaps occur, the agreement between mea­
sured and fitted signals decreases, due to differences in the 
spectral model of water (single peak) and fat (multipeak), 
leading to an increase in the NRMSE. A swap can be 
enforced by fitting the signal with a shift of +3.4, -3.4 ppm 
relative to the estimated frequency, by substituting the 
frequency term as: 

Eqn. (9) 

[0082] where Ll'JI is the off-resonance shift correspond­
ing to ±3.4 ppm (e.g., ±217 Hz at 1.5T). Calculating 
NRMSE values for each fitted signals can be used to 
predict the presence of a swap. Since the fitting with 
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lower NRMSE should be correct, the confidence map 
which is reflecting swapping can be defined as: 

{ 
1 if NRMSE(r) :s NRMSE~,;~±34(r) 

~W= . ; 
0 1f NRMSE(r) :s NRMSE~,;~±34 (r) 

Eqn. (10) 

[0083] where NRMSE,.._"'=±34 is NRMSE for the fitted 
signal with the off-resonance shift This principle has 
been proposed to exploit the spectral complexity of fat 
to mitigate fat-water swaps. 

Detection of Focal Susceptibility Gradients 

[0084] Strong local off-resonance due to sources of sus­
ceptibility such as metallic implants or tissue-air interfaces, 
accelerates signal decay and lead to local over-estimation of 
the apparent R2 *. The B0 field gradient in the largest voxel 
dimension (usually slice) can be used to exclude regions of 
high susceptibility by using gradient threshold K as: 

{
l if IJ.·G>K 

c3,R2' (r) = 0 if /j.' G :s K, 

[0085] with 

I} 
G = a::, (I/Jo); 

Eqn. (11) 

Eqn. (12) 

[0086] where 'Vo is the estimated B0 map from equation 
(4), fl denotes the largest voxel dimension (e.g., slice 
direction), and z is the coordinate system in that direc­
tion. The B0 map can also be approximated from the 
phase difference of any two or more echo images if B0 

estimation from CSE-MRI is unreliable due to rapid 
signal decay (e.g., severe R2 *). The echo images should 
be selected such that the phase of water and fat signals 
are similar, to prevent estimation errors caused by 
differences in off-resonance between water and fat 
Gradient thresholds, K, can be chosen based on numeri­
cal simulations of R2 * decay with B0 field gradients. 

[0087] Specifically, Bloch equation simulations of signal 
decay due to B0 field gradients using a point spread function 
approach can be used to estimate K for equation (11). 
Assuming a rectangular slice profile, the additional R2 * 
decay due to the macroscopic B0 field gradients in a specific 
direction can be expressed by: 

s(t, G) = (Pw + Pf r:~1 av. e12rrfv'). ef2rr>fr(,)t. !J.. sinc(y· /J.. G· t); Eqn. (13) 

[0088] where G is the field gradient defined in equation 
(12). A field gradient can be assumed along the largest 
voxel dimension, which is typically the slice direction 
with CSE-MRI in the liver. Although these assumptions 
may not be entirely accurate for 3D acquisitions, the 
proposed method provides practical criteria. 

[0089] That is, the algorithm was validated for detecting 
focal susceptibility gradients using a case involving metal 
implant artifacts. R2 * and field gradient (LlG) in the left lobe, 
which is close to the implant artifacts, were measured in a 
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ROL In this analysis, R2 * measurement bias (LlR2 *) was 
calculated pixel-pixel by subtracting the mean R2 * (32.6 1/s) 
in the right lobe from the measured R2 *. A scatter plot of 
LlR2 * against LlG showed that measurement bias tended to 
increase as LlG increases, especially above 20 Hz. For the 
mean R2 *, the algorithm predicted 8.3 Hz, which provides 
reasonable criteria for measurement, although it is a con­
servative number. 
[0090] Although an assumption of ideal slice profile and 
field gradient along only slice direction may be used, the 
results indicated that the result was sufficient To obtain 
more accurate threshold value, the three-dimensional distri­
bution of field gradient and realistic spatial response func­
tion of 3D imaging can be used. 
[0091] The apparent R2 *, which includes the effects of the 
B0 gradient, can be calculated from the full width half 
maximum (FWHM) of frequency domain of the signal as: 

R2't /J.·G = l · 
( ) n·FWHM(!J.•G)' 

Eqn. (14) 

[0092] such that the bias of R2* estimation (LlR2*) is 
defined as: 

!J.R2'(!J. · G) = R2't(/J. · G)-R2' Eqn. (15) 

[0093] Threshold criteria (K) can be chosen such that the 
bias on R2 * estimates are within a desired range such that: 

K=arg mJnl/J.R2'(/J.·G)-R2rl Eqn. (16) 

[0094] where R2*T is the maximum acceptable R2 * 
bias. 

[0095] PDFF estimates can also be affected by B0 gradi­
ents, although generally less so than R2 *. Mild field gradi­
ents still allow for accurate estimation because they broaden 
the water and fat spectra, which manifests as an R2 * 
overestimation, leaving PDFF relatively unaffected. When 
the field gradient reaches a sufficient amplitude, the spectra 
become highly broadened, leading to complicated signal 
decay, and failure of PDFF estimation. 
[0096] Therefore, the susceptibility effect map for PDFF 
can be defined as: 

{
l if IJ.·G>K' 

C3,PDFF(r) = 0 if /j.. G :SK" ; 

Eqn. (17) 

[0097] where G~. is cutoff gradient value that allows 
acceptable bias. In this study, values for K' of 51 Hz and 
93 Hz for 1.5T and 3.0T were used, respectively. These 
values were determined using Monte-Carlo simula­
tions. 

Cramer-Rao Lower Bound (CRLB) and Monte-Carlo (MC) 
Simulation 

[0098] CRLB and MC simulations can be used to deter­
mine NRMSE thresholds in two steps. First, the minimum 
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SNR necessary to meet the target variability (as character­
ized by the standard deviation of PDFF and R2 *) can be 
determined by using CRLB. MC and nonlinear regression 
analyses can then be used to obtain regression models that 
establish the relationship between SNR and NRMSE. These 
analyses provide the relationship between NRMSE and 
standard deviation, indirectly, and assumes that the estima­
tors of PDFF and R2 * are efficient, which is generally the 
case for most CSE-MRI methods. 
[0099] The CRLB, derived from the signal model, such as 
equation (3) for CSE-MRI, provides a theoretical lower 
bound on the variance of any unbiased estimator for PDFF 
(CRLBPDFF) and R2 * (CRLBR2 *) estimated for a specific 
combination of PDFF, R2 *, TEi, LlTE, and SNR, assuming 
a fixed echo train length. 
[0100] Using ROI analysis, analysts typically estimate the 
mean of the estimated values from a region of tissue, with 
Z independent samples. The minimum SNR is chosen such 
that standard error (SE) of the mean of the estimated PDFF 
or R2 * value is below an acceptable variance threshold. In 
this work, SE is defined as: 

CT 
SE=-· ..fz, 

Eqn. (18) 

[0101] where cr is a standard deviation of PDFF or R2 *, 
and Z is the number of independent samples in an ROI. 
Threshold criteria for variability in PDFF and R2 * 
estimates, and Z will vary depending on specific appli­
cations. The minimum SNR values needed to achieve 
reliable estimates are obtained by solving the following 
minimization problems, 

· I CRLBPDFF(SNR, x) I 
SNRPDFF(x) = argmm r;; - SEPDFF 

SNR -vZ 

Eqn. (19) 

I 
CRLBRz' (SNR, x) I 

SNRR2•(x)=argp/4\' ../z -SERz' 

[0102] with 

x = (PDFF, R2', TEI, !J.TE); Eqn. (20) 

[0103] where CRLBPDFF and CRLBR2 * are the mini­
mum standard deviation, calculated from CRLB analy­
sis for PDFF and R2 *, respectively; SEPDFF and SER2 * 

are acceptable SE for PDFF and R2 , respectively. 
SNRPDFF and SNRR2 * are calculated over a range of 
plausible TE 1, LlTE, PDFF, and R2 * values. 

[0104] Because accurate SNR measurements can be a 
challenge, in general, an approach to estimate SNR from 
NRMSE can be used. To determine the relationship between 
NRMSE and SNR, MC simulations can be performed with 
variable PDFF, R2 *, TEi, LlTE, and SNR values, and 
repeated Z times for each set of parameters to replicate 
measurements within a region of interest (ROI) containing Z 
pixels, simulating an ROI measurement from a PDFF or R2 * 
map. Mean NRMSE and SNR values were measured from 
the repeated calculations and plotted. An empirical function 
F(SNR) representing the NRMSE for a specific SNR value 
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can be obtained by fitting the curves, for example, with a 
neural network regression model. 
[0105] Using this relationship, thresholds of NRMSE for 
PDFF and R2 * can be estimated by combining the obtained 
two regressions as: 

TPDFF(X) = F(SNRPDFF(x)) . Eqn. (21) 

TR2' (x) = F(SNRR2, (x)) ' 

[0106] where tPDFF and tR2 * are the thresholds used in 
equation 6 to determine the reliability of PDFF and R2 * 
measurements. 

EXPERIMENTS 

[0107] Thus, as described above, a system and method are 
provided to provide confidence maps. To evaluate the per­
formance of the confidence map algorithm, MC simulations, 
phantom, and in vivo experiments were performed. The 
generation of the quantitative PDFF and R2 * maps used for 
the confidence maps was performed offline using the 
ISMRM Fat-Water toolbox. Water and fat images, and PDFF 
and R2 * maps were reconstructed from complex images 
using a nonlinear least-squares estimation method. Confi­
dence maps for PDFF and R2 * were independently gener­
ated pixel-by-pixel using the equation (6), and final PDFF 
and R2 * maps with confidence map overlays were exported 
as DICOM images for phantom and in vivo experiments. 

Confidence Map 

[0108] A broad physiologically plausible range of R2 * and 
PDFF were used, along with broad but plausible ranges for 
TEi, LlTE, SNR, and off-resonance frequency. The range for 
PDFF and was chosen from 0-100%, and the range for R2 * 
was 25-500 s-1 at 1.5T and 25-1000 s-1 at 3.0T, respectively, 
based on previous studies. The ranges of TE1 (0.9-1.8 and 
0.6-1.0 ms for 1.5T and 3.0T, respectively) and LlTE (1.1-2.2 
and 0.55-1.1 ms for 1.5T and 3.0T, respectively) were based 
on that typically allowed by vendors, and past optimizations. 
Off-resonance frequencies of -14.5-81.3 Hz and -31.7-
164.0 Hz for 1.5T and 3.0T, respectively were used based on 
the known variability of BO in the liver. SNR of the first echo 
was varied between 2-50. An echo train length of 6 was 
chosen, as this value is widely used for clinical CSE-MRI 
acquisitions. 
[0109] Criteria for reliable measurements of PDFF and 
R2 * were determined based on previous clinical studies. 
Specifically, the coefficients of repeatability for PDFF and 
R2 * in the liver were investigated based on prior in-vivo 
studies. It has reported that PDFF measurement using CSE­
MRI showed repeatability coefficients of 2.99%, respec­
tively. For R2 *, it has been reported that the test-retest R2 * 
repeatability using Bland-Altman analysis at both 1.5T 
(95% limit of agreement (LOA): -14.2-16.9%, Bias: 1.4%) 
and 3.0T (95% LOA: -16.6-15.5%, Bias: -0.6%) as part of 
a multi-center, multi-vendor study. 
[0110] Based on these results, the thresholds were chosen 
to lead to standard error (SE) values much less that these 
coefficients of repeatability to avoid impacting the test-retest 
variability of CSE-MRI. Specifically, the selections were 
made to achieve a SE of 1 % (absolute) or less for PDFF, and 
less than 3% (relative) or 5 s-1 (whichever is larger) for R2 *. 
A circular ROI was assumed with 2.8 cm diameter, corre-
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sponding to 100 pixels for in-plane spatial resolution of 
2.0x3.0 mm2

, typical for CSE-MRI. 

Simulation Experiments 

[0111] Monte-Carlo (MC) simulations using signal gener­
ated with the model in equation (3) were performed (MAT­
LAB 2021 b) to evaluate the performance of the proposed 
confidence map algorithm. The same ranges of parameters 
for R2 *, PDFF, TEi, ti.TE, SNR, and off-resonance fre­
quency as those assumed for the confidence map were 
applied. Zero-mean complex Gaussian noise was added to 
the simulated signal to vary SNR. The variance of the 
estimated values of PDFF and R2 * for a particular NRMSE 
was calculated using a binned scatterplot. 
[0112] Additional MC simulations were used to evaluate 
the performance of the proposed water-fat swap detection 
method using the same parameter range explained above. 
We implemented the algorithm in equation (8) and plotted 
probabilities that successfully detected swapping against 
NMRSE for 1.5T and 3.0T. 
[0113] To obtain an empirical relationship between 
SNRPDFF and SNRR2 * with NMRSE, the results from equa­
tion (19) were fit to a shallow neural network regression 
model consisting of three fully connected hidden layers with 
10 neurons using the fitmet function provided in MATLAB. 
The same model was used for fitting F, which showed the 
relationship between NRMSE and SNR. 
[0114] R2 * bias due to macroscopic BO inhomogeneity 
was calculated with variable R2 * (25-1000 s- 1

) and Ba using 
equations (13)-(15). An empirical relationship between the 
Ba gradient and R2 * was developed to determine the thresh­
old K in equation (11), obtained by fitting the calculated 
results to polynomial regression model up to 3rd order, 
followed by the application of equation (16). 

Phantom Experiments 

[0115] Phantom experiments were performed to validate 
the performance of the confidence map algorithm. A proto­
type phantom (Calimetrix, Madison, WI) consisting of 16 
vials with simultaneously varying PDFF and R2 * enclosed 
within a spherical housing unit was used. PDFF and R2 * 
maps were acquired using a 3.0T clinical MR system (Signa 
Premier, GE Healthcare, Waukesha, WI). Acquisition 
parameters are summarized in Table 1. 

TABLE 1 

Phantom In vivo 

3.0T 1.5T 

TR 6.2 ms 8.3-13.6 ms 

TE! 1.0 ms 0.9-1.7 ms 
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[0116] To obtain low SNR images, a flip angle of 1 ° was 
used. An increasing number of signal averages (NSA) from 
1-9 was used to vary SNR. To perform quantitative analysis, 
PDFF and R2 * values were measured. RO Is were placed in 
each vial to perform a box plot analysis. The above-de­
scribed systems and methods for creating confidence maps 
were applied to the acquired maps. 

In Vivo Experiments 

[0117] A prospective clinical study was performed by 
performing a retrospective analysis of CSE-MRI data col­
lected from consecutive patients undergoing PDFF and R2 * 
measurements in the liver as part of clinical MR exams. 
Imaging for the subjects was implemented using various 
1.5T and 3.0T clinical MR systems (GE Healthcare, Wauke­
sha, WI). A commercial CSE-MRI method (IDEAL-IQ GE 
Healthcare, Waukesha, WI) with imaging parameters listed 
in Table 1 was used. 
[0118] A board-certified radiologist delineated ROis for 
each of9 liver segments blinded to the confidence maps. The 
percent area of the ROis was then calculated in areas that 
were identified by the confidence map as invalid. In this way, 
we aimed to determine the impact of confidence maps on 
clinical analysis, since those areas would have been avoided 
if the confidence maps had been made available to the 
radiologist or an automated segmentation algorithm. 

Results 

[0119] Referring to FIGS. SA and SB, plots are provided 
that are a function of NRMSE and R2 * for R2 * and PDFF 
calculated using MC simulations with 1.5T and 3 .OT, respec­
tively. Threshold values calculated using the above-de­
scribed systems and methods (white solid lines) agree with 
estimates from MC simulations (dotted line). The plots also 
demonstrate that threshold values are moderately dependent 
on R2 * but less dependent on PDFF. 
[0120] MC simulations reveal water-fat swapping can be 
successfully detected using the proposed method for wide 
range of PDFF and R2 * values. FIGS. 6A and 6B show the 
probability of water-fat swapping as a function of PDFF and 
R2 * for 1.5T (FIG. 6A) and 3.0T (FIG. 6B). 
[0121] The above-described systems and methods can 
detect swapping with, in this limited context, 80% probabil-

3.0T 

4.9-7.5 ms 

0.9-1.0 ms 

LI.TE 0.7 ms 1.8-2.1 ms 0.59-1.0 ms 

# Echoes 3 3 

# Interleaved Echo Trains 2 2 2 

Receiver Bandwidth 781 Hz/px 651 Hz/px 781 Hz/px 

FOY 40 cm 40-46 cm 36-40 cm 

Slice Thickness 2 mm 7.8-10 mm 8-10 mm 

Number of slices 20 56-72 28-36 

Matrix Size 160 X 160 184 X 112-)92 X 160 116 X 104-)92 X 160 

Flip Angle 1 50 3-4° 

NSA 1, 9 0.5 0.5 
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ity for most PDFF and R2 * values. The probability of a 
water-fat swap detection drops dramatically at high R2 *, as 
expected. 
[0122] FIGS. 7A-7C are plots of the estimation bias in% 
associated with low- (50-100 s-1), mid- (100-300 s-1), and 
high-R2 * (300-1000 s- 1

) due to B0 inhomogeneities. There 
is a strong relationship between estimation bias and B0 

gradient and R2 *. A relatively small B0 gradient will lead to 
some bias at low R2 * values, whereas high R2 * values are 
less biased. Based on these results, threshold values for B0 

gradients are shown as the white dotted lines in FIGS. 
7A-7C, for use with equation (16). 
[0123] Data from the phantom experiments demonstrated 
that the systems and methods provided herein identified 
areas not suitable for PDFF and R2 * measurements under 
various SNR conditions. The PDFF and R2 * maps obtained 
with high SNR (NSA=9) had appropriate SE values for 
PDFF and R2 * measurements. Similarly, the systems and 
methods described herein identified regions with poor SE in 
PDFF and R2 * for the low SNR acquisition (NSA=l). ROis 
in vials 4, 8, 12, and 16 in the PDFF map acquired with 
NSA=l were excluded as unreliable PDFF (SE=l .1 %, 1.7%, 
0.79%, 0.71%). The systems and methods also identified 
most of vials 8 and 16 as invalid for analysis (SE=3.7%, 
2.4%). The box plots of FIG. 8 show how these ROis have 
relatively high PDFF and/or R2 * variability. 
[0124] Raw data from 100 consecutive patients (1.5T: 51, 
3.0T: 49 patients, 51:49 men:women, 56 range: 18-82 years) 
who underwent CSE-MRI of the liver as part of their clinical 
MR exam was successfully collected and reconstructed as 
described above. PDFF and R2 * maps with high R2 * (>500 
s- 1 

), as well as histograms with PDFF and R2 * values from 
RO Is located in the right lobe, demonstrated that the systems 
and methods provided herein successfully identified unreli­
able regions. A measurement of this example indicated 
unacceptable variability (SE=l.7%) in PDFF maps, while 
R2 * (SE=2.3%) was within the defined criteria. A metal 
implant in the abdominal wall caused severe susceptibility 
artifacts in both PDFF and R2 * maps and was properly 
identified using the systems and methods provided herein. 
Most fatty regions in R2 * were masked out because the B0 

field gradient was above the defined threshold (K), which 
was caused by interface between fat and water tissues. These 
regions were successfully masked using the confidence 
maps. 
[0125] In total, 832 ROis were placed by the radiologist, 
with 68 ROis not placed due to poor image quality, such as 
motion artifacts. ROI analysis by the radiologist revealed 
that 2.6% and 15% of the area of the ROis in PDFF and R2 * 
maps were placed inside unreliable areas identified by 
confidence maps. Notably, 5.4% and 49% ofROis for PDFF 
and R2 * maps, respectively, had more than 10% of invalid 
pixels. Further, there were significant differences in PDFF 
( 4.3%±4.4%) and R2 * (18.7 s- 1±34 s- 1

) measurements with 
and without confidence maps in 1 % and 12% of the cases, 
respectively. Twenty-six cases had water-fat swapping, and 
two had severe focal metal artifacts, respectively. Further­
more, three cases had unreliable PDFF due to moderate 
levels of R2 *, while R2 * estimates were acceptable. No 
cases with extreme R2 * values were seen. 
[0126] Thus, the systems and methods described herein 
were validated in both in vitro and in vivo settings and 
generated confidence maps for PDFF and R2 * maps mea­
sured in the liver using CSE-MRI. Confidence maps were 
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generated based on NRMSE values between the signal 
model and measured signals. Further, areas of water-fat 
swapping and regions of severe susceptibility artifact from 
metal were excluded. Monte-Carlo simulations, a phantom 
study and clinical study demonstrated the validity and utility 
of the proposed algorithm. 
[0127] The systems and methods described herein can 
generate confidence maps as an output and/or can be part of 
an automated system and method to identify reliable and 
unreliable regions of PDFF and R2 * maps. Such maps are 
clinically valuable because they provide clinicians with 
accurate and precise estimates of PDFF and R2 * needed to 
diagnose, stage, and monitor treatment of patients with, for 
example, liver disease. The systems and methods provided 
herein can be used to avoid inappropriate ROI placement by 
analysts and can improve the quality and consistency of 
PDFF and R2 * measurements. 
[0128] The systems and methods provided herein can be 
used for a variety of CSE-MRI applications. That is, the 
experiments provided above were applied in the clinical 
context of liver imaging. However, the systems and methods 
provided herein are not limited to this clinical setting or liver 
imaging. The threshold values may vary depending on 
specific applications. However, the systems and methods 
provided herein can be applied to any CSE-MRI measure­
ment by changing simply adjusting threshold used to gen­
erate the confidence maps. 
[0129] As described above, invalid regions of R2 * and/or 
PDFF estimation can be relatively common. Furthermore, 
focal severe susceptibility artifacts can occur with non­
negligible frequency. It is important to note that, although 
the expert radiologist can exclude inappropriate areas in 
many cases, confidence maps are important aids for non­
expert analysts, and necessary for fully automated tools. 
[0130] The present disclosure recognizes that several esti­
mation algorithms exist for PDFF and R2 *. It may be 
desirable to adjust the threshold used for the confidence map 
for a given algorithm. 
[0131] In some implementations, devices or systems dis­
closed herein can be utilized or installed using methods 
embodying aspects of the invention. Correspondingly, 
description herein of particular features or capabilities of a 
device or system is generally intended to include disclosure 
of a method of using such features for intended purposes and 
of implementing such capabilities. Similarly, express dis­
cussion of any method of using a particular device or 
system, unless otherwise indicated or limited, is intended to 
inherently include disclosure, as embodiments of the inven­
tion, of the utilized features and implemented capabilities of 
such device or system. 
[0132] As used herein, unless otherwise limited or defined, 
"or" indicates a non-exclusive list of components or opera­
tions that can be present in any variety of combinations, 
rather than an exclusive list of components that can be 
present only as alternatives to each other. For example, a list 
of"A, B, or C" indicates options of: A; B; C; A and B; A and 
C; Band C; and A, B, and C. Correspondingly, the term "or" 
as used herein is intended to indicate exclusive alternatives 
only when preceded by terms of exclusivity, such as "only 
one of," or "exactly one of." For example, a list of"only one 
of A, B, or C" indicates options of: A, but not B and C; B, 
but not A and C; and C, but not A and B. In contrast, a list 
preceded by "one or more" (and variations thereon) and 
including "or" to separate listed elements indicates options 
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of one or more of any or all of the listed elements. For 
example, the phrases "one or more of A, B, or C" and "at 
least one of A, B, or C" indicate options of: one or more A; 
one or more B; one or more C; one or more A and one or 
more B; one or more B and one or more C; one or more A 
and one or more C; and one or more A, one or more B, and 
one or more C. Similarly, a list preceded by "a plurality of' 
(and variations thereon) and including "or" to separate listed 
elements indicates options of one or more of each of 
multiple of the listed elements. For example, the phrases "a 
plurality of A, B, or C" and "two or more of A, B, or C" 
indicate options of: one or more A and one or more B; one 
or more B and one or more C; one or more A and one or more 
C; and one or more A, one or more B, and one or more C. 
[0133] The present invention has been described in terms 
of one or more preferred embodiments, and it should be 
appreciated that many equivalents, alternatives, variations, 
and modifications, aside from those expressly stated, are 
possible and within the scope of the invention. 

1. A magnetic resonance imaging (MRI) system compris­
ing: 

a magnet system configured to generate a static magnetic 
field (B0) about at least a portion of a subject arranged 
in the MRI system; 

a plurality of gradient coils configured to apply magnetic 
gradients to the polarizing magnetic field; 

a radio frequency (RF) system configured to apply an 
excitation field to the subject; 

a computer system programmed to: 
control the plurality of gradient coils and the RF system 

to perform a multi-echo gradient echo pulse 
sequence to acquire chemical-shift encoded mag­
netic resonance (MR) data from a region of interest 
(ROI) in the subject; 

estimate at least one of proton density fat fraction 
(PDFF) or R2 * in the ROI using the MR data; 

generate at least one confidence map that indicates an 
accuracy of the estimate of the at least one of the 
PDFF or R2 * in the ROI; and 

a display to display one of (i) the at least one confidence 
map or (ii) a PDFF or R2 * map corrected using the at 
least one confidence map. 

2. The MRI system of claim 1, wherein the computer 
system is further programmed to evaluate the estimate of the 
at least one of the PDFF or R2 * in the ROI using a threshold. 

3. The MRI system of claim 2, wherein the threshold 
includes a normalized root-mean-square-error (NRMSE) 
threshold. 

4. The MRI system of claim 1, wherein the computer 
system is further programmed to identify water-fat swapping 
in the MR data by performing a set of calculations of 
water-fat separation with fixed off-resonance shifts. 

5. The MRI system of claim 4, wherein the fixed off­
resonance shifts include +3.4 ppm and -3.4 ppm relative to 
an estimated frequency. 

6. The MRI system of claim 1, wherein the computer 
system is further programmed to analyze the MR data to 
detect R2* decay caused by local magnetic field variations. 

7. The MRI system of claim 1, wherein the computer 
system is further configured to generate multiple confidence 
maps using multiple processing stages and combine the 
multiple confidence maps into an overall confidence map. 

11 
Mar. 27, 2025 

8. A method for generating at least one confidence map 
indicating the accuracy of a quantitative map generated from 
magnetic resonance (MR) data acquired from a subject, the 
method comprising: 

accessing, using a computer system, at least one of a 
proton density fat fraction (PDFF) map or R2 * map 
produced from the MR data; 

processing, using the computer system, the at least one of 
the PDFF map or R2 * map using a threshold to identify 
spatial locations in the PDFF map or R2 * map with at 
least one of poor quality of signals for PDFF or R2 * 
measurements or water-fat swaps; and 

communicating, using the computer system, a report 
including at least one of (i) the spatial locations with 
poor quality of signals for PDFF or R2 * measurements 
or water-fat swaps or (ii) a PDFF or R2 * map corrected 
using the spatial locations with poor quality of signals 
for PDFF or R2 * measurements or water-fat swaps. 

9. The method of claim 8, further comprising, using the 
computer system, identifying spatial locations with strong 
R2 * decay due to susceptibility effects and indicating the 
spatial locations with strong R2 * decay due to susceptibility 
effects in the report or using the spatial locations with strong 
R2 * decay due to susceptibility effects to correct the PDFF 
or R2 * map. 

10. The method of claim 8, further comprising, using the 
computer system to identify water-fat swapping by perform­
ing a set of calculations of water-fat separation with fixed 
off-resonance shifts. 

11. The method of claim 10, wherein the fixed off­
resonance shifts include at least +3.4 ppm and -3.4 ppm 
relative to an estimated frequency. 

12. The method of claim 8, further comprising, using the 
computer system, generating a confidence map for each step 
of a multi-stage process of: 

(a) spatial locations in the PDFF map or R2 * map with at 
least one of poor quality of signals for PDFF or R2 * 
measurements; 

(b) spatial locations in the PDFF map or R2 * map that are 
subject to water-fat swaps; and 

( c) spatial locations with strong R2 * decay due to sus­
ceptibility effects. 

13. The method of claim 12, further comprising, using the 
computer system, combining each confidence map of steps 
(a) through (c) into an overall confidence map. 

14. The method of claim 8, further comprising, using the 
computer system, at least one of: 

displaying the report; 
using the report to reconstruct a corrected PDFF or R2 * 

map; or 
using the report in an automated map production or 

analysis system. 
15. A non-transitory, computer-readable storage medium 

having stored thereon instructions that, when executed by a 
computer processor, causes the computer processor to carry 
out steps comprising: 

accessing at least one of proton density fat fraction 
(PDFF) or R2 * maps of a region of interest (ROI) of a 
subject produced using chemical-shift encoded mag­
netic resonance (MR) data acquired from the ROI in the 
subject; 

generating at least one confidence map that indicates an 
accuracy of the at least one of the PDFF or R2 * maps; 
and 
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outputting at least one of (i) the at least one confidence 
map or (ii) a corrected PDFF or R2 * map that is 
corrected using the at least one confidence map. 

16. The storage medium of claim 15, further comprising 
generating the at least one confidence map using a multi­
stage process including steps comprising: 

identifying spatial locations in the at least one PDFF or 
R2 * maps with at least one of poor quality of signals for 
PDFF or R2 * measurements; 

identifying spatial locations in the at least one of PDFF or 
R2 * maps for water-fat swaps; and 

identifying spatial locations in the at least one of PDFF or 
R2 * maps for strong R2 * decay due to susceptibility 
effects. 

17. The storage medium of claim 16, further comprising 
generating a confidence map for each step of the multi-stage 
process. 

18. The storage medium of claim 17, further comprising 
combining the confidence map for each step of the multi­
stage process into an overall confidence map. 

19. The storage medium of claim 18, further comprising 
communicating the overall confidence map to at least one of 
a report display, an image reconstruction process, or an 
automated map process. 

20. The storage medium of claim 15, wherein generating 
the at least one confidence map includes processing the at 
least one of the PDFF or R2 * maps using a threshold to 
identify spatial locations in the at least one of PDFF or R2 * 
maps with at least one of poor quality of signals for PDFF 
or R2 * measurements or water-fat swaps. 

* * * * * 
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